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ABSTRACT 
With the wide-spread application of process models and simulators, estimation of model parameters becomes a crucial project. 

In chemical industry the processes are mostly highly non-linear which makes the identification of model parameters difficult. In the 
practice the process simulators are not just for design but optimization of operating plants in numerous cases various sets of process 
data are available to determine the necessary model parameters. With further examination of the historical process data, a new 
possibility becomes applicable: some time-series segments can provide more information about the estimated model parameters than 
other parts of the recorded time-series. Since the tools of Optimal Experiment Design (OED) are for maximizing the information 
content of the experiments regarding to the unknown model parameters, the applicability of these tools in qualifying the recorded 
process data is obvious. In this paper the connection of classical time-series segmentation and OED tools will be examined 
throughout a simple polymerization example to prove the efficiency of integration of these tools to support the parameter 
identification of process models. 
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1. INTRODUCTION 

Process models play important role in computer aided 
process engineering since most of advanced process 
monitoring, control, and optimization algorithms rely on 
the process model. Unfortunately, often some of the 
parameters of these models are not known a priori, so they 
must be estimated from experimental data. The accuracy 
of these parameters largely depends on the information 
content of the experimental data presented to the 
parameter identification algorithm [1]. 

Optimal Experiment Design (OED) can maximize the 
confidence on model parameters through optimization of 
the input profile of the system. For parameter 
identification of different dynamic systems and models, 
this approach has been already utilized in several studies 
[2–6]. OED uses an iterative algorithm where the optimal 
conditions of the experiments or the optimal input of the 
system depends on the current model, which parameters 
were estimated based on the result of the previously 
designed experiment. Consequently, experiment design 
and parameter estimation are solved iteratively, and both 
of them are based on nonlinear optimization of cost 
functions.  

That means in practice, the applied nonlinear 
optimization algorithms have great influence on the whole 
procedure of OED, because design of experiments for 
nonlinear dynamical models is a difficult task. This 
problem is usually solved by several gradient-based 
methods e.g. nonlinear least squares method or sequential 
quadratic programming. A review of these methods can be 
found in [7], while [8] describes the extended maximum 
likelihood theory for optimizing the experiment 
conditions. 

In this paper, the problem of creating identification 
support algorithm is investigated. We present a new and 

intuitive segmentation based method, which makes 
possible to identify each parameter in the most appropriate 
time frame of the experimental data. With the help of this 
method, it becomes possible to reduce the number and 
cost of experiments and at the same time reduce the time 
consumption of parameter estimation. It may be caused by 
the fact that a considered time segment is useless in a 
certain point of view, but from another aspect the same 
time series segment can be applicable to determine other 
parameters. 

The rest of the paper is organized as follows. In 
Section 2, the previous works related to OED are 
reviewed. Section 3 and Section 4 present the theoretical 
background of our work, i.e. the applied segmentation 
method and the combination of classical OED and 
segmentation techniques, while Section 5 conducts our 
approach through a case study. Finally, we present our 
conclusions and suggestions for future work. 

2. CLASSICAL OPTIMAL EXPERIMENT DESIGN 

The case study considered in this paper belongs to the 
following general class of process models: 

( ) ( ( ), ( ), )dx t f x t u t p
dt

=   (1) 

( ) ( ( ))y t g x t= ,  (2) 

where u is the vector of the manipulated inputs, y is the 
vector of the output, x represents the state of the system 
and p denotes the model parameters. The p parameters are 
unknown and should be estimated using the data taken 
from experiments. The estimation of these parameters is 
based on the minimization of the square error between the 
output of the system and the output of the model: 
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where ỹ(u(t)) is the output of the system for a certain u(t) 
input profile, and y(u(t)) is the output of the model for the 
same u(t) input profile with p parameters. Q is a user 
supplied square weighting matrix that represents the 
variance measurement error. The basic element of the 
experiment design methodology is the Fisher information 
matrix F, which combines information on the output 
measurement error and the sensitivity of the model 
outputs y with respect to the model parameters: 
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The sensitivities are calculated based on the partial 
derivatives of the model parameters. As the true 
parameters p* are unknown during experiment design, the 
derivatives are calculated near to the so-called nominal 
parameters p0, which can be given by some initial guess, 
extracted from literature or estimated from the previous 
experiments. The optimal design criterion aims the 
minimization of a scalar function of the F matrix. Several 
optimal criterion exist, we present D-optimal and  
E-optimal  criterion suggested by Bernaerts et al. [1]: 
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Fig. 1  Classical scheme of optimal experiment design 

If the p0 nominal parameters are far from the p* true 
parameters, convergence cannot be guaranteed after the 
first optimal design. Thus, an iterative design scheme is 
needed to obtain convergence from p0 to p* (Fig. 1). 

Both the parameter estimation and the experiment 
design steps of this iterative scheme represent a complex 
nonlinear optimization problem, hence the effectiveness of 
the applied optimization algorithms have great influence 
on the performance of the whole procedure. The classical 
solution is to use nonlinear least squares (NLS) algorithm 
for parameter estimation (3), and sequential quadratic 
programming (SQP) for the experiment design (7). 

3. TIME SERIES SEGMENTATION 

Real-life time-series can be taken from business, 
physical, social and behavioral science, economics, 
engineering etc. Depending on the application, the goal of 
the segmentation of a time-series is to locate stable 
periods of time, to identify change points, or to simply 
compress the original time-series into a more compact 
representation. 

A univariate, m-element time series, 
x = [x(1),x(2),…,x(m)], is a column vector, where x(i) is 
the ith element. The ith segment of x is a set of 
consecutive time points, Si(a,b) = [x(a), x(a+1),…, x(b)], 
while the c-segmentation of x is a partition of x to c  
non-overlapping segments,  Sc

x = [S1(1,a), S2(a+1,b), …, 
Sc(k+1,m)]. In other words, a c-segmentation splits x to c 
disjoint time intervals, where 1 ≤ a and k ≤ m. 

The simplest but yet powerful segmentation technique 
for univariate time series is Piecewise Aggregate 
Approximation (PAA) algorithm. In this case, to reduce 
the m-length data from N, the time series are simply 
divided into N similar sized frames and each frame is 
represented by its mean value. Assuming that N is a factor 
of m, we get: 

( 1) 1
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N
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N
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where x(i) represents the ith PAA segment of x. Please 
note, although PAA is not the most sophisticated 
segmentation method it is perfectly suits for our case 
study as it can be seen in Section 5. 

 

Fig. 2  The original signal (top) and its PAA representation 
(bottom) using 10 segments 
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4. THE APPLIED ALGORITHM  
USING TIME SERIES SEGMENTATION 
INTEGRATED WITH OED TOOLS 

The aim of our work is basically to determine those 
time series segments recorded during the operation of the 
plant that are appropriate for estimation of model 
parameters. This way it becomes possible to reduce the 
number of the necessary experiments for parameter 
estimation by substituting the appropriate, previously 
recorded historical process data segments. In some simple 
cases it is sufficient to handle and examine the recorded 
data sets separately during parameter identification thus 
the application of the algorithm introduced below can 
provide sufficient result. In case of complex identification 
problems the proposed method may provide insufficient 
results that is why more advanced methods e. g. based on 
dynamic principle component analysis shall be applied. 

In Section 2 the tools of Optimal Experiment Design 
were introduced. As the first step of our algorithm with 
the help of E and D criteria (6 - 7) it becomes possible to 
qualify numerically the information content of an input 
signal applied during the operation of the process respect 
to the estimated parameter. Both criteria are based on the 
Fischer information matrix which contains the sensitivity 
of the outputs respect to estimated model parameters. 
Since this information matrix is valid only a certain time 
interval (t = [0 texp]) it is possible to calculate the F matrix 
– and throughout this the E or D criteria – in a moving 
time window with fixed length of time. This way it is 
possible to record an “evaluating time-series” which 
characterizes the information content of the examined 
operational time-series respect to the chosen parameter.  

As a second step the segmentation of the “evaluating 
time-series” shall be done. This way it is easy to segregate 
the time-series segments with different information 
content. As the third step by choosing the time-series 
segment with the lowest value of E or D criteria the most 
appropriate time series segment is chosen for determine 
the value of the certain model parameters (p).  

5. APPLICATION EXAMPLE 

5.1. Process description 

As an application example of the previously presented 
algorithm polymerization reactor 

The reactor what have been studied is a SISO (single 
input-single output) process, a continuously stirred tank 
reactor (CSTR) where a free radical polymerization 
reaction of methyl-metacrylate is considered using 
azobisisobutironitil (AIBN) as initiator, and toulene as 
solvent The aim of the process is to produce different 
kinds of product grades. The number-average molecular 
weight is used for qualifying the product and process 
state, and it can be influenced by the inlet initiator flow 
rate. When this assumption is considered, and the effect of 
the temperature is neglected, the multi input-multi output 
model could be reduced to a SISO process. Because of the 
isothermal assumption, a four-state model can be obtained 
[9]. 

 

 
Fig. 3  The configuration of the SISO process 
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where: 
Cm – concentration of the monomer in the reactor 
Cm,in – monomer concentration in feed 
CI  – initiator concentration in the reactor 
CI,in  – initiator concentration in feed 
kp, kfm, kI, kTc, kT  – kinetic parameters and 
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D0 is the zero order moment of the chain length 
distribution of the inactive polymer chain, which 
represents the length of inactive chains. D1 is the first 
order moment of inactive polymer chains, which means 
the distribution of molecular weight of inactive chains. 
The number-average molecular weight, represented by y, 
cannot be measured, but it is calculated, as can be seen in 
(13). 
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5.2. Example for using OED tools and segmentation 

In this following the combination of OED tools and 
time series segmentation has been presented for support 
parameter identification through a case study of the 
previously presented polymerization reactor. 

The model of the reactor is used as the operating plant 
and at the same the model also represents the process 
model that needs some of its parameters to be identified. 
Imagine that kp and ki kinetic parameters are not known 
properly and previously an experiment was carried out to 
determine the parameters.  

Expression (7) was applied as the basis of extracting 
more information from these time series. It means that 
lower value the cost function E has, indirectly the 
considered time series segment is more and more 
appropriate for identification purposes. Directly the value 
of the E criteria can express the potential information 
content of the examined input signal segment regarded to 
the considered parameters. That is why important to 
examine the value of E optimal criteria as function of time 
over the period of the experiment.  

Performing the presented PAA method for 
segmentation of time series of E – and indirectly 
throughout this the original experimental time series also 
– we have the possibility to separate the useful time series 
segments from the time series segments with less 
information content. The result of the segmentation is 
shown by Fig. 4. 
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Fig. 4  Segmentation of time series of E criteria and the 
segments of the experimental time series 

As it can be seen, the experiment can be divided into 3 
parts. The first and the last segments have lower E value 
than the middle one. This means that input signal of these 
segments have potentially more information content that 
the middle segment possess. That is why middle segment 
can be neglected during the process of parameter 
identification. 

In Fig. 5 the result of the identification is shown. 
During identification, the first and last time series 
segments were applied. The parameter fitting for the 

model was pretty successful since the output of the model 
is equal to the experimental data. 
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Fig. 5  Result of the identification (circles – experimental data, 
full line – model output) 
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