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HEATING OF THREE-PHASE SHIELDED SUPPLY AT SHORT CIRCUIT
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ABSTRACT
Following the calculation of the mechanical forces acting on the shielded three-phase line published in [1] and [2], an algo-

rithm describing numerical calculation of its temperature rise due to short-circuit currents is presented. Given are the equation for
determining the electromagnetic sources of heating, heat transfer equation for propagation of heat in the line and another equation
for a simplified calculation of the temperature rise of the line provided that the investigated temperature process is adiabatic. The
methodology is illustrated with a typical example.
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1. FORMULATION OF PROBLEM

Feeding lines of high-power electrical rotating ma-
chines, transformers, arc furnaces and many other devices
are highly stressed mechanically and thermally, in particu-
lar at short circuit. Mechanical stresses on these conductors
can significantly be reduced using wires shielded with steel
jackets, see [1] and [2]. On the other hand, the presence of
shielding complicates local thermal situation; it reduces the
possibility of transfer of heat from the conductor and, more-
over, further losses by eddy currents induced in the shield-
ing jackets are generated, representing additional sources of
heat. The paper describes a method for calculation of heat-
ing of such a shielded conductor. The paper supplements
the above works, as it describes the method of calculation
of temperature rise of feeding lines. The results allow car-
rying out such a design of the line that is safe with respect
to the thermal damage of its insulation.

Fig. 1 Arrangement of the shielded conductors: 1-Copper core
of the cable, 2-Insulation, 3-Setting blocks, 4-Shielding jackets

Consider a three-phase line represented by straight con-
ductors X, Y, Z. The conductors can be either massive or
created by electrically conductive ropes that are insulated
and placed in the shielding steel jackets, see Fig. 1. The
conductors are supposed to carry short-circuit currents. The
aim of the paper is to investigate the volumetric Joule losses
in the wires and shielding jackets and formulate an algo-
rithm for calculation of their heating. Since the fault is a
short phenomenon, the process of heating will be assumed

adiabatic, i.e., heat is not transferred to the neighbourhood
of the conductors. This assumption leads to higher temper-
atures than those actually occurring in the system. As infor-
mation about heating serves for evaluating heat stress of the
insulation system of the feeding line, the method provides
safer values.

The short-circuit currents in the conductors X, Y, Z are
expressed by the following formulae:
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(1)

where A, B, C, TA, and TD are the parameters of the short-
circuit current.

2. MATHEMATICAL MODEL

The task can be solved with a sufficient accuracy as
a weakly coupled electromagnetic-thermal problem. The
electromagnetic phenomena are not tightly connected with
the thermal effects and may be solved separately.

2.1. Electromagnetic field in the feeding conductors

The field in the conductors is quasistationary. With re-
spect to a relatively low frequency, the skin effect in these
conductors may be neglected. This field can be expressed in
terms of the magnetic vector potential A, whose distribution
is described by the equation (see [3], [4])

curl
1
µ

curlA = −γ
∂A
∂ t

+Jext, (2)

where µ and γ are permeability and electric conductiv-
ity of medium and Jext is the external current density.
For the feeding lines there holds

A = z0A(x,y, t) ,
Jext = z0Jz,i (t) = z0

ii(t)
Si

, i = X,Y,Z ,
(3)

where currents ii(t) are given by (1) and Si are the cross
sections of conductors X, Y, Z. If the conductors are electri-
cally conductive ropes, their cross-sections have to be mul-
tiplied by the corresponding coefficient of filling kp.
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Fig. 2 Time evolution of amplitudes of short-circuit
currents iX, iY, iZ

In this way, for particular subdomains the equation (2)
has to be modified appropriately:

• conductors X, Y, Z:

∂ 2Az

∂x2 +
∂ 2Az

∂y2 = µ0Jz,i, (4)

• electric insulation and air:

∂ 2Az

∂x2 +
∂ 2Az

∂y2 = 0, (5)

• shielding shells:

∂

∂x
1
µ

∂Az

∂x
+

∂

∂y
1
µ

∂Az

∂y
= γ

∂Az

∂ t
. (6)

The shielding shells are made of steel whose saturation
curve B = B(H) is known.

The volumetric Joule losses per unit length in conduc-
tors X, Y, Z carrying short-circuit currents ii(t) are

wc(t) =
Ri i2i
Si l

, i = X,Y,Z , (7)

where Ri is the resistance of the ith conductor of length l, di-
ameter di and cross section Si, with possible respecting the
skin effect (4). If the conductor is an electrically conductive
rope, the skin effect can be neglected, so that

Ri =
4 l

π γCud2
i kp

, i = X,Y,Z . (8)

For copper conductors γCu = 5.7 ·107 S/m.
The time evolution of the volumetric Joule losses in the

i-th shielding jacket is

wsi =
J2

z,i

γFe

, (9)

where

Jz,i = γFe

∂Az,i

∂ t
. (10)

For steel shielding shells γFe = 5.0 ·106 S/m and µ = B/H;
this value is for any B found from the saturation curve
B = B(H).

The time evolution of the volumetric Joule losses in the
ith shielding shell is

ws,i,avrg(t) =
1
Vi

∫
Vi

ws,i (x,y, t)dVi, (11)

where Vi is the volume of the i-th jacket.

Fig. 3 Magnetization curve of the steel used for shielding

2.2. Nonstationary temperature field

Its distribution in the conductors X, Y, Z of length l is
given by the balance among the heat fluxes (grad T ), inter-
nal energy of the conductors (temperature T ) and energy
transported by the heat sources (losses wc). The corre-
sponding heat transfer equation reads [4]

∂

∂x

(
λ

∂T
∂x

)
+

∂

∂y

(
λ

∂T
∂y

)
=ρc

∂T
∂ t
−wc,i, (12)

where T = T (x,y, t) is the temperature, λ denotes the ther-
mal conductivity, ρ stands for the specific mass and c is the
specific heat.
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An approximate integral formulation of the relation for
temperature rise of conductors X, Y, Z of length l follows
from the balance between the internal energy of the con-
ductors and energy transported by the heat sources. The
adiabatic heating of wire X (for example) is described by
the relation

t∫
0

wc,X (t)dt = ρcT (t) , (13)

where wc,X is given by equation (7).
For numerical computation, equation (13) is discretized

as follows

N

∑
0

wc,X,i∆t j = ρc
N

∑
j=0

∆Tj⇒ ∆Tj =
1

ρc
wc,X, j∆t j, (14)

where ∆Tj is the increase of temperature of the conductor
in the j-th step of length ∆t j. The total temperature rise ∆T
of the conductor for N intervals ∆t j is

∆T =
N

∑
j=0

∆Tj. (15)

Similarly we can obtain the temperature rise of the
shielding shells produced by the specific Joule losses wsi.

3. ILLUSTRATIVE EXAMPLE: HEATING OF CON-
DUCTOR X AND ITS SHIELDING SHELL

3.1. Input data

• Arrangement and dimensions of the supply are in
Fig. 1.

• Short-circuit currents in the conductors are expressed
by (1) and the corresponding parameters are A =
58.8 ·103 A, B = 8.4 ·103 A, C = 50.4 ·103 A, TA =
0.4 s, TD = 0.8 s, f = 50 Hz (see Fig. 2).

• Material parameters of conductors X, Y, Z:

Massive copper conductors: µr = 1, γCu = 5.7 · 107

S/m, ρ = 8966 kg/m3, c = 383 J/(kg.K)

Steel shielding shells: γFe = 5.0 ·106 S/m, ρ = 7840
kg/m3, c = 465 J/(kg.K), the saturation curve is in
Fig. 3.

3.2. Discussion of the results

The computation of the temperature rise was first car-
ried out for conductor X (that is placed between the con-
ductors Y and Z – see Fig. 1), whose temperature is ex-
pected to reach the maximum value. The calculations were
performed using the approximate integral formulation that
is, from the numerical viewpoint, less demanding than solu-
tion of the presented partial differential equation (12). First,
however, a time step had to be determined ensuring the con-
vergence of the numerical process. It was found that for
reaching the accuracy on the level of three valid digits this
step must satisfy the condition ∆t j ≤ 0.002 s.

Conductor X: Fig. 4 shows the average value of the vol-
umetric Joule losses wcX caused by the short-circuit current

iX(t). Fig. 5 depicts the time evolution of contributions of
the temperature ∆Tj and resultant temperature rise ∆T .

Fig. 4 Average value of the volumetric Joule losses wcX(t)
caused by the short-circuit current iX(t)

Shielding shell of conductor X: Fig. 6 shows the aver-
age values of eddy current densities Jz and corresponding
average value of the Joule losses WsX. Finally, Fig. 7 de-
picts the time evolution of contributions of temperature ∆Tj
and resultant temperature rise T (t).

Fig. 5 Time evolution of increments of temperature ∆T (t) and
average temperature T (t) of conductor X

Figures 5 and 7 show that the total temperature rise of
the conductor X is higher than the temperature rise of its
shielding shell. In the course of three periods of the short-
circuit current (t/Tp = 3), the conductor X exhibits total
temperature rise ∆T = 0.123 ◦C, while the total tempera-
ture rise of the shielding shell is only ∆T = 0.0021 ◦C. This
is obviously caused by the influence of the shielding shell
(or more accurately, by the gap between the conductor and
shell) and lower electric conductivity of the shell with re-
spect to the copper conductor. Consequently, eddy currents
heating the steel shell are significantly lower than the short-
circuit currents heating the conductor. Another role is also
played by greater volume of the shell with respect to the
volume of the conductor.
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Fig. 6 Average values of eddy current densities Jz and
corresponding average value of Joule losses WsX(t) in shielding

of conductor X

The aim of this work is to introduce a calculation
method of the heating process of the shielded three-phase
supply with short-circuit currents. Therefore, we evalu-
ate only the first three periods of short-circuit currents. It
is necessary to remark, that the calculation of the heating
was performed under the assumption of adiabatic heating,
where the heat generated in the conductors and shielding
jackets is not dissipated by convection and radiation and it
is used to raise the temperature of these parts. This assump-
tion is justified, since the transient phenomenon of short
circuit is very short. Then the calculation is simplified and
gives somewhat higher values of temperature than its real
value. Therefore, for design of such feeding line, such re-
sults are safer.

Fig. 7 Time evolution of increments ∆T (t) and average
temperature T (t) of shielding shell of conductor X
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