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ABSTRACT
The following article deals with static analysis of source code in Java and it is intended for readers interested in techniques focused

on evaluation of programming abilities of students or potential job candidates. The main objective of the static analysis is to collect
the most relevant and significant data about programmers. If such data is properly visualized, it can result in knowledge profile which
further determines programmer’s real programming abilities as well as his habits. This can be useful mainly for impartial observer
who does not know the code author. In the following article we present our first attempts to create and visualize knowledge profiles
through static analysis and statistics regarding frequency of language elements. In perspective, the conclusion combines advanced
techniques towards creation of more precise profiles as the future work.
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1. INTRODUCTION

In many disciplines, the level of knowledge or skills is a
stumbling-block, creating a competitive environment. Sim-
ilar issue is visible in programming, though the variety of
one’s skills evaluation are quite limited. In this article, we
introduce prototype of knowledge profile generator through
(yet) static source code analysis. The main interest resides
in the source code exploration with an objective evaluation
of one’s actual knowledge and programming abilities, in-
dividual progress compared to the past, or possible weak-
nesses to be addressed.

Both beginners and experienced programmers can bene-
fit from such a knowledge profile. Moreover, profiles can be
helpful for lecturers throughout overall student assessment
or while identifying potential shortcomings of the course.
Other benefiting areas are in labor market, offering an ad-
equate evaluation of job candidates. I.e. we devote this
article to researchers focusing on source code analysis and
the code author(s).

There is a number of tools, both automated and semi-
automated, dealing with source code analysis. Mostly, the
main objective is to evaluate software security, quality or
design, and the main result includes a report which includes
various metrics or graphs. Since such tools deal with code
regarding the final product, they do not focus on its author
(programmer).

In the area of software security, some studies detect
bugs, defects and other vulnerabilities, e.g. [1] and [2], both
performing static analysis of C/C++ source code. Other
studies explore static code and identify various bugs as well
as bad programming practice [3].

Modern compilers include static analysis tools, usually
referring to methods of automated determination of pro-
gram behavior during compile time. Since traditional tools
identify only simple errors, some studies are dedicated to
identification of deadlock presence [4], others deal with
breaking of mutual exclusion in concurrent applications [5].

A technique of program assembling, comparison, and
combining, known as abstract interpretation, has been suc-
cessfully used to derive run time properties of a program,
used in source code optimalization. Other goals of static

analysis mostly include code transformation [6, 7], concept
location [8, 9] or reverse engineering [10].

A method presented in [11] introduced location of com-
putational units via execution profiles, typical for a set of re-
lated features. The authors of this study performed concept
analysis resulting in detection of the most feature-specific
computational units. Combination of these units with static
analysis resulted in detection of additional units along with
the dependency graph. Moreover, static code analysis has
been also the subject of several surveys, e.g. [12] or [13].

Exploration and examination of software repositories
formed the research area of mining software repositories
(MSR). In the past, MSR examination was focused on in-
dustrial systems [14]. However, the popularity of open-
source software led to challenges of clearer understanding
of tool development, methods, processes and software evo-
lution [15].

Depending on particular exploration objectives and soft-
ware repositories, analysis of metadata is always different.
The main issues include [16]: Detection of change patterns,
prediction of changes, detection of bugs, analysis of bug-
fixing change, source code exploration, or identification of
software developers.

All the mentioned issues have one common objective:
To enhance traditional techniques of software engineering
towards processes of guide decision in modern software
projects [17]. While MSR researchers deal with program-
ming targets (programming result – software), our research
is dedicated to the source (software author). Our aims in-
clude assessment of the code author, so the source code ex-
ploration and developer identification, approached in [18],
are the most related issues.

In this article we describe creation of knowledge pro-
files from programmers’ source codes where every profile
can be compared with other profiles. In our experiment, we
compare actual profile with older profiles, indicating pro-
grammer’s improvement. Moreover, we compare a group
of different programmers in order to highlight differences
in their skills. In our vision, it should be possible to com-
pare profiles to specific levels of knowledge as well, e.g.
necessary to perform a specific task.
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Fig. 1 Main idea of knowledge profile generator

We believe that comparison of source codes in the form
of knowledge profiles is the main scientific contribution.
We perceive knowledge as an option to perform a better
analysis and filter any irrelevant data. According to the lit-
erature overview and to our best knowledge, such a profile-
creating tool has not yet been developed.

In the following sections, we define the concept of
knowledge profile, sec. 2, and we introduce a prototype
of profile generator, sec. 3. The generator is based on static
analysis and yet it deals partially with the presented task.
It analyses the use of language constructs of Java and cre-
ates profiles (including visualization) through various met-
rics and statistics. In sec. 4, we discuss results achieved by
the prototype within an experiment performed on student
assignments. Conclusion remarks deal mainly with the fu-
ture version of the profile generator, sec. 5.

2. PROGRAMMER KNOWLEDGE PROFILE

Knowledge profile delineates skills, abilities and bind-
ings among their elements which are required to perform
some task. In general, we admit various abstraction degrees
of a profile definition (knowledge/skills). E.g. (outside the
area of programming) to know how to saw, to know how to
saw by a chainsaw, to know how to saw by a chainsaw if
the wood is of a thinner diameter.

We suppose that it is hard to differentiate knowledge of
similar concepts. If so, we rely on understanding the issue
in most usual cases. E.g. (in the area of programming) if a
programmer has proved he knows how to work with condi-
tional expressions within if, we can assume that he knows
how to work with conditional expressions within while or
for.

In our perception, we are able to formally define knowl-
edge profile and create it implicitly provided there is suffi-
cient input information. In the area of programming, input
information is represented by source code and a profile is
formally set over particular programming language (Java in
our case). We differentiate two profiles:

• Subject profile – Expresses what the author of the
code (the subject) understands and the range of tasks
he is able to solve. In our case, the programmer
should know, e.g. how to declare or call a method,
and even how to use an annotation [19].

• Object profile – Expresses what is required to solve a
task or tasks. We can define object profile for an ed-

ucational course or a programming book, consisting
of prerequisites, i.e. what one should already under-
stand before attending the course or reading the book.
We can even create a distinguished object profile ex-
pressing what one should understand after attending
the course or reading the book. In other words, ob-
ject profile represents an expected knowledge profile
while the reality may be different. However, if the
subject profile is supposed to be general, object pro-
file becomes optional.

One knowledge (subject) profile is expected to be gener-
ated after processing (analyzing) a finite number of source
code files. Object profile can be constructed both manually
or automatically, based on completely or partially solved
tasks.

Fig. 1 illustrates the main idea. The object profile is
optional, however, language definition and source code are
mandatory. If both subject and object profiles are created,
we can generate a comparison report.

By creating a subject profile, we can determine whether
the programmer has enough knowledge to handle some task
as well as we can identify any missing knowledge. Since
each programming task or its solution is structured, the pro-
file is required to be structured as well.

Currently, results of the profile generator are visualized
within a table of data. In later stages of the research we plan
its transformation to a graph or a tree containing annotated
edges or nodes [19].

In order to analyze the source code, is it possible to use
language parser. Since rules of the language grammar de-
fine concepts, we assume that if a programmer (subject)
uses particular rules, then he understands constructs which
describe and define the programming language. Source
code exploration (Fig. 1) does not require to use com-
plete language syntax but rules necessary to create a profile.
However, an appropriate form of rules should be human-
interpretable, i.e. Eq. 1 is better than Eq. 2, expressing that
in order to understand while, one should understand both
expressions and statements.

While→ ”while” ”(” Expression ”)” Statement (1)

A→ ”while” ”(” B ”)” C (2)
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Fig. 2 Heat map: Comparison of student assignments

Moreover, when generating a complex profile, we can-
not rely on a fact that the programmer understands some-
thing after one occurance. That is, we need to define met-
rics including both facts and empirical observation. E.g. if
one class contains 20 methods, then the understanding may
be derived as: 10 + 4 × number_of_used_methods,
i.e. if the subject has used every method (out of 20) at least
once, then 10 + 4 × 20 = 100, so he fully understands
the class. We may also assume multilicity: The more is
something used, the more the programmer understands it,
or complexity: The longer is the code (or documentation),
the more the programmer understands it. Regarding profile
generation, such metrics definition is a separate part of our
research.

3. PROFILE GENERATOR

Prototype of the proposed profile generator allows to
process Java code, counting particular language constructs
and generating profile as a table with summary data. Then,
the data is visualized in various forms (currently four), so it
is possible to further examine and compare the data:

• Detailed table – For every source code, it contains
usage frequency of language constructs, all divided
to logical groups in separate tables, e.g. of arithmetic
operators.

• Summary table – Contains summary data for all
source code files regarding distribution of language
constructs, e.g. arithmetic mean, modus, median, or
standard deviation.

• Heat map – For every language construct, this matrix
consists of cells colored by occurrence (the darker the

color, the higher the frequency). Additional tooltip
window contains additional statistical data.

• Whisker plot – Graph illustrating summary data and
its distribution [20].

In order to process Java source codes, we use ANTLR
(parser generator, [21]), creating tables serialized in JSON
format. Results are visualized through web interface, based
on AngularJS framework and HighCharts library.

Currently, the profile generator creates simple profiles
containing data assembled for some group of source codes
created by one programmer (subject profile) or data of a
single project (object profile). If comparing various data or
programmers, heat maps have proved to be the most useful,
since they allow to display a lot of data at one place.

4. RESULTS

In order to verify the proposed method of knowledge
profile generation, we have measured subject abilities based
on his profile and determined whether he is suitable to solve
a specific task. A correct determination of what the subject
knows or not may be influenced by the following:

• Subject evaluates himself (through a questionnaire),

• Subject is issued a task and his experience is assessed
(question, program fragment, program synthesis),

• Subject profile is generated.

In our case, we decided to verify the proposed approach
within the educational process by tracking changes in a
student profiles. Student assignments are programming
projects of similar size within the same domain. We col-
lected assignments of the OOP course, introducing Java
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laguage as well as object-oriented paradigm. Except that
students were supposed to work on the same problem,
within the experiment we assumed that students (subjects)
had similar dispose of knowledge. To be more precise, stu-
dent profiles were compared with lecturer profiles as well.

Fig. 2 displays comparison of several profiles (part of
the overall results). Rows represent different language el-
ements, e.g. break or try. Columns correspond to differ-
ent programming projects (assignments). Students are la-
beled by numbers while teacher is labeled as master. For
every source code, the table contains language element oc-
currence complemented by statistics (displayed as a tooltip
window after pointing to a table cell).

Although profiles of students and the master are rather
similar, a careful reader may have noticed some notable dif-
ferences. E.g. student 3 used the highest number of vari-
ous language elements (also those not used by the master)
while student 7 may have encountered difficulties with un-
derstanding the principles of object-oriented paradigm as
the static modifier was used much more often than in other
profiles. Some students did not use language elements fre-
quent in other profiles. E.g. student 5 missed switch while
student 1 missed float and long. These students could both
not understand these types or constructs, or they just in-
clined to a different way of solution. That is, in some cases,
further exploration of the source codes is necessary. On the
other hand, some data can clearly indicate weaknesses, e.g.
student 6 did not use final modifier, i.e. he does not under-
stand the importance of immutability in programs.

5. CONCLUSION REMARKS

We introduced an approach towards creation of pro-
grammer knowledge profiles through profile generator, ex-
ploring Java source codes. The aim is to implicitly cre-
ate such profile. Despite this topic is relatively extensive,
the analysis revealed it is little explored. There exists a
large variety of potential methods, yet we focused on static
analysis, language element frequency and descriptive statis-
tics [22]. Authors of [13] claim that tools based on static
analysis create a lot of data. This is why there are three
relevant research topics: methods of profile generation, us-
ability of profiles and visualization of profiles.

We also described profile generator tool and experimen-
tally explored student assignments. The results showed the
tool counts frequency of particular language elements using
descriptive statistics [22] and visualizes assembled data in
various tables, heat maps and whisker plots (available also
in JSON meta-form). The statistics can show the subject is
familiar with particular elements, yet it does not implicitly
mean he/she is using them correctly. The same applies to
unused elements. The fact that the subject did not use par-
ticular element does not mean he/she is not familiar with it.
Thus, more appropriate metrics should be proposed, other-
wise manual code exploration will always be necessary.

Nevertheless, presented approach can be applied in the
following areas: Course or book profile (object profile
based on subject profile, selection of the most useful course
or book), candidate profile (subject profile based on ob-
ject profile, what is required to be solved), skills profile

and student assessment [23] (object profile based on sub-
ject profile, consisting of abilities necessary to solve some
task), statistics (subject profile, frequency evaluation of a
language construct indicating its difficulty), or complexity
profile (complexity evaluation of a language construct or
a library). Obviously, comparison of student profiles with
each other may reveal plagiarism.

Yet, the profile generator has proved to be an interesting
tool to assess programmers and it is ready to be extended to-
wards treating more comprehensive programming projects
(e.g. model-driven software development [24]) and apply-
ing advanced metrics. Further research iterations will en-
hance the tool, so it will be able to identify various patterns
in programmer behavior [25], or to detect and assess ad-
vanced language usage, e.g. programming idioms [26] or
nested loops, or to deal with security issues [27]. In addi-
tion to language elements, we also plan to track the usage of
library classes and methods. Comparison of student profiles
will involve multiple master profiles. Future work will also
include model-based assessment similar to [5] or reference
processing in a programming language [28].

ACKNOWLEDGEMENT

This work was supported by project KEGA 047TUKE-
4/2016 "Integrating software processes into the teaching of
programming."

REFERENCES

[1] HUUCK, R.: Technology transfer: Formal analysis,
engineering, and business value, Science of Computer
Programming 103, No. 1 (2015) 3–12.

[2] IVANNIKOV, V. – BELEVANTSEV, A. –
BORODIN, A. – IGNATIEV, V. – ZHURIKHIN, D.
– AVETISYAN, A.: Static analyzer Svace for finding
defects in a source program code, Programming and
Computer Software 40, No. 5 (2014) 265–275.

[3] HANAM, Q. – TAN, L. – HOLMES, R. – LAM, P.:
Finding Patterns in Static Analysis Alerts: Improving
Actionable Alert Ranking, ACM Working Conference
on Mining Software Repositories, 2014, pp. 152–161.

[4] BREUER, P. – PICKING, S.: Reliable Software
Technologies – Ada-Europe, Lecture Notes in Com-
puter Science: One Million (LOC) and Counting:
Static Analysis for Errors and Vulnerabilities in the
Linux Kernel Source Code 4006, No. 1 (2006) 56–
70 Springer.

[5] ZHENG, L. – MUKHOPADHYAY, S.: Model-Based
Static Source Code Analysis of Java Programs with
Applications to Android Security, Computer Software
and Applications Conference (COMPSAC), 2012, pp.
322–327, IEEE Computer Society.

[6] CATTHOOR, F. – DANCKAERT, K. – WUYTACK,
S. – DUTT, N.: Code transformations for data trans-
fer and storage exploration preprocessing in multime-
dia processors, Design Test of Computers 18, No. 3
(2001) 70–82 IEEE Computer Society.

ISSN 1335-8243 (print) c© 2016 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 16, No. 1, 2016 19

[7] MURRAY, A. – BENNETT, R. – FRANKE, B. –
TOPHAM, N.: Code Transformation and Instruction
Set Extension, ACM Transactions on Embedded Com-
puter Systems (TECS) 8, No. 4 (2009) 26:1–26:31.

[8] POSHYVANYK, D. – GETHERS, M. – MARCUS,
A.: Concept Location Using Formal Concept Anal-
ysis and Information Retrieval, ACM Transactions
on Software Engineering Methodology (TOSEM) 21,
No. 4 (2013) 23:1–23:34.

[9] MARCUS, A. – RAJLICH, V. – BUCHTA, J. – PE-
TRENKO, M. – SERGEYEV, A.: Static Techniques
for Concept Location in Object-Oriented Code, In-
ternational Workshop on Program Comprehension,
2005, pp. 33–42, IEEE Computer Society.

[10] KIENLE, H. – MÜLLER, H.: Rigi — An Environment
for Software Reverse Engineering, Exploration, Visu-
alization, and Redocumentation, Science of Computer
Programming 75, No. 4 (2010) 247–263 Elsevier.

[11] EISENBARTH, T. – KOSCHKE, R. – SIMON, D.:
Locating features in source code, IEEE Transactions
on Software Engineering 29, No. 3 (2003) 210–224.

[12] EMANUELSSON, P. – NILSSON, U.: A Compara-
tive Study of Industrial Static Analysis Tools, Elec-
tronic Notes in Theoretical Computer Science 217,
No. 1 (2008) 5–21 Elsevier.

[13] HECKMAN, S. – WILLIAMS, L.: A Systematic
Literature Review of Actionable Alert Identification
Techniques for Automated Static Code Analysis, In-
formation and Software Technology 53, No. 4 (2011)
363–387 Butterworth-Heinemann.

[14] KAGDI, H. – COLLARD, M. – MALETIC, J.: A Sur-
vey and Taxonomy of Approaches for Mining Soft-
ware Repositories in the Context of Software Evolu-
tion, Journal of Software Maintenance and Evolution:
Research and Practice 19, No. 2 (2007) 77–131 Wiley
& Son.
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