
48 Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009, 48–53

ISSN 1335-8243 © 2009 FEI TUKE

PRINCIPLES OF MODELS UTILIZATION IN SOFTWARE SYSTEM LIFE CYCLE

Ján KUNŠTÁR, Iveta ADAMUŠČÍNOVÁ, Zdeněk HAVLICE
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic, tel. +421 55 602 2573
E-mail: jan.kunstar@tuke.sk, iveta.adamuscinova@tuke.sk, zdenek.havlice@tuke.sk

ABSTRACT
Modeling is one of the most important factors in the process of computer systems development. It is the process of representing

real-world concepts in the computer domains as a blueprint for the purpose of software development. Recent trends in software and
system development have also revealed the value of developing systems at higher levels of abstraction. Abstract models streamline
and speed up not only development but suitable models can also improve maintenance process to be more effective and safe. This
paper briefly analyses SysML, which supports development process of complex systems unlike UML which is strictly focused on
software. Main part is oriented to presentation of a new approach to model driven system development supporting SysML concept
named System Development Unified Process extended by concept of Model-Driven Maintenance (MDM). MDM is based on new
architecture of software systems characterized by conjunction of system models with application’s code. MDM supports direct
changes of system based on modifications in system’s models.

Keywords: model-driven development, model-driven maintenance, software life cycle, SysML, System Development Unified
Process, UML

1. INTRODUCTION

Nowadays, models present one of the most important
considerations of system and software development.
Model-based design supports exploratory design and
analysis by allowing designers to effectively represent and
investigate their knowledge about the system during the
decomposition and definition process. Models are used to
represent formally the structure, function, and behavior of
a system [8]. Additionally, experiments can be performed
on models to eliminate poor design alternatives and to
ensure that a preferred alternative meets stakeholders’
objectives. Models also facilitate designer collaboration
by providing a common formalism for communicating
information about the system. This modeling concept
stays at the core of Model Driven Architecture (MDA).
However, one of the most important factors of modeling,
in order to support the MDA development process, is the
choice of modeling language. To support model-based
design and to overcome some limitations related to
Unified Modeling Language (UML) strict software
focus, the Object Management Group (OMG) has
developed the Systems Modeling Language (OMG
SysML™) [13]. SysML is general-purpose systems
modeling language that allows system designers to create
and manage models of physical systems using well-
defined, visual constructs. The knowledge captured by a
SysML model is intended to support the specification,
analysis, design, verification and validation of complex
systems.

In this paper, a methodology for model-based system
development using the SysML is presented with emphasis
on maintenance phase of proposed life cycle.

Presented paper is organized as follows. First, essential
information about MDA and SysML are briefly analyzed
in Section 2. Then, Section 3 introduces proposal of
System Development Unified Process (SDUP). Section 4
introduces proposal of Model-Driven Maintenance.
Finally, Section 5 presents the conclusions.

2. MODEL-DRIVEN SYSTEM DEVELOPMENT

Model Driven Architecture, defined and supported by
the Object Management Group [11], defines an approach
to IT system specifications that separates the system
functionalities from the implementation details on a
particular technological platform. The MDA [12] is a
framework for model driven software development
defined by the OMG which has elevated the software
development to the next step. Using MDA, it is possible to
have an architecture that will be language, vendor and
middleware neutral. In other words this concept
corresponds to cross platform interoperability, portability,
platform independence and productivity.

This approach places the emphasis on models,
provides a higher level of abstraction during development
and enables significant decoupling between Platform
Independent Models (PIMs) and Platform Specific Models
(PSMs).

One of the key standards that make up the MDA is
UML [5]. UML has, since its adoption in 1997, proved
immensely popular with software engineers, but its
software focus has discouraged many system engineers
from adopting it earnest. Those who did adopt UML
developed strategies to cope with its shortcomings. The
OMG customization of UML for systems engineering in
form of new modeling language called SysML is intended
to support modeling of a broad range of systems, which
may include hardware, software, data, personnel,
procedures, and facilities.

2.1. SysML

OMG SysML is a visual modeling language for
systems engineering that extends UML 2 in order to
analyze, specify, design and verify complex systems,
intended to enhance systems quality, improve the ability
to exchange systems engineering information amongst
tools and help bridge the semantic gap between systems,

Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009 49

ISSN 1335-8243 © 2009 FEI TUKE

software and other engineering disciplines [13]. OMG
SysML reuses a subset of UML 2 concepts and diagrams
and augments them with some new diagrams and
constructs appropriate for systems modeling (Fig. 1).

Fig. 1 UML 2/SysML Relationships

The benefits of using SysML in system development
process are following [5, 13]:

• SysML semantics are better suited for systems
engineering. SysML reduces UML’s software-
centric restrictions and adds two new diagram
types for requirements engineering and
performance analysis.

• SysML allocation tables support various kinds of
allocations. These tables support requirement,
functional and structural allocation, thereby
facilitating automated verification and validation
and gap analysis.

• SysML improves communication by providing a
formal language for sharing system information.
Based on UML, SysML ensures the flow-down
from systems engineering to software engineering
is more accurate.

• SysML’s requirement modeling support provides
the ability to assess the impact of changing
requirements to a system’s architecture.

• SysML is a precise language, including support for
constraints and parametric analysis which allows
models to be analyzed and simulated.

SysML is an open standard and supports XMI and ISO
10303-303 (AP233) allowing for information interchange
to other systems engineering tools [11, 13].

OMG SysML includes diagrams that can be used to
specify system requirements, behavior, structure and
parametric relationships. These are known as the four
pillars of OMG SysML [13]:

I. Structure.
The block is the basic unit of structure in SysML and

can be used to represent hardware, software, facilities,
personnel, or any other system element. The system
structure is represented by block definition and internal
block diagrams.

II. Behavior.
The behavior diagrams include the use case diagram,

activity diagram, sequence diagram, and state machine
diagram. The extensions made to standard UML activity
diagrams include the support for representation of time-
discrete and continuous systems, control of the size and
behavior of buffers on incoming data flows and
compatibility with widely used EFFBD notation that will
facilitate and improve interaction between SysML and
traditional software engineering tools and facilitate the
migration to SysML [14].

III. Requirements.
The requirement diagram is a new SysML diagram

type that captures requirements hierarchies and the
derivation, satisfaction, verification and refinement
relationships. The requirement diagram provides a bridge
between typical requirements management tools and the
system models [3]. Hence requirements become an
integral part of the product architecture [13].

IV. Parametrics.
The parametric diagram is a new SysML diagram type

that describes the constraints among the system’s
properties associated with blocks. This diagram is used to
integrate behavior and structure models with engineering
analysis models such as performance, reliability, and mass
property models. Parametrics also enable integration of
specification and design models with engineering analysis
models [13].

Fig. 2 System development unified process

50 Principles of Models Utilization in Software System Life Cycle

ISSN 1335-8243 © 2009 FEI TUKE

3. SYSTEM DEVELOPMENT UNIFIED PROCESS

Presented model of system development life cycle
includes all phases typical for the most of common life
cycle models, e.g. waterfall model.

However, within this model, the modifications
regarding the MDA development approach using SysML
were required. The model emphasizes the maintenance
phase and its impact on the whole system development
process (Section 4).

In general, the presented model (Fig. 2) may be
considered as having five distinct phases, described
below:

Integrated phase that includes phases of requirements
specification and design of the system. By means of using
SysML as modeling language, it is possible to integrate
these two previously distinct phases into one using the
parametric, requirement and design models [3, 13, 14].
This step involves gathering and defining the system’s
requirements that are directly related to design models
with a high level of abstraction that is independent of any
implementation technology (platform independent
models).

Model testing. This phase consists of using the
models created in previous step to be methodically
verified to ensure that they are error-free and fully meet
the specified requirements. This testing can be processed
in form of simulation using the properties of SysML
parametrics [7].

Implementation. In this step, the platform
independent models are transformed into system’s
platform specific models that are linked to specific
technological platforms (e.g. programming language,
operating system or database) [12]. These models are
afterwards transformed into implementation artifacts as
executable code and database schemas.

Integration and System testing. In this stage, both
individual system components and the integrated whole
are methodically tested and evaluated regarding to
technological platforms and quality and reliability of
system’s performance.

Installation and Maintenance. This step occurs once
the system has been tested and certified as fit for use, and
involves preparing the system for installation and use at
the customer site. A maintenance part involves making
modifications to the system or individual component to
alter attributed or improve performance [1]. These
modifications arise either due to change of requirements,
or defects uncovered during system’s testing. The main
difference compared to standard system maintenance is
that no change in system can be processed without
accordant modification in design/requirement models
(Section 4).

4. MODEL-DRIVEN MAINTENANCE

Model-Driven Maintenance is the maintenance
approach based on models of software system. It uses
knowledge from essential models of the system not only
for faster implementation of required changes, but also for
uncovering the impacts of these changes and for

controlling of consistency between application’s code and
essential models.

Mentioned consistency is crucial for preservation of
maintainability of the system which presents nowadays a
common problem of software systems.

4.1. Main problems of software maintenance

Maintenance is the last phase of software life cycle
(Fig. 2). Unlike development, maintenance has to work
within the parameters and constraints of an existing
system. Therefore knowing and understanding of software
system is crucial phase during maintenance process at
which models can help a lot.

Software maintenance task is the most expensive part
of the software system life cycle (the surveys indicate that
it consumes 60% to 90% of the total life cycle costs [6,
15]). Survey also shows that around 75% of the
maintenance effort is spent on the enhancements, and
error correction consumes about 21% (Fig. 3).

Fig. 3 Costs of maintenance activities

This proves that the maintenance cost is not only a
consequence of the poor design, but mostly a consequence
of the changing customer or environmental requirements
and the manner in which the system was constructed [1].

Program comprehension, impact analysis and
regression testing are the most challenging problems of
software maintenance in the present [4].

An inconsistent state of the software artifacts
significantly contributes to all three mentioned problems.
Each software system consists of artifacts (e.g. source
code, documentation, makefile, models of system) which
describe only a limited part of the software and the actual
system is their composite. When a software system is
changed, each artifact affected by this change has to be
modified for preservation of software maintainability. If
one artifact is changed during the maintenance and the
other one is omitted, it leads to inconsistent state of
software artifacts – the result is that all artifacts do not
describe the same system (i.e. system in its actual state).

4.2. Model-driven maintenance process

Model Driven Maintenance process presents one
useful aspect of knowledge-based software life cycle
oriented to better usability of all analysis, design and
implementation models within the maintenance of systems
[6]. To find the way how to streamline and speed up
maintenance activities together with preserving
maintainability of software system, which is crucial for
future system’s modifications during the software

Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009 51

ISSN 1335-8243 © 2009 FEI TUKE

evolution, is important for improving current state in
software maintenance.

MDM is based on utilization of knowledge from the
system models and dependencies among them for
improving the maintenance process. Inspiration for MDM
is the Model driven Architecture (Section 2). However,
Figure 4 shows significant differences between these two
approaches. MDA concentrates on development of
software system using UML as programming language
and the direction of progress is from models to
application’s code (Fig. 4). If the change of the system
needs to be performed according the consistency rules of
SDUP (Section 3), it is important to get back to system
models, which means that the use of reverse engineering
is inevitable. Reverse engineering process for MDA
presents the so-called Architecture-Driven Modernization
(ADM) [10].

In MDM, models of system are the basis for whole
maintenance process and therefore there is a requirement
to preserve essential models (type and count of these
models depend on software type) together with the code of
application. These essentials models are taken from
project database (PDB) (a place of models preservation at
majority of present software systems) and joined to
conjunctive preservation in the installation phase.

Fig. 4 Differences between MDA and MDM

A conjunctive preservation of program code (machine
code) and models (extended source files) has several
advantages:

• faster access to essential knowledge
• modification of both artifacts (code and models)

during maintenance
• easier consistency control after system

modification

Knowledge retrieved from essential models, which in
our approach presents one of the application’s elements,
allows us to go cyclically through the phases of life cycle
during the maintenance process without the need of
frequent project database browsing.

4.3. Model-Driven Maintenance Life Cycle

A life cycle of MDM starts with the operation of
software system. As system is used, requirements for
correction of its errors or requirements (user defined or as
a consequence of environment change) for its changes are
detected. According to the first Lehman law of the
software evolution [9]: “A program that is used must be
continually adapted, else it becomes progressively less
satisfactory“. The last phase of MDM life cycle consists
of modification of the system itself (Fig. 5). Consequently,
it is possible to assume that required modification is an
inescapable consequence of the nature of software and the
changing environment in which it’s used.

As the first step, the requirements need to be well
specified as it is very important to avoid the
misunderstandings between users of the system and
maintenance programmer. In here, the active user
participation presents a very important aspect. Within this
first step (i.e. requirements specification), the models
represent a very natural and useful way to avoid any
potential misunderstandings, although unfortunately most
users don’t understand the complex diagrams (for example
in SysML notation) preferred by many traditional
modelers. The solution might be the adoption of inclusive
models which use simple tools and simple techniques that
users can easily learn and therefore use to help capture
and analyze requirements for certain system [2].

When the requirements are well specified by means of
the inclusive models, maintenance programmer can
modify essential models which are part of the application.
The extensive use of CASE systems for visualization and
applying of changes may be considered a very suitable
choice in this phase as the changes of models can be
processed without modification of operating software
system. In this way, the maintenance programmer is able
to discover impacts of required changes before they are
really implemented into the system’s code. The
dependencies among components of system models and
among models themselves, present knowledge which
allow discovering the chain reaction of all required
changes as a consequence of the modifications requested
by user. It is particularly useful because if a programmer
is aware of all required changes he can implement them
all in one single step, without impacts to unchanged parts
of the system. In the end, when all required modifications
are implemented into the code and into the models of
application, the consistency control needs to be
performed. This control basically consists in a simple
principle - if all changes within the models were processed
also within the code, it’s possible to deduce that they both
describe the same system – so they are in consistent state.

52 Principles of Models Utilization in Software System Life Cycle

ISSN 1335-8243 © 2009 FEI TUKE

Fig. 5 Model-driven maintenance life cycle

5. CONCLUSIONS

This paper presents the System Development Unified
Process, which supports the concepts of Model-Driven
Development and Model-Driven Maintenance using the
advantages provided by SysML. This approach based on
the conjunctive preservation of program code and models,
supports consistency between the essential models and
code, as no change in code can be processed without
accordant modification of system’s models.

ACKNOWLEDGMENTS

This work was supported by VEGA Grant No.
1/0350/08 Knowledge-Based Software Life Cycle and
Architectures.

REFERENCES

[1] ALLEN C., Software maintenance – an overview,
British Computer Society, Programming & Software
Articles, en-GB 3rd, February 2006.

[2] AMBLER, S. W. - JEFFRIES, R.: Agile Modeling:
Effective Practices for Extreme Programming and
the Unified Process. John Wiley & Sons, New York,
2002.

[3] BJORKANDER, M.: UML and SysML Software
Modeling & Requirements Management, 2007,
http://www.modprod.liu.se/Talk8-Bjorkander-UML-
SysML.pdf

[4] CANFORA, G. - CIMITILE, A.: Software
Maintenance. Handbook of Software Engineering
and Knowledge Engineering, volume 1. World
Scientific, 2001, ISBN: 981-02-4973-X.

[5] EmbeddedPlus SysML Toolkit tutorial, 2008,
http://www.embeddedplus.com/sysml.php

[6] HAVLICE, Z. et al.: Knowledge-based software life
cycle and architectures. Computer Science and
Technology Research Survey. Kosice, elfa, 2007,
ISBN 978-80-8086-071-4.

[7] JOHNSON, T. - PAREDIS, Ch.: Integrating Models
and Simulations of Continuous Dynamics into
SysML, 2008, http://www.omgsysml.org/

[8] KLEPPE, A. - WARMER, J. - BAST, W.: MDA
Explained: The Model Driven Architecture™:
Practice and Promise, 192 pp, Addison Wesley,
2003, ISBN 0-321-19442-X.

[9] LEHMAN M. M.: Lifecycles and the Laws of
Software Evolution, Proceedings of the IEEE,
Special Issue on Software Engineering, 19:1060-
1076, 1980.

[10] NEWCOMB, P.: Architecture Driven
Modernization, Proceedings of the 12th Working
Conference on RE. IEEE Computer Society, 2005,
ISBN 0-7695-2474-5.

[11] Object Management Group, http://www.omg.org

[12] OMG Model Driven Architecture Specification,
2007, http://www.omg.org/mda

[13] OMG Systems Modeling Language (OMG
SysML™) v 1.0, OMG Available Specification,
2007, http://www.omgsysml.org/

[14] WEILKIENS, T.: Systems engineering with
SysML/UML: modeling, analysis, design. 322 pp,
Morgan Kaufmann Publishers, 2007, ISBN: 978-0-
12-374274-2.

 [15] YANG, H. – WARD, M.: Successful evolution of
software systems. 300 pp, Artech House Publishers,
2003, ISBN 1580533493.

Received Jun 9, 2009, accepted August 18, 2009

BIOGRAPHIES

Ján Kunštár was born in Brezno, Slovakia, in 1982. He
received the Ing. (MSc) degree in informatics from the
Faculty of Electrical Engineering and Informatics,
Technical university of Košice, Slovakia, in 2006. He is

Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009 53

ISSN 1335-8243 © 2009 FEI TUKE

currently working on his PhD. degree at the Department
of Computers and Informatics FEEI, Technical university
of Košice. His scientific research is focusing on
enhancement of software maintenance process through the
modification of system’s architecture and by taking
advantage of knowledge acquired from software systems’
abstract models.

Iveta Adamuščínová was born in 1983. In 2007 she
graduated (MSc.) with honors at the Department of
Computers and Informatics of the Faculty of Electrical
Engineering and Informatics at Technical University in
Košice. Currently, she is a PhD. student at the same
department. Her scientific research is mainly focused on
knowledge-based systems, integration of knowledge into

software systems’ architectures and model-driven
software development.

Zdeněk Havlice was born on 14. 02.1958. In 1982 he
graduated (MSc.) with honors at the Department of
Computers and Informatics of the Faculty of Electrical
Engineering and Informatics at Technical University in
Košice. He defended his PhD. in the field of visual
programming and user interface design in 1991; his thesis
title was: "Design of User Interface for Dialogue
Systems". Since 1999 he is working as an associated
professor at the Department of Computers and
Informatics. His scientific research is focusing on the area
of special languages, compilers, CASE systems, software
methodologies, methods and tools.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

