
20 Acta Electrotechnica et Informatica, Vol. 16, No. 1, 2016, 20–26, DOI:10.15546/aeei-2016-0004

IMPACT OF GCC OPTIMIZATION LEVELS IN ENERGY CONSUMPTION DURING
PROGRAM EXECUTION

David BRANCO, Pedro Rangel HENRIQUES
Algoritmi Research Center - Department of Informatics, University of Minho - Gualtar - 4710-057, Braga, Portugal,

Tel. (+351) 253 604 470, E-mail: {davidbranco88,pedrorangelhenriques}@gmail.com

ABSTRACT
In this paper we report an experiment conducted to measure and compare the resources consumed by a program during execution,

and then we discuss the results obtained when compiled without any optimization and compiled with different levels of optimization,
in order to understand the relationship between a program’s energy consumption and its optimization level. Namely, we will analyze
the optimizations performed by the GNU Compiler Collection (GCC) on C, C++, Objective-C and GO programs. Java was also
considered, but thereafter abandoned. In the paper we describe the experimental setup and the method followed in the study carried
on to get a deeper knowledge about the factors that actually impact on the energy consumption of a given program. With the study
described, the main lesson extracted is that the optimizations that generate a faster code are the more convenient in terms of green
computing because they also decreases the energy consumed. The work report was developed in the context of a research project
aimed at studying patterns for energy consumption at runtime in order to transform the original software into executable programs that
consume less energy; in this context we are specially interested to look for ways to get this improvement at the code generation phase.

Keywords: Energy Consumption, Optimization, GCC, Test Cases, Imperative Languages, Compile Generator

1. INTRODUCTION

Currently we live in a period in which technology
evolves very quickly and the number of those who use it,
causing the associated energy consumption, reaches very
high values in financial and environmental terms. So with
a strong concern and an increasing need to reduce energy
consumption in all the information and communication
infrastructures (ICTs), emerged Green Computing which
aims precisely at computers and related resources more
efficiently while maintaining or increasing overall perfor-
mance [1] [2].

Being microprocessors - or commonly, the CPUs or just
processors - the heart and brain of any computer (and of
a huge number of devices used on a daily basis), naturally
they are one of the components with great impact on energy
consumption. According to the information from Intel Labs
in 2008 the processors are even the largest consumers of en-
ergy inside servers with values between 45W to 200W per
multi-core CPU (depending on the type of server and work-
load) [3] [4]. They had a very important role in world’s
development and will continue to affect the life at several
levels of their population. For all those reasons, the opti-
mization of aspects related with microprocessors is a cru-
cial way to combat excessive energetic consumption of IT
industry.

The code optimizations performed by a compiler are
a great way to get more performance without modifying
any hardware or software component. With a just a few
adjustments in the compilation arguments and these im-
provements are obtained immediately. While this approach
has mainly the aim of reducing the execution time or re-
quired space by a program, in this article we will also see
the potential that may have in reducing energy consump-
tion [5] [6].

In this paper, we address the energy impact that running
optimized compiled code has in the energy consumption
of the CPU. In particular, the study of programs compiled
by GCC with optimization flags for a target machine based
on an Intel CPU. Although the CPU is the most important
computational resource of this study it was also examined
the impact in memory and GPU in order to perform a more
complete analysis.

The study here described is a part of a master’s the-
sis undergoing in the context of the project GreenSSCM1

which intends to optimize energy consumption via soft-
ware, transforming high level software code into more suit-
able software code. These performs the same tasks but con-
sumes less energy.

The chosen programming languages are C and C++
according to the general decision taken in the context of
GreenSSCM. In addition, they are also nowadays two of
the programming languages more used [7].

For C/C++ compiler was chosen GCC2(v.5.3.0) because
it is a robust option, well documented, the most widely used
and this allows different code optimization levels.

Taking into consideration that GCC is an integrated dis-
tribution of compilers for several major programming lan-
guages [8], two more programming languages have been
added to this study. In this way we could anayze in more de-
tail the behavior of GCC and its optimization procedures to
get a deeper knowledge about the impact of optimizations
on energy consumption for a larger and more diverse set of
programming environments. After a preliminary analysis,
we decided to consider Objective-C and Go because they
are also widely used today [7] and still subject of improve-
ments in the most recent GCC versions (unlike Java, for
example, for which there is not any relevant update since
version 4.5 of April 2010 [9] [10]). Although Apple has

1Green Software for Space Control Mission, a research project involving the company VisionSpace Technologies and Universidade do Minho run-
ning under Compete and supported by QREN.
website: http://visionspace.dnsdynamic.com/GreenSSCM

2https://gcc.gnu.org/

ISSN 1335-8243 (print) © 2016 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 16, No. 1, 2016 21

decided to completely replace the use of GCC by LLVM3

and Clang4 in their systems to compile Objective-C pro-
grams, actually Objective-C was not “forgotten” by GCC
and, albeit some stagnation in support and improvement, it
makes sense to study the impact of GCC compilation on
Objective-C runtime performance [11].

After choosing the source languages to compile with
GCC, the last fundamental decision to complete the exper-
iment setup is concerned with the choice of the target ma-
chine. The assembly code that will be generated, and the
optimization effects/impacts that can be reached, depend, of
course, on the machine selected. Accounting for that Intel
is the manufacturer with the largest market share in recent
years (57% in 2012, 65% in 2013), and is currently present
in over 80 percent of the computers sold worldwide, it is
imperative to use an Intel microprocessor for more relevant
results [12] [13] [14].

This paper is organized as follows. In section 2 it is re-
ferred a similar study in our context for embedded systems.
In section 3 the main elements are described to carry out
this experimental study. In section 4, the GCC optimiza-
tions are specified and explained the measurement process.
In section 5 are shown and analyzed the results obtained.
Lastly, in section 6 a Conclusion is devised focusing the
main considerations of the present study.

2. RELATED WORK

Despite the fact that energy consumption subject is only
a research topic in recent years (largely due to the mas-
sive widespread of quite advanced wireless and mobile de-
vices), already at the beginning of this century appeared
some projects considering compilers precisely as a way to
combat it. In 2001 the standard optimization levels -O1 to
-O4 were evaluated to understand the effect of a few indi-
vidual optimization of DEC Alpha’s cc compiler on power
and energy consumption of the processor. The authors con-
cluded that when the optimizations decrement the number
of instructions to be executed, also the energy consumption
is reduced [15]. In the same year, another study was con-
ducted to explore the effect of the compilers for existing
processor architectures addressing the same problem. They
concluded that the compiler optimizations has enough po-
tential to achieve some reduction in energy consumption,
but it would be necessary to expose more innovating micro-
architectural features to the compilers, in order to obtain
substantial gains in energy saving [16].

There are also some studies in which algorithms are
designed to select combinations of compiler optimization
flags that, for a given input program, generate a machine
code with a better performance at runtime (without taking
into account the energy issues or flags that have emerged
in more recent versions of GCC) [17] [18] [5]. If there is
indeed a relationship between the optimizations applied by
the GCC and the energy consumption of programs, such

algorithms (or variants thereof) may be very useful. This
investigation will be left for future work.

Considerations for energy efficiency are especially rel-
evant at the level of embedded platforms. In [5] they use
GCC, 10 benchmarks and 5 different embedded platforms
to analyze the energy consumption of a large number of
compile options. Through hardware power measurements
and some case studies explore various hypotheses and con-
clude, among other many things, the execution time and
energy consumption are correlated in most general cases.

Until this day there is very little work that explores
widely the impact that the various compilation options pro-
vided by compilers (including GCC) has on the energy con-
sumption of the software that use them [5].

3. EXPERIMENTAL SETUP

The three main elements to carry out this experimental
study are: a platform for taking measurements (a laptop);
the software that makes measurements; and also the soft-
ware packages that will be measured.

3.1. Testing Platform

The study was accomplished on a laptop Asus N56JN-
DM127H, running under Linux. The hardware/software re-
sources most relevant characteristics for the required anal-
ysis are: Arch Linux 64-bit (Linux Kernel 4.4.5-1); Intel®

Core i7-4710HQ up to 3.5 GHz, Haswell Family; 8 GB
DDR3L 1600MHz; and NVIDIA® GeForce® GT 840M,
2GB DDR3 VRAM.

3.2. Measurement Software

The energy measurement necessary to make the com-
parative study was performed using Running Average
Power Limit5(RAPL) interface. RAPL allows, among other
features to read the Machine-Specific Registers containing
information about the energy consumed by the CPU, RAM
and GPU during a given period of time [19] [20].

Performance Application Programming Inter-
face6(PAPI) and the Perf7 were also considered as alter-
natives to RAPL to take the desired measures. However
after analysing pros and cons of each one, these options
were discarded. On one hand PAPI is an event-driven tool
what makes its use inadequate in our context. On the other
hand, Perf only allows to obtain information about the CPU
and we were interested in investigating the other possible
sources of consumption, the memory and the GPU.

RAPL was used through an extension developed by the
team of this study to an existing tool8, that simply is read-
ing the referred register. This extension keeps all other fea-
tures previously present, such as setting the number of the
CPU cores that will be measured, and adds the ability to
measure the consumption of a certain operation and also

3http://llvm.org/
4http://clang.llvm.org
5https://01.org/blogs/tlcounts/2014/running-average-power-limit--rapl
6http://icl.cs.utk.edu/papi/
7https://perf.wiki.kernel.org/index.php/Main Page
8https://github.com/deater/uarch-configure/tree/master/rapl-read

ISSN 1335-8243 (print) © 2016 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

22 Impact of GCC Optimization Levels in Energy Consumption During Program Execution

the time spent for its completion. For this study the opera-
tion above referred is the compilation and/or the execution
of a program, being only necessary to inform the path to
the respective makefile or the executable. This extension
can also be used in other areas of study, because it allows
to measure the compilation of a program in any language
that contains their dependencies expressed in a makefile or
even any other executable. The distinct features that this
tool provides are managed through a mechanism of flags
that are passed as arguments when the tool is invoked.

3.3. Measured Software

In the experiment described in this paper we have ana-
lyzed 12 programs that differ in some aspects such as: pro-
gramming language, main objective, code complexity, ex-
ternal dependencies and also compile and execution time.
Despite these differences, were all chosen according to the
following criteria:

• Open source code, allowing to analyze in more detail
the complexity and how the objectives are achieved;

• Running under Linux environment;

• Coded in one of the programming languages cho-
sen in the context of GreenSSCM project, C or C++,
Objective-C or Go;

• Not interactive, this is independent of user interaction
during execution, thus avoiding waiting for input that
would have interference in the measured values and
also allows automate this part of the process;

• No graphical interface;

• Total execution time less than 60s, to prevent possible
overflows.

Table 1 Some features of the measured programs

Program PL IF OF CC ED ACT
(s)

AET
(s)

MMC C None None Low None 0.17 26.16

Grades

C
(Flex
and

Yacc)

Txt Html Low Few 0.23 32.84

Bzip C Wav Bz2 Medium None 1.47 23.41

Bzip2 C Wav Bz2 Medium Several 1.97 23.38

Oggenc C Wav Ogg High None 3.83 22.91

Pbrt C++ Pbrt Exr High Lot 43.08 19.42

Matmul Go None None Low None 0.13 15.05

PGo Go None None Low None 0.15 13.06

Sudoku Go Txt None Medium None 0.24 24.43

Matmulobjc Obj-C None None Low None 0.19 3.88

Miscellany Obj-C None None Medium None 0.40 9.47

Sorting Obj-C None None Medium Few 0.26 35.62

Although the many particularities of the chosen pro-
grams, there are some characteristics common to all of them
that can be used in order to be possible to perform a com-
parative study, without knowing in detail the code of each
studied programs.

In Table 1 we characterize the selected programs regard-
ing some of their features. The parameters considered are:
(PL)programming language; the (IF)input and (OF)output
files; (CC)code complexity (low, medium or high); and the
(ED)amount of external dependencies (none, few, several
or lot). Average compile and execution times(ACT, AET)
are also included just to figure out a quantitative description
of their size/complexity.

A brief description of each one of the subject programs
follows:

MMC: Multiplication of matrices with size 1024x1024 us-
ing 6 different methods.

Grades: Generates the final grades of the students in a
course from their marks.

Bzip and Bzip2: File compression tools (replacing the in-
put file).

Oggenc: Perform file format conversion (creating a new
file).

Pbrt: Executes the rendering of images using ray tracing.

Matmul: Multiplication of two matrices with size
2000x2000.

PGo: Modular random level generator (roguelike type).

Sudoku: Solves 20 extremely hard Sudokus repeated 1024
times;

Matmulobjc: Multiplication of matrices with size
800x800 using 6 different methods.

Miscellany: Collection (more than 1000 lines) of practical
exercises.

Sorting: Applies 6 of the best known sorting algorithm to
an array of 8000 positions.

4. METHODOLOGY

After defining the software and hardware environment
for the study, and the set of programs to test, in this section
we will describe the main decisions taken in what concerns
the parameterization of GCC in order to configure it for fair
comparisons. We also define the strategies followed to get
the measures and to obtain significant statistical results.

4.1. Optimizations Flags

The GCC compiler has hundreds of flags related to the
optimization of the generated code specific to a given ma-
chine. Due to the specificity of each of the flags and the fact
that sometimes they are mutually exclusive, this study will
only focus on the several optimization levels specified by
the compiler switch -O. There are 7 different levels of op-
timization and each contains a number of individual flags
that are enabled or disabled (depending of the level). Be-
low are described the referred levels with some more de-
tail [21] [22].

-O0: Default level (disables all optimization flags). Re-
duce compilation time and make debugging produce
the expected results.

ISSN 1335-8243 (print) © 2016 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 16, No. 1, 2016 23

-O1: Basic optimization level (enables up to 39 flags). Re-
duce code size and execution time without taking
much compilation time.

-O2: Recommended optimization level (enables up to 73
flags). Enables all existing in -O1 and the remaining
that do not include a space-speed tradeoff, increas-
ing both compilation time and the performance of the
generated code.

-Os: Reduced code size (enables up to 65 flags). Enables
all -O2 options that do not increase the size of the
generated code. Useful for target machines with lim-
ited disk storage space and/or CPUs with small cache
sizes (with dramatic improvement of performance).

-O3: Highest level of optimization (enables up to 82 flags).
Enables all existing in -O2 and further some very
heavy in both time compile and memory usage terms.
It is not guaranteed that the code generated is better
in terms of performance than the previous set.

-Ofast: Disregard strict standards compliance optimiza-
tion (enables up to 85 flags). Enables all -O3 op-
tions and more 3 that are not valid for all standard-
compliant programs.

-Og: Optimize debugging experience (enables up to 74
flags). Offer a good debugging experience enabling
all optimizations that do not interfere with debugging
and reasonable level of optimization while maintain-
ing fast compilation.

After a preliminary test phase, we decided not taking
into consideration the level -Og for this study because this
level performs optimizations which do not contribute to an
energy reduction compared to the other 6 discussed.

4.2. Measurement Process

After having selected the programs to be studied and de-
fined the set of optimizations to be compared, it was manda-
tory to setup the measurement process to apply to all pro-
grams in order to cover all the desired cases. This process
can be described by the following steps:

1. Choose a program and its Makefile;

2. Choose the desired optimization level;

3. Execute 100 times the measuring tool for the program
and the chosen optimization level;

4. Process the output generated by each invocation of
the measuring tool:

(a) Get the energy consumption and time values;

(b) Ignore the 10 highest and lowest values;

(c) Compute the average of the remaining 80 val-
ues;

(d) Generate a table and plot with the results in an
HTML page.

5. Repeat step 2, 3 and 4 for all 6 levels of optimization;

6. Repeat step 1 to 5 for all 12 programs.

All measurements relating to a program were performed
uninterruptedly while avoiding fluctuations related to the
testing platform (e.g. pre-loading of data, memory heating,
etc.). During the measurement process all executions of the
intended programs were forced to run on just one core of the
CPU, through the tool flag -n, to ignore efficiency issues
related to the parallelization that some programs may al-
low. The processing of the output (referred in item 4 above)
was done using essentially PERL9(for parsing the results of
each operation) and GNUPlot10(to generate plots of each
program).

5. DISCUSSION OF RESULTS

To illustrate the results obtained, five examples of charts
are displayed: three running C/C++ (Figure 1, Figure 2 and
Figure 3), one running Go (Figure 4) and one more example
running Objective-C (Figure 5).

The remaining charts, as well as the HTML pages, can
be found in the online repository11 of this work.

Fig. 1 Results of Bzip measurements (C program)

Fig. 2 Results of Oggenc measurements (C program)

9https://www.perl.org/
10http://www.gnuplot.info/
11https://github.com/david-branco/gcc-optimization-energy-article-extended

ISSN 1335-8243 (print) © 2016 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

24 Impact of GCC Optimization Levels in Energy Consumption During Program Execution

Fig. 3 Results of Pbrt measurements (C++ program)

Fig. 4 Results of PGo measurements (Go program)

Fig. 5 Results of Matmulobjc measurements (Objective-C
program)

In all analyzed charts it was found that, due to the
classes of the programs selected, the energy consumed by
the GPU is reduced. It is clear that energy and time con-
sumptions are undoubtedly lower when selected an opti-
mization level different from the default, and that the op-
timization is greater for more complex source codes (in the
case of Pbrt there was a reduction of almost 76%). For low
complexity programs it was confirmed that none of these

levels is much higher or lower than the remaining, with only
a minimal difference (in the extreme case may not even ex-
ist) among some of them because of individual optimiza-
tions that each enables/disables.

Table 2 Execution times of C/C++ programs in seconds by
optimization level

PPPPPPPPPP
Program

Level
-O0 -O1 -O2 -O3 -Ofast -Os

MMC 34.361 24.552 24.402 23.649 24.265 25.740

Grades 40.038 32.378 31.239 31.226 31.060 31.091

Bzip 36.755 20.408 20.396 20.361 20.399 22.115

Bzip2 36.755 20.493 20.366 20.477 20.427 21.773

Oggenc 46.068 19.958 17.648 17.256 16.359 20.177

Pbrt 47.008 12.614 12.761 12.413 12.175 19.547

Table 3 Selected C/C++ programs and their energy consumption
(CPU and memory) in Joules by optimization level

PPPPPPPPPP
Program

Level
-O0 -O1 -O2 -O3 -Ofast -Os

MMC 354.934 237.568 239.599 240.192 238.445 227.809

Grades 352.228 257.912 246.786 248.958 245.701 249.664

Bzip 406.914 214.438 216.539 215.882 213.496 234.162

Bzip2 402.516 212.324 212.327 215.639 213.947 229.156

Oggenc 523.992 216.264 195.844 190.472 180.038 213.51

Pbrt 556.222 141.461 142.815 136.84 134.378 209.164

Considering all selected programs and optimization lev-
els which are not the default, analyzing the execution time
(Tables 2, 4 and 6), memory and CPU energy consumption
(Tables 3, 5 and 7), and ignoring minimal differences of val-
ues between levels, it appears that in most cases the -Ofast
level is the most efficient unlike -O1 and -Os options. It is
also perceptible that, although there is no much difference
between the -O2 and -O3 levels, -O3 is slightly more ef-
ficient especially when the program complexity increases.
Although regarding the results presented, -Os was not one
of the best levels in the analyzed parameters, it is know that
-Os has potential for significant improvement in some par-
ticular cases, for example where their optimizations are ca-
pable to fit the code in the cache.

Table 4 Execution times of Go programs in seconds by
optimization level

PPPPPPPPPP
Program

Level
-O0 -O1 -O2 -O3 -Ofast -Os

Matmul 22.247 21.396 8.420 8.429 8.434 21.347

PGo 35.803 11.117 5.066 4.961 4.853 16.567

Sudoku 36.586 24.557 14.951 13.156 13.162 26.169

ISSN 1335-8243 (print) © 2016 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 16, No. 1, 2016 25

Table 5 Selected Go programs and their energy consumption
(CPU and memory) in Joules by optimization level

PPPPPPPPPP
Program

Level
-O0 -O1 -O2 -O3 -Ofast -Os

Matmul 290.775 246.092 105.301 105.514 105.541 231.753

PGo 791.741 237.263 112.529 108.662 106.343 362.635

Sudoku 414.359 265.79 164.581 145.177 146.065 286.753

Table 6 Execution times of Objective-C programs in seconds by
optimization level

PPPPPPPPPP
Program

Level
-O0 -O1 -O2 -O3 -Ofast -Os

Matmulobjc 3.882 3.882 3.882 3.880 3.881 3.878

Miscellany 9.346 9.341 9.347 9.347 9.351 9.350

Sorting 35.643 35.652 35.585 35.643 35.624 35.596

Table 7 Selected Objective-C programs and their energy
consumption (CPU and memory) in Joules by optimization level

PPPPPPPPPP
Program

Level
-O0 -O1 -O2 -O3 -Ofast -Os

Matmulobjc 121.262 47.532 47.053 30.714 30.867 48.664

Miscellany 248.844 129.711 95.549 107.859 107.713 129.914

Sorting 456.098 435.695 435.908 439.173 433.084 438.992

One of the main objectives of this work was to deter-
mine if programs optimized at compilation time also have
an optimized energy consumption during execution. Al-
though the data obtained clearly demonstrate a great opti-
mization of energy consumption, when selected optimiza-
tion levels which are not the default, however it is also no-
ticeable that the execution time of programs previously op-
timized also decreases dramatically (generally for shorter
times was obtained lower consumption).

Thus, it is not possible to conclude with certainty GCC’s
strategies on the matter. We saw that in all cases energy
consumption is directly related to execution time. In fact
analyzing all graphs, their depict the data collected along
the experiment, we can say that the timeline follows the
trend of the columns with the consumption of each compo-
nent by optimization flag.

6. CONCLUSION

In this paper we defined the objectives of a master’s the-
sis in the context of GreenSSCM research, and described
an experimental test aimed at studying the impact of GCC
optimization on the energy consumed by the compiled C,
C++, Go and Objective-C programs at runtime. We con-
cluded that energy decreases as faster is the code and so

we can affirm that GCC optimizations techniques have a
positive impact in favor of green computing concerns. To
software developers, this conclusion means that they do not
need an extra effort when/if they decide to have their code
more efficient concerning both execution time and energy
consumption.

The framework developed to perform the necessary
measurements is also an important result of this work. It
was developed in a rather generic and comprehensive man-
ner, allowing the analysis of several operations and pro-
gramming languages, in order to be possible its usage in
other GreenSSCM projects. Also, the overall output pro-
duced by the measurements performed in this study are im-
portant because they can be used as a good workbench for
other green oriented research.

The obtained results are in line with what was the ini-
tial intuition of GreenSSCM team members and also the
conclusions already reported in [5] for embedded systems.
After finish this experimental work, we were aware that
the time-energy relationship was already described and ex-
plained in the Technical Report [23], corroborating our ex-
perimental findings.

However a lot of work remains to be done to understand
the strategies followed in those optimization algorithms in
order to understand if there is still room for more reduction.

Study the impact of optimization the parallel of a pro-
gram, analyze more programming languages that GCC can
handle, or analyze programs that run on GPU are some of
the possible research directions aiming at directly comple-
ment the work here reported.

Concluded the study and taking into account the results
obtained, namely the fact that there are some improvements
in energy consumption produced by compiler optimizations
(albeit indirectly), some other working hypotheses rise up
to proceed within this scope. A first one is to study the ap-
plication of the algorithms referred in Section 2 in order to
obtain specific sets of flags that can further reduce power
consumption. Another one is to look for special types of
machine instructions that can be chosen by the compiler
during the code generation/optimization phase regarding
the energy consumption. This is, we intend to analyze the
information provided by the current machines’ Instruction
Sets to verify if the energy consumption cost is provided
(explicitly available) to be considered by the compiler’s op-
timization algorithms.

ACKNOWLEDGEMENT

This work is co-funded by the North Portugal Regional
Operational Programme, under the National Strategic Ref-
erence Framework (NSFR), through the European Regional
Development Fund (ERDF), within project GreenSSCM -
NORTE-07-02-FEDER-038973.

We would like to thank all previous reviewers of this
paper for their advices and guidelines for future work.

ISSN 1335-8243 (print) © 2016 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

26 Impact of GCC Optimization Levels in Energy Consumption During Program Execution

REFERENCES

[1] GUELZIM, T. – OBAIDAT, M. S.: Handbook
of Green Information and Communication Systems,
Chapter 8, pp. 209–227. Academic Press, 2013,
ISBN 978-0-12-415844-3.

[2] HARMON, R. R. – AUSEKLIS, N.: Sustainable IT ser-
vices: Assessing the impact of green computing prac-
tices, pp. 1707–1717. Management of Engineering
Technology, PICMET 2009, 2009.

[3] MINAS, L. – ELLISON, B.: Energy efficiency for
information technology: How to reduce power con-
sumption in servers and data centers. Intel Press,
2009, ISBN -1-934053-20-1

[4] ELLISON, B.: The Problem of Power Consumption in
Servers, pp. 1–17. Energy Efficiency for Information
Technology, 2009.

[5] PALLISTER, J. – HOLLIS, S. J. – BENNETT, J.:
Identifying compiler options to minimize energy con-
sumption for embedded platforms, The Computer
Journal 58, No. 1 (2013) 95–109.

[6] KREMER, U.: Low power/energy compiler optimiza-
tions, Low-Power Electronics Design, CRC Press,
2005.

[7] Tiobe - the software quality company.
http://www.tiobe.com/tiobe index

[8] Using the GNU Compiler Collection (GCC).
https://gcc.gnu.org/onlinedocs/gcc/G 002b 002b-
and-GCC.html

[9] The GNU Compiler for the Java™Programming Lan-
guage. https://gcc.gnu.org/java/

[10] GCC 4.5 Release Series. https://gcc.gnu.org/gcc-4.5/

[11] AppleInsider - Apple’s top secret Swift
language grew from work to sustain Ob-
jective C, which it now aims to replace.
http://appleinsider.com/articles/14/06/04/apples-top-
secret-swift-language-grew-from-work-to-sustain-
objective-c-which-it-now-aims-to-replace

[12] ITCandor - Microprocessors In-
tel Leads A $94 Billion Market.
http://www.itcandor.com/microprocessor-q312/

[13] ITCandor - Microprocessor Market Down 5% In Q2
2013. http://www.itcandor.com/chip-q213/

[14] Intel Forecast Shows Rising
Server Demand, PC Share Gains.
http://www.bloomberg.com/news/articles/2015-
07-15/intel-forecast-shows-server-demands-makes-
up-for-pc-market-woes

[15] VALLURI, M. – JOHN, L.: Is compiling for perfor-
mance== compiling for power, Interaction between
compilers and computer architecture, 2001.

[16] CHAKRAPANI, L. N. – KORKMAZ, P. – MOONEY
III, V. J. – PALEM, K. V. – PUTTASWAMY, K. –
WONG, W.: The Emerging Power Crisis in Embed-
ded Processors: What Can a Poor Compiler Do?, pp.

176–180. Proceedings of the 2001 International Con-
ference on Compilers, Architecture, and Synthesis for
Embedded Systems, 2001, ISBN 1-58113-399-5.

[17] PAN, Z. – EIGENMANN, R.: Fast and Effective Or-
chestration of Compiler Optimizations for Automatic
Performance Tuning, ii pp. 319–332, International
Symposium on Code Generation and Optimization,
2006, ISBN 0-7695-2499-0.

[18] PATYK, T. – HANNULA, H. – KELLOMAKI, P. –
TAKALA, J.: Energy consumption reduction by auto-
matic selection of compiler options, pp. 1–4, 2009 In-
ternational Symposium on Signals, Circuits and Sys-
tems, 2009, ISBN 978-1-4244-3785-6.

[19] Intel 64 and IA-32 Architectures Opti-
mization Reference Manual, 325462-053.
http://www.intel.com/content/www/us/en/architecture-
and-technology/64-ia-32-architectures-optimization-
manual.html

[20] HÄHNEL, M. – DÖBEL, B. – VÖLP, M.: Measuring
energy consumption for short code paths using RAPL,
40, ACM SIGMETRICS Performance Evaluation Re-
view, 2012.

[21] Options That Control Optimization.
http://gcc.gnu.org/onlinedocs/gcc/Optimize-
Options.html

[22] GCC optimization - Gentoo Wiki.
https://wiki.gentoo.org/wiki/GCC optimization

[23] JEE WHAN CHOI – BEDARD, D. – FOWLER, R.
– VUDUC, R.: A Roofline Model of Energy, pp. 661-
672, IEEE 27th International Symposium on Parallel
Distributed Processing (IPDPS), 2013, ISSN 1530-
2075.

Received April 18, 2016, accepted May 31, 2016

BIOGRAPHIES

David Branco was born on 01. 07. 1988. In 2014 he grad-
uated in Computer Science at University of Minho and, at
present, he is a MSc student in Software Engineering at the
same University. Since 2015 he is working on his master
thesis in the area of Green Computing and Code Gener-
ation, namely studying ways to improve the optimization
phase of compilers in order to choose the best machine in-
structions concerning the reduction of energy consumption.
He is a co-author of some papers in this area.

Pedro Rangel Henriques got a degree in ”Electronics En-
gineering”, at FEUP (Porto University), and finished a
Ph.D. thesis in ”Formal Languages and Attribute Gram-
mars” at Minho University. In 1981 he joined the Computer
Science Department of University of Minho, where he is
a teacher/researcher. Since 1995 he is the coordinator of
the ”Language Processing group” at ”Algoritmi Research
Center”. He teaches different courses in the broader area
of programming: Programming Languages and Paradigms;
Compilers; Language Engineering; etc.

ISSN 1335-8243 (print) © 2016 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

