
Acta Electrotechnica et Informatica, Vol. 17, No. 1, 2017, 3–9, DOI: 10.15546/aeei-2017-0001 3

EXPOSING RUNTIME INFORMATION THROUGH SOURCE CODE ANNOTATIONS

Matúš SULÍR, Jaroslav PORUBÄN
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of Košice,

Letná 9, 042 00 Košice, Slovak Republic, E-mail: {matus.sulir, jaroslav.poruban}@tuke.sk

ABSTRACT
Many tools support exploration and analysis of various run-time properties of programs. However, the results produced by these

tools are often discarded or stored in custom external files. We discuss an approach where data obtained when executing the program
are written as Java annotations over program elements. First, the viability of this approach is demonstrated by a feature annotator,
which assigns features to corresponding methods. Second, we describe other types of run-time information that we consider suitable
for inclusion in the source code. We also suggest two possible workflows how generated annotations can be used in the development
process.

Keywords: metadata, runtime information, dynamic analysis, feature location, program comprehension

1. INTRODUCTION

When developers try to understand a program, two most
used sources of information are the source code and the ex-
ecutable application. They read the source code in an inte-
grated development environment (IDE) and try to mentally
connect the code to the behavior obtained from the running
application.

There exists a wide variety of standalone tools, IDE fea-
tures and extensions to support the inspection of run-time
behavior of a program – from simple debugging tools to so-
phisticated dynamic analysis software. The inspected data
include:

∙ performance data (from profilers),

∙ run-time callers, called methods and parameter types
[1],

∙ runtime metrics [2],

∙ mappings from features to code fragments obtained
by dynamic analysis [3],

∙ snapshots of graphical user interfaces (GUIs) [4, 5].

1.1. Motivation

The mentioned tools usually fall into one of two cate-
gories:

∙ The information is displayed while the program is
running, and then discarded.

∙ The collected data are stored in a file separate from
the source code.

In the first case, the program must be re-run with the
same input each time a developer needs to access the run-
time information.

In the second case, each piece of information must link
to the corresponding source code element. As the source
code changes through time, the references may be no longer
valid if the tool managing them is not notified about the
modification. For example, if we refer to a source code ele-
ment using its file name and line number, and a few lines are

inserted above the element, the reference becomes invalid.
Several approaches exist to cope with the problem of source
location tracking [6]. Nevertheless, none of them works
flawlessly: Even some of the most precise methods cor-
rectly refer to only roughly 90% of identifiers after source
code changes [6].

In both cases, there is one more negative aspect. Either
the tool is completely separate from the IDE, coercing the
developer to switch between two views; or it is dependent
on a specific IDE.

If the tool wrote the produced data directly into source
code, it could be IDE-independent, while the developers
could use their favorite IDE to view the data.

1.2. Goal

This paper discusses the approach of (semi-)automated
source code annotation, using data retrieved from a running
program.

Java annotations (or attributes in C#) are a form of meta-
programming, marking program elements with additional
metadata. Traditionally, they are written manually by pro-
grammers. Then, these annotations are programatically
read during compilation by annotation processors, or at run-
time – using reflection. Consider this example:

@Min(3)
@Max(120)
private int age;

The programmer is giving “hints” to a system that the
age has valid values from 3 to 120. The system can then
use these manually supplied information at runtime – to
perform data validation.

We hypothesize that an opposite of the traditional pro-
cess is possible: Annotations are written into the source
code automatically (using runtime information), and read
later by programmers to aid program comprehension. For
instance, during profiling, the methods taking the majority
of time during execution (“hotspots”) could be automati-
cally marked with an annotation:

@HotSpot(timePercent=27.8)
public double processData(double[] data) {

ISSN 1335-8243 (print) c○ 2017 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



4 Exposing Runtime Information through Source Code Annotations

...
}

We will try to demonstrate the idea, first on feature lo-
cation using dynamic analysis, then on various smaller ex-
amples.

2. SEMI-AUTOMATED FEATURE ANNOTATION

Software systems consist of a multitude of features. For
example, in a diagramming application, they might include
shape drawing, erasing, moving; file import and export,
etc. When writing programs in traditional object-oriented
programming languages, the implementation of a feature is
scattered across multiple classes and methods [7]. During
the program comprehension and maintenance phrase, it is
often necessary to find all or at least some code pertaining
to a particular feature [8].

In our approach, each feature will be represented by one
annotation type – e.g., Erasing for the “erasing feature”.
The goal is to have annotations (without parameters) above
appropriate methods in the source code.

2.1. Differential Code Coverage

We will use a very simple dynamic feature location
technique named differential code coverage [9] (also called
software reconnaissance [10]).

The process is as follows. For each feature, the program
is run twice: the first time utilizing the feature of interest,
the second time not utilizing it. E.g., for the “erasing” fea-
ture of a diagramming application, the first time a shape is
drawn and erased, while the second time it is drawn and left
on the canvas.

During the runs, sets of all executed methods are
recorded. A set of methods pertaining to the feature is cal-
culated as M1 −M2, where M1 is the set of methods exe-
cuted in the first run, M2 in the second one.

2.2. Semi-automated Annotation

In [11], we used differential code coverage to semi-
automatically annotate methods in the source code with its
corresponding features.

The input of our preliminary implementation, AutoAn-
not, is plain, unannotated source code, and a list of features
(annotation types).

For each feature in a supplied list, the developer runs
the program twice, and interacts with it – by clicking the
appropriate menus, entering data, etc. – according to the
rules described in the previous section. This interactions
can be optionally replaced by pairs of fully automated tests,
if available.

Our implementation, AutoAnnot, collects the lists of ex-
ecuted methods, using BTrace 1. The set of methods related
to each feature is computed using differential code cover-
age. Above each such method, an annotation is inserted
into the original source file.

For example, this would be an excerpt from the resulting
annotated source code of a diagramming application:

@Drawing
@Erasing
public void changeTool(Tool tool) {

...
}

@Erasing
public void clearRegion(Shape region) {

...
}

2.3. Comparison with Manual Annotation

We demonstrate the viability of this approach on a small
(2500 lines of code) desktop Java application for biblio-
graphic note-taking, EasyNotes 2. We seek to answer the
following research question: To what degree do the re-
sults of manual and semi-automatic annotation of the same
project overlap?

2.3.1. Method

To obtain manually annotated source code to be used as
a baseline for comparison, we used the following process.

First, a list of features in the application was drawn from
the results of our previous experiment [12]. Among other
activities, seven participants were asked to create one anno-
tation type for each concern (i.e., a feature or other intention
behind pieces of code) they recognized in the application.
The annotation types were then merged by a researcher,
grouping the same concerns expressed by different terms
into one type. Only annotation types recognized by at least
two participants were preserved. Next, we removed annota-
tion types representing non-functional concerns and main-
tenance notes (like “domain entity” or “unused code”), pre-
serving 9 annotation types representing features visible to
end users [11]. For a list, see Table 1.

The author of the EasyNotes application was asked to
mark methods in the source code with feature annotations
(from Table 1) according to his own discretion, thus pro-
ducing manually annotated source code.

Using the list of the mentioned 9 features, the AutoAn-
not process was executed by a researcher on clean source
code, producing semi-automatically annotated code [11].

2.3.2. Results

For each annotation type (feature), we calculated the
portion of overlapping annotation occurrences:

Mmanual ∩Mauto

Mmanual ∪Mauto

where Mmanual is a set of methods manually annotated with
a particular feature, Mauto a set of semi-automatically an-
notated ones. We can see the results in Table 1. The
“Total” row is computed analogically, but using pairs
( f eature,method) as set elements instead of just methods.

1http://kenai.com/projects/btrace
2http://github.com/MilanNosal/easy-notes

ISSN 1335-8243 (print) c○ 2017 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

http://kenai.com/projects/btrace
http://github.com/MilanNosal/easy-notes


Acta Electrotechnica et Informatica, Vol. 17, No. 1, 2017 5

Table 1 The features and their overlap between manual and
semi-automated annotations

Feature (annotation type) Overlap

Citing 12.50%

Filtering 19.23%

Links 21.74%

NoteAdding 25.00%

NoteDeleting 66.67%

NoteEditing 11.76%

NotesLoading 38.46%

NotesSaving 41.67%

Tagging 6.25%

Total 22.22%

2.3.3. Discussion

The overall overlap was 22.22%. There are multiple
reasons why this number is relatively low.

Often it is difficult to avoid execution of feature-
unrelated methods in the second run. For instance, the
method Note.getTags is called as soon as a list of of notes
is shown, even if the notes do not contain any tags [11].

Similarly, a feature-related action may sometimes be
missed in the first run. The Note.isUsed method is an
example. The EasyNotes program contains a filtering drop-
down list with an item called “not used”. This filter calls the
method Note.isUsed, which, in turn, determines whether
a note does not have a “new” tag [11]. Therefore, it is only
indirectly related to the “tagging” feature.

Differential code coverage is a simple approach, which
has its flaws. Due to its nature, it recognizes only task-
specific code, i.e., not general utility methods used in many
features. More sophisticated feature location approaches
were devised over time [3]. Differential code coverage was
selected only for demonstration purposes – it could be re-
placed by any other method using dynamic (or static) anal-
ysis. Our goal was not to compete with state-of-art feature
location techniques, but rather to show how the results pro-
duced by a feature location tool can be in principle written
to the source code in a form of annotations.

3. OTHER RUNTIME INFORMATION

While initially intended only for feature tagging, our ap-
proach is not limited to it. We will now explore the possi-
bilities (although currently not implemented) of automated
annotation of source code using runtime-originated infor-
mation.

3.1. Profiling

Output of a profiler is often used by a single program-
mer, not shared among developers. Hotspots, i.e., the meth-
ods which are executed for the longest time according to the
profiler, could be automatically marked with the HotSpot

annotation. The parameters might include the time percent-
age and an optional programmer-supplied use case name:

@HotSpot(selfTimePercent=32, useCase="Order")
public BigDecimal getPrice() {

...
}

The method can be then optimized by another member
of the team. Re-running a tool would automatically remove
the annotation if it was no longer a hotspot. Alternatively,
it could be removed manually when fixing a performance-
related bug.

3.2. Run-time Call Graph

A call graph consists of methods as nodes, and all pos-
sible calls between them as directed edges. While a static
call graph can be generated from the source code itself, it
does not distinguish whether a particular call was really ex-
ecuted. A dynamic call graph contains just actual method
calls for a particular execution. We could annotate methods
with their direct callers:

@Caller(clazz=Order.class, method="getTotal")
@Caller(clazz=Cart.class, method="add")
public BigDecimal getPrice() {

...
}

Call graph exploration tools were shown to improve
maintenance efficiency [13]. In our case, the exploration it-
self would require no additional tool except a standard IDE.
However, sharing between developers would have a limited
use.

3.3. Dynamic Type Information

Due to polymorphism, a method with a parameter (or a
return value) of a given abstract type can accept (or return)
an object of any inherited concrete type. However, while
reading the source code in an IDE, only the abstract type
is apparent to the developer [1]. Suppose we have a sys-
tem with a complicated shape hierarchy, containing many
abstract and concrete classes. Consider the following ex-
ample:

public void clearRegion(Shape region) {
...

}

By looking at the method, the developer has no idea
what types of regions were cleared during the testing of
an application. Using a debugger, it is possible to find the
concrete types. However, such process is laborious and the
data are discarded as soon as the debugging session ends.
The list of concrete classes could be determined by a tool,
which would annotate the method (using Java 8 parameter
annotations):

public void clearRegion(
@Types({Square.class, Dot.class})
Shape region

ISSN 1335-8243 (print) c○ 2017 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



6 Exposing Runtime Information through Source Code Annotations

) {
...

}

3.4. Faults and Flaws

There exist many tools for automatic or semi-automatic
detection of potential faults, resource leaks or security
flaws. However, the results of their analysis, which could
include human work, are often thrown away after the pro-
gramming session ends.

We propose that such tools should annotate the source
code with the found flaws. For example, if a monitoring
tool determines that in the moment of program termination,
a particular file (represented by a member variable) was not
yet closed, it could annotate it:

@ResourceLeak(Leak.FileNotClosed)
FileReader inputFile;

Thanks to this, the flaw remains permanently noted un-
til it is fixed – when it is removed either by a programmer
or by the automated tool. Furthermore, all team members
working with this piece of code become aware of it.

4. WORKFLOW

The annotated source code can be checked into a version
control system, and thus shared with the whole develop-
ment team. This improves awareness about non-functional
software properties like performance and security, which
are otherwise not obvious by looking at the clean code.

However, not all dynamic data are suitable to be shared
across the whole team. They could cause unnecessary pol-
lution and problems when merging the code. For this rea-
son, we devised two types of scenarios: a local-only and
shared workflow.

4.1. Local-Only Workflow

Before performing an enhancement or a bug-fix requir-
ing extensive comprehension of the source code, the de-
veloper executes a tool, which annotates the source code
according to collected runtime information.

Once the annotations are written, all standard tools
which can be used on annotations are applicable. For ex-
ample, the Find Usages capability of an IDE may be used
to find all hotspots or potential flaws in the code. It is pos-
sible to use standard mouse and keyboard navigation (e.g.,
Ctrl+click) on the class names in the caller lists or concrete
type annotations. Each flaw can have its documentation,
displayed in a tooltip above the flaw type.

After the developer finishes the work, the tool will
delete all annotations previously inserted into the source
code. This way, unnecessary code pollution and merging
problems are prevented.

An advantage of this approach is that the tool is com-
pletely independent of a specific IDE. At the same time, the
developer can utilize an IDE of his choice for comprehen-
sion, without switching between it and a separate compre-
hension tool.

4.2. Shared Workflow

When using a shared workflow, the tool is executed and
the IDE is then used in the same way as in the local-only
workflow. However, the annotations are not deleted after
the issue is resolved. The annotated source code is checked
into a version control system, where also other team mem-
bers can see it.

Although the annotations can be helpful to the team,
they can cause merging problems and make a version con-
trol log hard to read. Furthermore, once the data are written,
they can become obsolete as the code changes.

4.3. Workflow Selection

For a specific kind of annotations, it is necessary to de-
cide which workflow to use.

In our EasyNotes study, semi-automated feature anno-
tation marked each method with only 0.43 annotations on
average. Although in more realistic use cases, the number
is expected to grow, it should not affect readability signifi-
cantly. In controlled experiments [14], we showed that fea-
ture (and other concern) annotations are useful when shared
with other developers – they improve program comprehen-
sion efficiency. Nevertheless, keeping annotations synchro-
nized with source code changes could be challenging.

Profiling data can be easily trimmed – for example, we
can limit the annotation process to 3 most resource-hungry
methods. In this case, they are suitable for sharing. After
performance is improved, the annotations can be removed
by the programmer committing the fix.

A number of methods callers tends to be large: even
in a small-scale application like EasyNotes, there are more
than 160 method calls within the project itself (determined
by Eclipse’s references search using static analysis). How-
ever, it is possible to limit the amount of annotations using
dynamic analysis and restricting to a specific use case the
programmer is trying to debug. Therefore, we suggest to
use call graph annotations only in the local workflow. A
similar recommendation holds for dynamic type informa-
tion annotations.

Faults and flaws should be shared in a version control
system to inform all developers about them. If a specific
flaw is fixed, the annotation should be removed in the same
commit. We can consider this a lightweight issue tracking
approach for small issues tightly bound to a specific piece
of source code.

5. RELATED WORK

Now we will present related works.

5.1. Annotations

Concern annotations [12, 14] are annotations acting as
hints for developers, informing them about intentions be-
hind a code element. Originally, they were intended to be
inserted manually into the source code, preferably by pro-
grammers writing the code. However, as any form of “doc-
umentation” without any direct effect on the application be-
havior, we can expect developers to ignore writing them, as

ISSN 1335-8243 (print) c○ 2017 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 17, No. 1, 2017 7

it is time-consuming. For this reason, we see potential in
automated or semi-automated concern annotation.

Joy et al. [15] presented an approach of automatic C
source code back-annotation using information obtained at
runtime. However, they collected only timing and power
information, which is later used in embedded software sim-
ulation. Therefore, their annotations are not intended for
human consumption and program comprehension, as in our
approach.

The built-in Java annotation model has two drawbacks.
First, only a selected subset of elements (most notably,
classes, fields and methods) can be annotated. @Java [16]
is a Java language extension supporting annotations over
statements and expressions. Second, expressing the con-
straints above annotations is very limited – e.g., we cannot
restrict an annotation type to be applicable only to private
final methods. Ann [17] is a domain-specific language en-
abling such advanced constraints.

5.2. Exposing Runtime Information

Senseo [1] displays various information like a number
of invoked methods or created objects, callers, callees and
concrete argument types, in an IDE window. However,
since Senseo is an Eclipse plugin, it is IDE-dependent.

An in-situ profiler [18] displays small visuals next to
method declarations and calls, presenting performance data
obtained by profiling. The results are not persisted in any
way, though.

5.3. Workspace Sharing

Code Bubbles [19] is an unconventional development
environment. Among other features, it supports sharing
parts of source code annotated with values of variables ob-
tained by debugging, notes, image flags, etc. While the pre-
sentation is visually attractive, a specialized tool needs to
be used by all developers to utilize such features. In the
case of Java annotations, any standard IDE can be used.

TagSEA [20] is an IDE extension enabling “social tag-
ging”. The developers can insert specially-formatted com-
ments into source code. Such marks are then shared in the
development team. There are two shortcomings: First, the
tags in comments are not a part of Java syntax, thus requir-
ing a special tool support to be processed. Second, they are
inserted into source code manually by programmers.

5.4. Feature Mapping

A commonly used technique to assign features to source
code fragments are #ifdef preprocessor macros in C and
C++. They enable variability [21]: when a particular fea-
ture is configured to be included in the produced software,
the implementing code is compiled, otherwise not. Al-
though the C preprocessor is language-independent [21]
and can be in theory used also for Java and C#, it rarely
is in practice. Besides, our goal was not to support feature
variability via feature-oriented software product lines [22],
but rather to ease program comprehension.

The CIDE tool [23] enables annotation of source code
elements with features, visualizing them with colors, hid-

ing irrelevant features, and exporting parts into modules. In
contrast to our approach, it maps only features, not various
run-time hints, to parts of source code. Furthermore, they
save the mappings to external files, while we overwrite the
source code itself.

Ji et al. [24] assessed the cost of manually annotating
features in source code via specially formatted comments.
According to the study they performed, the cost of adding
and maintaining such annotations is small compared to the
cost of the whole development process.

6. CONCLUSION AND FUTURE WORK

We presented an approach of (semi-)automated source
code annotation with data obtained during execution of a
program.

First, we focused on semi-automated annotation of pro-
gram elements with their corresponding features, using a
technique of differential code coverage. We demonstrated
the viability of our approach and compared the manually
annotated code with the results of the semi-automated pro-
cess.

Next, we discussed the types of dynamic information
which are potentially suitable for exposure in source code.

Regarding future work, an experimental implementa-
tion of some of the mentioned annotators (except the fea-
ture annotator, which is already implemented) is necessary.
Then, we could proceed to evaluation of usefulness of this
approach, via use cases or controlled experiments.

An interesting future extension is creation of a frame-
work for IDE-independent program comprehension tools.
Various plugins would feed the framework with program
comprehension hints. The framework itself would anno-
tate the source code using the supplied information. A pro-
grammer could then used any IDE and its already supported
features to utilize the annotations. Finally, the framework
would clean up the annotations.

Although in this paper we are focused on runtime in-
formation, the approach can be extended to map practically
any machine-produced information to a piece of code – out-
put from static analysis [25], build log messages [26], etc.

Since annotations can be programatically queried [27],
by annotating the source code of a program, we could
also ease querying of run-time information associated with
source code elements.

ACKNOWLEDGEMENT

Thanks to the EasyNotes expert, Milan Nosál’, for pro-
ducing a manually annotated version of the source code.

This work was supported by project KEGA No.
047TUKE-4/2016 Integrating software processes into the
teaching of programming. This work was also supported
by the FEI TUKE Grant no. FEI-2015-23 Pattern based
domain-specific language development.

REFERENCES

[1] RÖTHLISBERGER, D. et al.: Exploiting Dynamic
Information in IDEs Improves Speed and Correctness
of Software Maintenance Tasks, IEEE Transactions

ISSN 1335-8243 (print) c○ 2017 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



8 Exposing Runtime Information through Source Code Annotations

on Software Engineering, Vol. 38, No. 3, 2012, pp.
579–591.

[2] BECK, F. – HOLLERICH, F. – DIEHL, S. –
WEISKOPF, D.: Visual monitoring of numeric vari-
ables embedded in source code, First IEEE Work-
ing Conference on Software Visualization, VISSOFT
2013, 2013, pp. 1–4.

[3] DIT, B. – REVELLE, M. – GETHERS, M. – POSHY-
VANYK, D.: Feature location in source code: a taxon-
omy and survey, Journal of Software: Evolution and
Process, Vol. 25, No. 1, 2013, pp. 53–95.

[4] BAČÍKOVÁ, M. – PORUBÄN, J. – LAKATOŠ, D.:
Defining domain language of graphical user inter-
faces, 2nd Symposium on Languages, Applications
and Technologies, SLATE’13, 2013, pp. 187–202.

[5] BAČÍKOVÁ, M.: Domain analysis of graphical user
interfaces of software systems, Information Sciences
and Technologies, Bulletin of the ACM Slovakia
Chapter, Vol. 6, No. 4, 2014, pp. 17–23.

[6] REISS, S. P.: Tracking source locations, Proceedings
of the 30th International Conference on Software En-
gineering, ICSE ’08, 2008, pp. 11–20.

[7] SULÍR, M.: Program comprehension: A short litera-
ture review, 15th Scientific Conference of Young Re-
searchers, SCYR 2015, 2015, pp. 283–286.

[8] SULÍR, M. – PORUBÄN, J.: Locating user inter-
face concepts in source code, 5th Symposium on Lan-
guages, Applications and Technologies, SLATE’16,
2016, pp. 6:1–6:9.

[9] SHERWOOD, K. D. – MURPHY, G. C.: Reducing
code navigation effort with differential code coverage,
Technical report, Department of Computer Science,
University of British Columbia, 2008.

[10] WILDE, N. – CASEY, C.: Early field experience
with the software reconnaissance technique for pro-
gram comprehension, International Conference on
Software Maintenance, ICSM 1996, 1996, pp. 312–
318.

[11] SULÍR, M. – PORUBÄN, J.: Semi-automatic con-
cern annotation using differential code coverage, 2015
IEEE 13th International Scientific Conference on In-
formatics, 2015, pp. 258–262.

[12] SULÍR, M. – NOSÁL’, M.: Sharing developers’ men-
tal models through source code annotations, Feder-
ated Conference on Computer Science and Informa-
tion Systems, FedCSIS 2015, 2015, pp. 997–1006.

[13] KARRER, T. – KRÄMER, J.-P. – DIEHL, J. – HART-
MANN, B. – BORCHERS, J.: Stacksplorer: Call
graph navigation helps increasing code maintenance
efficiency, Proceedings of the 24th Annual ACM Sym-
posium on User Interface Software and Technology,
UIST ’11, 2011, pp. 217–224.

[14] SULÍR, M. – NOSÁL’, M. – PORUBÄN, J.: Record-
ing concerns in source code using annotations, Com-
puter Languages, Systems & Structures, Vol. 46,
2016, pp. 44–65.

[15] JOY, M. – BECKER, M. – MUELLER, W. – MATH-
EWS, E.: Automated source code annotation for tim-
ing analysis of embedded software, 18th Annual In-
ternational Conference on Advanced Computing and
Communications, ADCOM 2012, 2012, pp. 12–18.

[16] CAZZOLA, W. – VACCHI, E.: @Java: Bringing
a richer annotation model to Java, Computer Lan-
guages, Systems & Structures, Vol. 40, No. 1, 2014,
pp. 2–18.

[17] CÓRDOBA-SÁNCHEZ, I. – DE LARA, J.: Ann: A
domain-specific language for the effective design and
validation of Java annotations, Computer Languages,
Systems & Structures, Vol. 45, 2016, pp. 164–190.

[18] BECK, F. – MOSELER, O. – DIEHL, S. – REY,
G.: In situ understanding of performance bottlenecks
through visually augmented code, 21st IEEE Interna-
tional Conference on Program Comprehension, ICPC
2013, 2013, pp. 63–72.

[19] BRAGDON, A. et al.: Code Bubbles: Rethinking
the user interface paradigm of integrated development
environments, Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering -
Volume 1, ICSE ’10, 2010, pp. 455–464.

[20] STOREY, M.-A. – CHENG, L.-T. – BULL, I. –
RIGBY, P.: Shared waypoints and social tagging to
support collaboration in software development, Pro-
ceedings of the 2006 20th Anniversary Conference on
Computer Supported Cooperative Work, CSCW ’06,
2006, pp. 195–198.

[21] LIEBIG, J. – KÄSTNER, C. – APEL, S.: Analyzing
the Discipline of Preprocessor Annotations in 30 Mil-
lion Lines of C Code, Proceedings of the Tenth In-
ternational Conference on Aspect-oriented Software
Development, AOSD ’11, 2011, pp. 191–202.

[22] TÁBORSKÝ, R. – VRANIĆ, V.: Feature model
driven generation of software artifacts, Federated
Conference on Computer Science and Information
Systems, FedCSIS 2015, 2015, pp. 1007–1018.

[23] KÄSTNER, C. – APEL, S. – KUHLEMANN, M.:
Granularity in Software Product Lines, Proceedings
of the 30th International Conference on Software En-
gineering, ICSE ’08, 2008, pp. 311–320.

[24] JI, W. – BERGER, T. – ANTKIEWICZ, M. – CZAR-
NECKI, K.: Maintaining feature traceability with em-
bedded annotations, Proceedings of the 19th Interna-
tional Conference on Software Product Lines, SPLC
’15, 2015, pp. 61–70.

[25] KOLLÁR, J. – CHODAREV, S. – PIETRIKOVÁ, E. –
WASSERMAN, L’: Identification of patterns through
Haskell programs analysis, Federated Conference on
Computer Science and Information Systems, FedCSIS
2011, 2011, pp. 891–894.

[26] SULÍR, M. – PORUBÄN, J.: A quantitative study of
Java software buildability, Proceedings of the 7th In-
ternational Workshop on Evaluation and Usability of
Programming Languages and Tools, PLATEAU 2016,
2016, pp. 17–25.

ISSN 1335-8243 (print) c○ 2017 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 17, No. 1, 2017 9

[27] NOSÁL’, M. – SULÍR, M. – JUHÁR, J.: Language
composition using source code annotations, Computer
Science and Information Systems, Vol. 13, No. 3,
2016, pp. 707–729.

Received October 13, 2016, accepted February 14, 2017

BIOGRAPHIES

Matúš Sulír is a PhD student at the Department of Com-
puters and Informatics, Technical University of Košice. He

graduated with a master’s degree in Computer Science in
2014. His current research is focused on program compre-
hension, source code annotations, and empirical methods in
software engineering.
Jaroslav Porubän is an Associate Professor and Head of
the Department of Computers and Informatics, Technical
University of Košice, Slovak Republic. He received his
MSc. in Computer Science in 2000 and his Ph.D. in Com-
puter Science in 2004. Currently the main areas of his re-
search are computer language engineering, domain-specific
languages and program comprehension.

ISSN 1335-8243 (print) c○ 2017 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk


