
36 Acta Electrotechnica et Informatica, Vol. 14, No. 2, 2014, 36–40, DOI: 10.15546/aeei-2014-0015

ISSN 1335-8243 (print) © 2014 FEI TUKE ISSN 1338-3957(online), www.aei.tuke.sk

ANALYSIS OF THE SOFTWARE BEHAVIOUR USING FORENSIC METHODS FOR

COMPUTER SECURITY PURPOSES

Liberios VOKOROKOS, Branislav MADOŠ, Marek ČAJKOVSKÝ, Ján HURTUK, Kristián MORAVČÍK
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic, tel. +421 55 602 3023,
e-mail: {liberios.vokorokos, branislav.mados, marek.cajkovsky, jan.hurtuk}@tuke.sk, krsitian.moravcik@student.tuke.sk

ABSTRACT

Abstract: Static analysis of malicious software is a complicated process. This complication stems from the fact that the process of

analysis has to be carried out on the malicious binary file which is represented in assembly language and therefore lacks critical

semantics such as functions, types and buffers that are only found in the source code of high-level languages. This work presents a

method that is built on top of IDA Pro disassembler and can be used for analysis of binary files by describing their structure using
finite-state automaton. This kind of approach allows a reverse engineer to perform advanced features such as visualization,
comparison, etc on a malicious file.

Keywords: reverse engineering, malware analysis, static analysis, finite state automaton, visualization

1. INTRODUCTION

The tremendous growth of the internet over the
previous decade led to the emergence of countless new
activities which are using internet, such as the various
financial services, business solutions, social networking
and others. However, the rapid development of the
internet has brought several critical issues with itself,
mainly in the area of computer systems security which to
this day still continues to require further design of optimal
solutions.

One of the fundamental problems in the field of
computer security is the enormous number of malicious
software that intentionally makes harm and causes damage
in the operating system or in its files and is generally
denoted by the term malware. Malware is currently one of
the most serious security threats and is a major cause of
most problems on the internet, such as spam, Distributed
Denial of Services (DDoS) attacks, etc. [1].

Number of computer programs written for malicious
and illegal purposes is rapidly increasing every year. The
year 2012 has seen a record number of 27 million new
malware samples with an average amount of 74 000
specimens per day, while the predominant attack (76% of
the total) were Trojans [2].

That is why new discipline of computer science called
forensic computing was established, with the main aim to
investigate computer crimes using information technology
and enable to identify, analyze, maintain, and provide the
evidence gathered [3].

Despite the above however, there are still not enough
sophisticated tools for analyzing malicious software that
would be able to clearly identify the behaviour of these
programs through a thorough analysis of their internal
structure.

The aim of this work is to present a solution that could
be applied within methods of static and dynamic malware
analysis to describe the structure of a binary file using
finite-state machines and then demonstrate its use on
selected samples of malicious software.

2. MALWARE ANALYSIS

In order to protect authorized users against the dangers
of the Internet, various security companies are offering
antivirus products in which the primary technique to
identify new malware threats lies in the comparison of
signatures [4].

On this basis, it is necessary to constantly update the
database of known signatures in the event of discovery of
new samples of unknown malware.

The problem with existing antivirus solutions is the
insufficient protection in case of zero-day attacks because
complex malware may use sophisticated defence
mechanisms to prevent detection by antivirus tools or
because the database does not contain the relevant
signature to identify these threats [5][6].

Given the vast number of new samples that appear
every day there is a need for new solutions that could be
used to effectively automate the process of classifying the
collected malware samples and to distinguish them from
existing documented threats. The process of malware
detection automation can be addressed applying the
methods of forensic analysis, using a static or dynamic
analysis on binary files.

Fig. 1 OllyDBG software tool

Acta Electrotechnica et Informatica, Vol. 14, No. 2, 2014 37

ISSN 1335-8243 (print) © 2014 FEI TUKE ISSN 1338-3957(online), www.aei.tuke.sk

Fig. 2 Identifying the presence of malicious code in the program

If we focus our attention on analysis tools which as
their output produces a solution in the form of
disassembled code we can find that such generated code
represents only static data that is data structures over
which it is not possible to perform some other additional
specific operations.

In most cases, the generated content is represented
using text mode or some kind of graph view to be able to
make the process of analysis easier in case the binary file
that contains thousands of assembly instructions. To be
able to disassemble malicious binary files, tools such as
IDA Pro, OllyDbg (Figure 2), etc can be used [7].

In case of IDA Pro, the output of the analysis, that is
the disassembled code can be represented using text view
or more helpful graph view. In text mode it is possible to
store the disassembled sequence of instructions in
different output formats such as .asm, .html, etc. With
graph view, the reverse engineer can use the internal
viewing capabilities of IDA or generate an output graph to
be viewed in third party tools. The problem of graph view
lies in the fact that IDA can only apply it on the functions
of the analyzed binary file. In the case of malware that
may use some kind of obfuscation technique, IDA can fail
to identify functions present in the program and therefore
there is no graph available at all for the reverse-engineer
to analyze [8].

In addition to static analysis IDA also offers program
debugging capabilities, in which the binary file is loaded
into computer memory and the process of stepping can be
applied where the program is executed one line at a time.
During the process of debugging, IDA offers an option to
log every executed instruction that was interpreted by the
CPU in a text file. OllyDbg’s primary use is for debugging
Windows applications. Within this dynamic analysis
process, OllyDbg offers only a standard text view of
disassembled code.

Similar to IDA, interpreted instructions can be
recorded to a text file for the purposes of a later analysis.
OllyDbg can be extended using third party plugins that
can add additional features to the program such as graph
view. By comparing the above mentioned tools, it is clear
that they produce the same results.

The difference between them lies only in the analysis
process. The outcome of static analysis is the complete
structure of the binary file in case the analysis is being
done in laboratory conditions e.g. the code does not
contain signs of obfuscation. Dynamic analysis has the

advantage that before executing the actual program data,
instructions are loaded into the computer memory which
activates the process of deobfuscation.

The problem arises when there is a need to perform
additional operations with the data on the output that is
produced as the result of analysis. In terms of solving this
particular problem, it was necessary to design an approach
that would be able to represent these data as a new data
structure and thus the proposed approach would be able to
process any kind of sequence of instructions without the
need for specific type of analysis.

After the consideration of existing data structures it
was decided that the proposed approach would represent
evaluated data based on finite-state automaton. Using
finite-state machines as a data structure enables to perform
complex operations on collected data such as
visualization, comparison, state reduction, etc.

3. SOLLUTION AND RESULTS

One of the main issues that had to be resolved
concerned with the question of representation of the data
in the resulting form. Finite-state machine is a
mathematical model of computation and is conceived as
an abstract machine that can be in one of finite number of
states. It can change from one state to another when
initiated by a triggering event condition. Individual states
are defined by a state-transition function that for each
specific combination of state and input alphabet returns a
new state.

The initial approach of the problem solution was based
on the implementation of the concept, in which each
individual instruction was represented by a specific state.
After thorough testing of this idea, it was rejected because
of the enormous number of generated states which the
proposed program produced within the finite-state
machine as the output.

During the analysis of this approach we also
experimented with the omission of procedures within the
output so that the resulting finite-state machine would
only focus to cover the main branch of the program. In
this case, however, the condition to analyze the whole
structure of the program would not be met. Said principle,
however, could operate in dynamic analysis, which needs
to be concerned only with one actual executed branch of
the analyzed program.

38 Analysis of the Software Behaviour Using Forensic Methods for Computer Security Purposes

ISSN 1335-8243 (print) © 2014 FEI TUKE ISSN 1338-3957(online), www.aei.tuke.sk

After performing several tests it was decided that the
best approach would be to represent each state of the
automaton as if they were basic blocks of the program, as
is the case with IDA Pro tool which uses basic blocks
when representing the program in graph view. Basic block
is defined as a sequence of instructions within this block
and every block has a single entry and exit point.

Each defined block of the code is responsible for
transferring control flow to other responsible instruction
that follows the sequence of blocks. For each block is a
characteristic in which all the instructions in a given block
must be carried out after initial activation of the first
instruction.

To show the practicality of our proposed approach we
have prepared case studies to demonstrate the use of our
implemented solution ida-fsm on the real malware
samples.

3.1. Application of the analysis: Visualization

To demonstrate the visualization capabilities of ida-
fsm we have acquired a sample of a trojan (md5:
1429fff7a09b103e43613273c24b7781). Subsequently the
sample was loaded into IDA Pro for initial analysis.
Because of the limitations of IDA graphing capabilities no
functions were identified during the analysis and therefore
no graph view was available to process. In cases like this
it is obvious that the sample contains obfuscation
technique. To detect the type of present obfuscation, we
used ProtectionID tool. It was revealed that the sample is
packed using UPX. The advantage of our solution is in the
capability to produce output even when there are traces of
obfuscation present. Ida-fsm can be used for visualizing
the structure of the file in the form of finite -state

automaton.
This kind of visualization enables us to generate

signatures for different samples. Using these signatures we
can easily identify used protections in the analyzed
samples. To verify our assumption we used UPX to
compress a benign application.

Afterwards we ran out tool ida-fsm on the packed
binary. The generated state machine contained the same
structure as the output for iExplore1.exe trojan.

3.2. Application of the analysis: Comparison

For the purpose of demonstrating the comparison
capabilities of our tool, we chose notepad.exe (md5:
388b8fbc36a8558587afc90fb23a3b99) as an example of
the benign program which is included with every
Windows XP installation.

The file was loaded into IDA Pro for analysis and we
ran ida-fsm on the file to generate the automaton. Later on
we applied msfvenom tool on this binary to infect it with a
backdoor payload and to create a trojan sample. To check
the integrity of the created malware we uploaded the
sample to VirusTotal online service where 33 antivirus
solutions from 51 identified the file as a malware.
Subsequently we loaded the created trojan to IDA Pro and
applied our tool to compare the newly created state
machine with the previous state machine created for
benign notepad.exe. Based on the results, our tool can
highlight new states that were introduced into the state
machine as the result of infecting the benign file.

According to highlighted state we can easily identify
the basic blocks where the payload is located and analyze
the virtual memory address where the malware links to the
program.

Fig. 3 Execution trace of malicious file

To further demonstrate the comparison capabilities of
ida-fsm we obtained a sample of a computer worm (md5:
24279b569c7f301460e0c092c80f0919). We loaded the
malicious binary into malwasm tool which uses binary
instrumentation to capture every executed instruction of
the program. Using this approach enables us to visualize
the execution trace of the malicious file using ida-fsm by
comparing the virtual addresses of the executed
instructions with the virtual addresses of the state
machines basic blocks. Figure 3 shows a part of the
generated execution trace for the analyzed malware based
on instructions captured using malwasm’s binary
instrumentation technique.

4. CONCLUSIONS

The goal of this work was to implement a simple tool
to help in reverse engineering malicious binary files using
static analysis methods by describing their internal
structure in the form of finite-state automaton to be able to
perform advanced operations such as visualization,
comparison, and others.

Based on presented case studies our tool ida-fsm
provides several advantages. During static analysis of
obfuscated files it can be used to generate a signature
which is based on the visualization. Analyzing the
signature of each file enables us to clearly identify the

Acta Electrotechnica et Informatica, Vol. 14, No. 2, 2014 39

ISSN 1335-8243 (print) © 2014 FEI TUKE ISSN 1338-3957(online), www.aei.tuke.sk

 type of obfuscation that is present in it. Another use for

ida-fsm resides in the comparison of generated finite-state

machines which can help identify potential presence of

malicious code in the binary files and can help to generate

trace execution of analyzed file when ida-fsm is used in

combination with dynamic analysis tools.

There are also some disadvantages to consider. Since

our tool is based on Python language, the processing of

large files can cause some performance issues. Another

issue concerns the algorithm that is used to process the

instructions of the disassembled binary file. There are still

some minor discrepancies during the generated output that

needs to be solved. These disadvantages might be

improved by the next research.

ACKNOWLEDGMENTS

This work was supported by the Slovak Research and

Development Agency under the contract No. APVV-

0008-10 and project KEGA 008TUKE-4/2013:

Microlearning environment for education of information

security specialists.

REFERENCES

[1] KOLBITSCH, C. – COMPARETTI, P. M. –

KRUEGEL, C. – KIRDA, E. – ZHOU, X. – WANG,

X. F.: Effective and Efficient Malware Detection at

the End Host. USENIX Security Symposium. 2009,

pp. 351-366, ISBN 978-1-931971-69-0.

[2] Panda Security S.L.: PandaLabs Annual Report.

2012 Summary. PandaL- abs, 2012. Retrieved

October 19, 2013 from http://press.pandasecurity.

com/wp – content/uploads/2013/02/PandaLabs-

Annual-Report-2012.pdf.

[3] MCKEMMISH, R.: What is forensic computing?, In:

Trends and Issues in Crime and Criminal Justice,

Australian Institute of Criminology, June 1999, ISSN

0817-8542, ISBN 0 642 24102 3.

[4] BAYER, U. – KRUEGEL, CH. – KIRDA, E.:

TTAnalyze: A tool for analyzing malware. 15th

European Institute for Computer Antivirus Research

(EICAR 2006) Annual Conference.

[5] CARDENAS, A. A. – AMIN, S. – LIN, Z. –

HUANG, Y. – HUANG, CH. – SASTRY, S.:

Attacks against process control systems: Risk

assessment, detection, and response. Proceedings of

the 6th ACM symposium on information, computer

and communications security (ASIACCS 2011),

ACM, 2011, pp. 355-366, ISBN: 978-1-4503-0564-

8.

[6] BAILEY, M. – OBERHEIDE, J. – ANDERSEN, J. –

MAO, Z. M. – JAHANIAN, F. – NAZARIO, J.:

Automated classification and analysis of internet

malware. Recent Advances in Intrusion Detection.

Springer Berlin Heidelberg, 2007, 5th September

2007, XP019098093, ISBN: 978-3-540-74319-4, pp.

178- 197.

[7] QUIST, D. A. – LIEBROCK, L. M.: Visualizing

Compiled Executables for Malware Analysis.

Visualization for Cyber Security, 2009. VizSec

2009. 6th International Workshop on Visualization

for Cyber Security 2009, Atlantic City, New Jersey,

USA October 11, 2009, pp. 27-32, ISBN: 978-1-

4244-5413-6.

[8] Eagle Chris: The IDA Pro Book: The Unoficial

Guide to the World’s Most Popular Disassembler.

No Starch Press, 2011. 672 p. ISBN 978-

1593272890.

Received May 22, 2014, accepted June 20, 2014

BIOGRAPHIES

Liberios Vokorokos (prof., Ing., PhD.) was born on 17.

November 1966 in Greece. In 1991 he graduated (MSc.)

with honours at the Department of Computers and

Informatics of the Faculty of Electrical Engineering and

Informatics at Technical University in Košice. He

defended his PhD. in the field of programming device and

systems in 2000; his thesis title was "Diagnosis of

compound systems using the Data Flow applications". He

was appointed professor for Computers Science and

Informatics in 2005. Since 1995 he is working as an

educationist at the Department of Computers and

Informatics. His scientific research is focusing on parallel

computers of the Data Flow type. In addition to this, he

also investigates the questions related to the diagnostics of

complex systems. Currently he is dean of the Faculty of

Electrical Engineering and Informatics at the Technical

University of Košice. His other professional interests

include the membership on the Advisory Committee for

Informatization at the faculty and Advisory Board for the

Development and Informatization at Technical University

of Košice.

Branislav Madoš (Ing., PhD.) was born on 20th May

1976 in Trebišov, Slovakia. In 2006 he graduated (MSc.)

at the Department of Computers and Informatics at the

Faculty of Electrical Engineering and Informatics of the

Technical University of Košice. He defended his PhD. in

the field of Computers and computer systems in 2009; his

thesis title was "Specialized architecture of data flow

computer". Since 2010 he is working as a professor

assistant at the Department of Computers and Informatics.

His scientific research is focused on the parallel computer

architectures and architectures of computers with data

driven computational model.

Marek Čajkovský (Ing.) was born on 17th December

1986 in Veľký Krtíš, Slovakia. In 2011 he graduated

(MSc.) at the Department of Computers and Informatics

of the Faculty of Electrical Engineering and Informatics at

the Technical University of Košice and received the

engineering degree. Since 2011 he is PhD. student at

Faculty of Electrical Engineering and Informatics at

Technical University of Košice. His research is focused on

computer security, the title of his doctoral thesis is:

Identifying Security Threats by System Services Calling.

His professional interests include programming, computer

networking, computer security and UNIX based operating

systems.

40 Analysis of the Software Behaviour Using Forensic Methods for Computer Security Purposes

ISSN 1335-8243 (print) © 2014 FEI TUKE ISSN 1338-3957(online), www.aei.tuke.sk

Ján Hurtuk (Ing.) was born on 4th October 1988 in

Kežmarok. In 2013 he graduated (MSc.) at the

Department of Computers and Informatics at the Faculty

of Electrical Engineering and Informatics of the Technical

University of Košice. Since 2014 he is studying as a PhD.

student at the Department of Computers and Informatics

at the Faculty of Electrical Engineering and Informatics of

the Technical University of Košice. His scientific research

is mainly focused on the computer security.

Kristián Moravčík (Ing.) was born on 27th March 1990

in Kráľovský Chlmec, Slovakia. He received the

engineering degree in Informatics in 2014 from the

Department of Computers and Informatics of the Faculty

of Electrical Engineering and Informatics at Technical

University of Košice. His research is focused on computer

security.

