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ABSTRACT
In this paper we describe by pseudo-code the “Algorithm of the cyclic-order graph”, which we programmed in MATLAB 2016a

and which is also possible to be executed in GNU Octave. We describe program’s functionality and its use. The program implementing
this algorithm is an indispensable tool during proofs in the field of graph theory, especially when dealing with crossing numbers for
join products of graphs with paths of given numbers of vertices.
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1. INTRODUCTION

In [1] was shown the proof of the values of crossing
numbers for join products of the graph G on five vertices
with the discrete graph Dn and the path Pn on n vertices.
The proof was done with the algorithm that is described in
this article. The algorithm generates all cyclic permutations
for a given number n. For cyclic permutations from P1 up
to Pm (m being the number of cyclic permutations) it cre-
ates a graph in which it calculates the distances between all
vertices of the graph. These are used in proof of crossing
numbers for presented graphs.

In article [1] was shown the correct proof of the theorem
from [2]. Using the given algorithm for n = 5, we got the
names of the cyclic permutations and the distance between
the cyclic permutations. The maximum distance between
two vertices in such graph is equal to four. With this infor-
mation we were able to use arguments described in [3, 4].

2. MATHEMATICAL BACKGROUND

For the algorithm we will use few facts from the graph
theory:
Let B be an adjacency matrix corresponding to the graph G
with m elements and let B(1) be the matrix obtained from
adjacency matrix B by adding ones to the main diagonal.
Let us consider the matrix B(2) = {b(2)i j }m

i, j=1, such that

B(2) = B(1) ·B(1). (1)

From the matrix multiplication it is obvious that

b(2)i j =
m

∑
k=1

b(1)ik ·b
(1)
k j , (2)

but in this matrix we use the Boolean addition and multi-
plication (1 ·1 = 1, 0 ·1 = 1 ·0 = 0 ·0 = 0, 1+0 = 0+1 =
1+1 = 1, and 0+0 = 0). In general we consider matrix:

B(m) = B(m−1) ·B(1). (3)

Theorem 2.1. Let B be the adjacency matrix of the con-
nected graph G = (V,H), |V | = m is given. Then for arbi-
trary k = 1,2, . . . ,m, the element b(k)i j of the matrix B(k) is
equal to one if d(vi,v j) ≤ k, where d(vi,v j) is a distance
between two vertices vi and v j, respectively.

Corollary 2.1. The graph G = (V,H), |V | = m, is con-
nected only if all elements of the matrix B(m−1) are equal
to one.

Corollary 2.2. For each two different vertices of the graph
G = (V,H), d(vi,v j) = mink∈{1,2,...,m}{k;b(k)i j = 1}.

3. ALGORITHM’S OVERVIEW

The input for the algorithm is the number n, which rep-
resents an n-element set {1,2,3, . . . ,n}. The algorithm se-
lects all cyclic permutations from the set of all permutations
of the n-element set {1,2,3, . . . ,n} (calculates or reads pre-
calculated from input). It then marks these permutations
with symbols P1, . . . ,Pm, where m = (n− 1)!. These per-
mutations correspond to the vertices V = {P1,P2, . . . ,Pm}
of the graph G which we study. In this graph an edge is
created between two vertices, if they correspond to the per-
mutations Pi and Pj, which can be transformed from one
to other by interchanging of exactly two elements of the n-
tuple (i. e. an ordered set with n elements). This graph is
represented by a square symmetrical adjacency matrix. The
distance between each pair of vertices is calculated using
the properties of the cyclic-order graph CO5 defined in [5].

For algorithm to run, user has to choose proper number
of elements n. n equaling to 2 is a minimal possible value.
As to the upper boundary, on recent hardware it is possible
to use n up to 10. Since the complexity of the adjacency
matrix grows with the factor of n2, changes in algorithm’s
data storage and matrix multiplication would be necessary
to account for this computational increase.

4. DESCRIPTION OF THE ALGORITHM

This algorithm consists of the main procedure and four
functions. Input is from keyboard and defined files. Output
is to the screen. It uses the basics from [6]. All functions are
written in such a manner, that after putting them in appro-
priate *.m files they can be run without any change (except
for commenting out comments). This approach forced us
to be sometimes more verbal but the provided code is better
readable and easier to use.
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Fig. 1 Scheme of the algorithm

For schematic diagram of the Algorithm of the cyclic-
order graph see Fig. 1. There are displayed procedures
and functions that were used, their mutual relations, inputs,
and outputs. The main algorithm starts by using proce-
dure OUTPUTTESTPERMUTATION(n) (see Algorithm 5.1),
where n is an positive integer between 2 and 10, respec-
tively. This procedure calls two functions TESTPERMUTA-
TION(n) (see Algorithm 5.2) and TEST(D) (see Algorithm
5.3).

The function TESTPERMUTATION(n), based on input n,
loads a list of cyclic permutations Pi from the appropriate
file. These lists of cyclic permutations are stored in files, be-
cause in MATLAB we were not able to guarantee the same
ordering of permutations for subsequent calls to permuta-
tions function. This is not acceptable, since the proofs of
theorems in graph theory require the labeling of permuta-
tions to be constant. It also generates a graph of cyclic per-
mutations, which is represented by the adjacency matrix G.
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Here it is necessary to perform the test, which vertices of the
graph G are to be joined by the edge and which are not. The
function TESTPERMUTATION(n) calls CYCLICPERMUTA-
TION(u) (see Algorithm 5.4), which has an input value a
permutation u and as output gives the cyclic permutation
w to which permutation u corresponds. Based on this out-
put we can assign label to permutation Pi. Similarly, func-
tion TESTPERMUTATION(n) calls DISTANCE(G) (see Al-
gorithm 5.5), which has as input an adjacency matrix G and
the output is matrix of distances D and the maximal dis-
tance MV in the graph G. The matrix D contains at position
i j (i-th row and j-th column) the element di j corresponding
to the distance between the vertices vi and v j in the graph G,
where the vertex vi corresponds to the cyclic permutation Pi
and the vertex v j corresponds to the cyclic permutation Pj.

All important information about the generated graph G
is sent by the TESTPERMUTATION(n) to the main proce-
dure OUTPUTTESTPERMUTATION(n), namely:

P – list of cyclic permutations with their designation Pi,
G – adjacency matrix of the graph G,
D – distance matrix of the graph G,

MV – maximum distance in the graph G (graph diameter).

The function TEST(Y ) is a function that gives the output
of specific information about the distance of two selected
cyclic permutations. The input for TEST(Y ) is a matrix Y
corresponding to matrix D. Permutations Pi and Pj and the
natural number L ≥ 1 are entered by keyboard. The output
will be a vector R – list of permutations Pk that satisfy the
conditions:

(1) distance(Pi, Pk) + distance(Pk, Pj) < L,
(2) distance(Pi,Pk)> 0 and distance(Pk,Pj)> 0.

All calculated information is displayed on the monitor
screen.

5. ALGORITHM OF THE CYCLIC-ORDER GRAPH – PSEUDOCODE
Algorithm 5.1 Calculate: The distances between cyclical permutations.

Require: n > 0 an positive integer, d > 0 an positive integer, serial numbers of two vertices of the graph G
Ensure: List of cyclic permutations, adjacency matrix of the graph G, maximum distance in graph G, distance between

each pairs of vertices of the graph G, set of vertices whose sum of distances from the two given vertices is less than
or equal to the given constant d

1: procedure OUTPUTTESTPERMUTATION(n) . Main procedure.
2: . It gives at the output the required values.
3: [P, G, D, MV] = TESTPERMUTACION(n); . See line 101
4: s = 1; . Input variable.
5: display(’Menu for output:’)
6: while s > 0 do
7: display(’Choose one of the options:’)
8: display(’0 = End the program’)
9: display(’1 = Listing of adjacency matrix of the graph G’)

10: display(’2 = Listing of cyclic permutations (vertices of the graph G)’)
11: display(’3 = Listing the maximum distance in the graph G’)
12: display(’4 = List all distances between the vertices of the graph G’)
13: display(’5 = List of all vertices that satisfy the defined inequality in the graph G’)
14: s = input(’Enter a number: ’); . Expected Keyboard Value
15: switch s do
16: case 0
17: display(’The program is terminated.’)
18: end case
19: case 1
20: display(’The adjacency matrix of the graph G has the form:’)
21: display(G)
22: end case
23: case 2
24: display(’Label of permutation P:’)
25: [u, v] = size(P);
26: Z = [];
27: for i = 1..u do
28: Z = [’Permutation P’, i, ’ = ’, ’(’];
29: for j = 2..v do
30: Z = [Z, ’ ’, P(i, j)];
31: end for
32: Z = [Z, ’ )’];
33: display(Z)

ISSN 1335-8243 (print) c© 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



6 Software Solution of the Algorithm of the Cyclic-Order Graph

34: end for
35: end case
36: case 3
37: Out put = [’The maximum distance in the graph G = ’, MV ];
38: display(Out put)
39: end case
40: case 4
41: for k = 1..MV do
42: X = [’Permutations at distance d = ’, k];
43: display(X)
44: Y = [];
45: for i = 1..m do
46: Y = [’Permutation ’, ’ P’, i,’ −−> ’,’ Permutations ’, ’ P:’];
47: for j = 1..n do
48: if D(i, j) == k then
49: Y = [Y , ’ ’, j,’, ’];
50: end if
51: end for
52: display(Y )
53: Y = [];
54: end for
55: X = [];
56: end for
57: end case
58: case 5
59: [R,L,P1,P2] = TEST(D); . See line 251
60: Text = [’Permutation Pk, having the sum of the distances not greater than ’, L,
61: ’ from permutation P’, P1, ’ and P’, P2, ’ are: ’];
62: display(Text)
63: display([’Pk −−> ’, R])
64: end case
65: case Otherwise
66: display(’Such a choice is not between the options.
67: Select option from the list.’)
68: end case
69: end switch
70: end while
71: display(’END OF PROGRAM!’)
72: end procedure

Algorithm 5.2 PART – Function: TESTPERMUTATION(n) (continued)

101: function [P,G,D,MV ] = TESTPERMUTATION(n)

102: Test whether the input values are correct:
103: clear P,N,G,D,Z;
104: if or(n <= 1, n > 10) then
105: display(’Entered number must be an integer value from 2 to 10!’);
106: P = [];
107: return ;
108: else if round(n) ∼= n then
109: display(’The value n must be integer!’);
110: P = 0;
111: quit cancel;
112: else
113: clear A,AC;
114: end if
115: switch n do
116: case {2, 3}
117: N = [1:n]; N1 = [2:n];
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118: A = perms(N);
119: AC = perms(N1);
120: [m1,n1] = size(AC);
121: AC = [AC ones(m1,1)];
122: [m,n] = size(A);
123: end case
124: case 4
125: f ilename = ’Permutacia-4.mat’;
126: load( f ilename)
127: end case
128: case 5
129: f ilename = ’Permutacia-5.mat’;
130: load( f ilename)
131: end case
132: case 6
133: f ilename = ’Permutacia-6.mat’;
134: load( f ilename)
135: end case
136: case 7
137: f ilename = ’Permutacia-7.mat’;
138: load( f ilename)
139: end case
140: case 8
141: f ilename = ’Permutacia-8.mat’;
142: load( f ilename)
143: end case
144: case 9
145: f ilename = ’Permutacia-9.mat’;
146: load( f ilename)
147: end case
148: case 10
149: f ilename = ’Permutacia-10.mat’;
150: load( f ilename)
151: end case
152: case Otherwise
153: warning(’For such values of n this program doesn’t work.’)
154: end case
155: end switch
156: G = uint8(zeros(m1));
157: for k = 1..m do
158: for h = (k+1)..m do
159: v = A(k, :)−A(h, :);
160: s = sum(v);
161: nuls = 0;
162: for j = 1..n do
163: if v( j) == 0 then
164: nuls = nuls+1;
165: end if
166: end for
167: if and(s == 0,nuls == (n−2)) then
168: for i = 1..(n−1) do
169: if (v(i)∗ v(i+1) == 0) then
170: s = s+(v(i)∗ v(i+1));
171: else
172: s = s+(v(i)∗ (1/v(i+1)));
173: end if
174: end for
175: if (v(n)∗ v(1) == 0) then
176: s = s+(v(n)∗ v(1));
177: else
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178: s = s+(v(n)∗ (1/v(1)));
179: end if
180: if s ==−1 then
181: for j = 1..m1 do
182: [w] = CYCLICPERMUTATION(A(k,:)); . See line 301
183: if w == AC( j, :) then
184: k1 = j;
185: end if
186: [w] = CYCLICPERMUTATION(A(h,:)); . See line 301
187: if w == AC( j, :) then
188: h1 = j;
189: end if
190: end for
191: G(k1,h1) = 1;
192: G(h1,k1) = 1;
193: end if
194: end if
195: end for
196: end for
197: T = [[1 : m1]′AC];
198: clear ACO;
199: ACO = zeros(m1,n1+1);
200: for j = 1..(n1+1) do
201: ACO(:, j) = AC(:,n1+2− j);
202: end for
203: Z = [];
204: for j = 1..m1 do
205: x = ACO( j, :);
206: Z( j, :) = [ j,x];
207: end for
208: P = Z;
209: [D,MV ] = DISTANCE((G)); . See line 351
210: return P,G,D,MV
211: end function

Algorithm 5.3 PART – Function: TEST(Y ) (continued)

251: function [R,L,P1,P2] = TEST(Y )

252: The input for the TEST function is a matrix Y of distances between each pair of permutations.
253: Permutations Pi and Pj and the natural number L≥ 1 are then entered.
254: The output will be a list of permutations Pk that satisfy the condition:
255: distance(Pi, Pk) + distance(Pk, Pj) < L,
256: distance(Pi,Pk)> 0 and distance(Pk,Pj)> 0.
257: clear P1,P2,L,T,ci f ra;
258: [m,∼] = size(Y );
259: R = [];
260: ci f ra = 0;
261: while ci f ra == 0 do
262: display(’Input:’)
263: display(’The numbers i, j and L must be an positive integers and
264: number i must be different from number j!’)
265: display([’Numbers i and j must be in the range from 1 to’, m)])
266: P1 = input(’Choose the permutation Pi as the order number i = ’);
267: P2 = input(’Choose the permutation Pj as the order number j = ’);
268: L = input(’Select the limit value L = ’);
269: if or(or(P1 < 0, P2 < 0), L < 0) then
270: display(’At least one of the input values is a negative.’)
271: else if or(or(P1 == 0, P2 == 0), L == 0) then
272: display(’At least one of the input values is zero.’)
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273: else
274: if or(or(P1 = round(P1), P2 = round(P2)), L = round(L)) then
275: display(’At least one of the input values is non-integer.’)
276: else if or(P1 > m, P2 > m) then
277: display(’At least one value i, rep. j is not from the input interval.’)
278: else
279: if P1 == P2 then
280: display(’Values i and j must be different.’)
281: else
282: ci f ra = 1;
283: end if
284: end if
285: end if
286: end while
287: for k = 1..m do
288: if and(k = P1, k = P2) then
289: T = Y (P1,k)+Y (k,P2);
290: if T <= L then
291: R = [R,k];
292: end if
293: end if
294: end for

return R,L,P1,P2
295: end function

Algorithm 5.4 PART – Function: CYCLICPERMUTATION(u) (continued)

301: function [w] = CYCLICPERMUTATION(u)

302: [∼, n] = size(u);
303: w = u;
304: while w(n) = 1 do
305: a = w(1);
306: for i = 1..(n−1) do
307: w(i) = w(i+1);
308: end for
309: w(n) = a;
310: end while
311: return w
312: end function

Algorithm 5.5 PART – Function: DISTANCE(G) (continued)

351: function [D, MV ] = DISTANCE(G)

352: This function calculates the distance in the graph G between all its vertices.
353: clear nula,D,MV ;
354: [∼,n] = size(G);
355: D = G;
356: MV = 1;
357: k = 2;
358: nula = 0;
359: H(:, :,1) = G + uint8(diag(ones(1,n)));
360: H(:, :,1) = logical(H(:, :,1));
361: H(:, :,2) = H(:, :,1);
362: while or(nula == 0, k == n) do
363: nula = 1;
364: for i = 1..n do
365: for j = 1..n do
366: z = [];
367: z = any(and(H(i, :,2)′,H(:, j,1)));
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368: H(i, j,3) = max(z);
369: if max(z) == 0 then
370: nula = 0;
371: end if
372: if and(H(i, j,2) == 0,H(i, j,3) == 1) then
373: D(i, j) = k;
374: end if
375: end for
376: end for
377: H(:, :,2) = H(:, :,3);
378: MV = k;
379: k = k+1;
380: end while
381: return D, MV
382: end function

6. CONCLUSIONS

In this article, we have shown the algorithm, which is
used to help to prove results on crossing numbers in graph
theory and its implementation in MATLAB. More signifi-
cant usage of this algorithm occurs for values of n larger
than five. We get 120 cyclic permutations for n = 6 or 720
for n = 7, which is significantly more than 24 cyclic per-
mutations for n = 5 used in article [1]. For such values,
software is an indispensable tool since, we get considerably
more complicated graph of distances between cyclic per-
mutations and calculating distances for such large graphs
by hand can lead to many calculation errors.

Even though use of computer program speeds up the
calculation, as the problem grows factorially. This opens
new questions for further investigation, namely optimal
storage of adjacency matrix and parallel calculation of ad-
jacency matrix either using MPI or some GPU based tech-
niques. While the multiplication itself can be easily paral-
lelized, organization of storage and operations can be chal-
lenging.

ACKNOWLEDGEMENT

The research was supported by the Slovak VEGA grant
No. 1/0389/15. The research was also supported by the
internal faculty research project No. FEI-2017-39.

REFERENCES
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Štefan Berežný was born in 1974. In 1998 he graduated
(MSc) at the Faculty of Science, P.J. Šafárik University in
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