
Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009, 43–47 43

REFLECTIVE MONADIC ADAPTATION∗

Ján KOLLÁR, Michal FORGÁČ
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of Košice,

Letná 9, 042 00 Košice, tel. 055/602 2576, E-mail: Jan.Kollar@tuke.sk, Michal.Forgac@tuke.sk

ABSTRACT
The purpose of software evolution is adaptation of a software system according to the new external or internal requirements unlike

software maintenance, which purpose is mainly removal of some faults. Software evolution includes also language evolution. We
can view on a software system as an integral combination of a program and a language for this program. Program can be viewed
as a sequence of statements that are aimed to produce some result. The execution is done by a platform that interprets the program’s
sequence of statements. The new result of a computation can be achieved by transformation of a program, an interpreter or both. In this
paper we present adaptive experiment in the field of adaptability with utilization of metaprogramming and reflection using functional
programming with monads. They are useful interface between functional and imperative world of programming.

Keywords: software evolution, metaprogramming, reflection, adaptability, functional programming, monads

1. INTRODUCTION

Modification of complex software systems after their
delivery means difficult process. The most often reasons
for such modification are on the one hand detected faults,
which have to be fixed or on the other hand requirements
for new functionality, which systems have to include (e.g.
replacement of a system from one computational environ-
ment into a new one). Such modifications require additional
costs. Even implementation of required changes takes in
some cases longer than implementation of the first opera-
tional software version. Thus there is significant demand
for reaching optimal methods in order to achieve effective
modification of software systems.

Under modification it is possible to mean software
maintenance or software evolution. These terms are of-
ten used as synonyms. We incline rather to the claim (ac-
cording to e.g. [7]), that these terms do not express similar
meaning. The purpose of maintenance (e.g. perfective, cor-
rective, adaptive, preventive) is mostly in removal of some
faults, the purpose of evolution (e.g. static, dynamic, anti-
cipated, unanticipated) is adaptation of a system according
to the new external or internal requirements, thus the first
delivery is only first step in continuous evolving process.

Evolution in general means, that something has changed
for better way. According to Lehman the term E-type soft-
ware [8] denotes programs that must be evolved because
they operate in or address a problem or activity of the real
world. Changes in the real world will affect software and
require adaptations to it.

Software evolution [1,11] includes also language evolu-
tion as an actual issue. Some projects may fail not because
of bugs in programs, but because of the lack of recogni-
tion of language issues. Thus according to [4] software is
composed from a program and a language. In this approach
is language implementation (e.g. interpreters, compilers,
other language-dependent tools) regarded as a metalevel of
a program.

There is general agreement for the set of several im-
portant challenges on software evolution presented in [10].

We suppose that mainly four ideas play a significant role
for our research: formal support for evolution, evolution as
a language construct, support for multi-language systems,
and post-deployment runtime evolution. The first challenge
is about formal methods, which need to embrace change
and evolution as an essential fact of life. The second chal-
lenge states, that programming languages should provide
more direct and explicit support for software evolution. The
third challenge is about support for multi-language systems,
and claims that software evolution techniques must pro-
vide more and better support for multi-language systems.
The last challenge is about post-deployment runtime evolu-
tion and calls for an urgent need for proper support of run-
time adaptations of systems while they are running, without
pause or stop them.

This paper is structured as follows: section 2 presents
basic principles of metaprogramming and reflection, which
are basis of our research. Adaptive language implementa-
tion as our previous work is presented in section 3. Section
4 deals with main principles of monads, which are used in
section 5 in our proposal of adaptive metalevel architecture.
Finally, section 6 concludes this paper.

2. METAPROGRAMMING AND REFLECTION

Metaprogramming is about writing programs that rep-
resent and manipulate other programs or themselves, i.e.
metaprograms are programs about programs [3]. The im-
pact of metaprogramming is obvious in traditional develop-
ment processes, by sorting existing programs as transfor-
mation processes with inputs and outputs.

Reflection is an entity’s integral ability to represent, op-
erate on and otherwise deal with itself in the same way that
it represents, operates on, and deals with its primary subject
matter [3]. A metalevel provides information about selected
system and makes the software self-aware. A base level in-
cludes the application logic.

There are two aspects of reflection [2]: introspection
and intercession. Introspection is the ability of a program to
observe and therefore reason about its own state. Interces-

∗THIS WORK WAS SUPPORTED BY VEGA GRANT NO. 1/4073/07 ASPECT-ORIENTED EVOLUTION OF COMPLEX SOFTWARE SYS-
TEMS

ISSN 1335-8243 c© 2009 FEI TUKE



44 Reflective Monadic Adaptation

sion is the ability of a program to modify its own execution
state or alter its own interpretation or meaning. Both as-
pects require a mechanism for encoding execution state as
data, providing such an encoding is called reification [12].
With introspection it is possible to read and access reifica-
tions whereas intercession allows also modify these reifica-
tions.

Reflection can be divided into structural and be-
havioural reflection [14]. Structural reflection represents
the ability of a program to access a representation of its
structure, as it is defined in the programming language. For
instance, in an object-oriented language, structural reflec-
tion gives access to the classes in the program as well as
their defined members. Behavioural reflection represents
the ability of a program to access a dynamic representa-
tion of itself, that is to say, of the operational execution
of the program as it is defined by the programming lan-
guage implementation (processor). In an object-oriented
language, behavioural reflection could for instance give ac-
cess to base-level operations such as method calls, field ac-
cesses, as well as the state of the execution stack.

A programming language is said to be reflective if it
provides an explicit representation (i.e. reification) of en-
tities that either represent program building blocks (e.g.
classes, methods) or are involved in program execution (e.g.
stack, garbage collector) [14]. Developers thus can de-
fine system (software) functionalities and also new program
building blocks or execution mechanisms (how functional-
ities will be performed). From the object-oriented point of
view, objects that define program functionalities are called
base level objects or base-objects, objects defining program
building blocks or execution mechanisms are called meta-
level objects or meta-objects [3].

Meta-object protocol (MOP) [14] offers possibility for
extension of a programming language and adapts respec-
tive execution mechanisms. Using a reflective language it
is possible to implement both objects and metaobjects.

3. ADAPTIVE LANGUAGE IMPLEMENTATION

A programming language is a medium to express com-
putation, which is defined by its syntax and its semantics.
An implementation of a programming language is the real-
ization of its syntax and its semantics, which comprises a
translator and a run-time system [9].

The result of a computation depends on both a program
P and an interpreter I. There are two general ways, how to
change this result. The first approach is based on transfor-
mation of a program (an interpreter will stay unchanged),
the second approach is based on transformation of an inter-
preter (a program will stay unchanged). There is another
possible way, which represents combination of previous
ways (both a program and an interpreter will be changed).

Our approach is related to the second group of transfor-
mation because it is based on non-program transformation.
Our idea of interpreter transformation is widen by trans-
formation of various components of the execution mech-
anism. Thus, according to our approach, execution is a
synonym for transformation in general, such as transla-
tion, type checking, code generation, loading, interpreta-

tion, modelling, algebraic specification, and even for infor-
mal but constructive thinking about algorithmic problems.

Foundations of our adaptive language implementation
were presented in [6], where we have introduced simple
LL(1) language and its adaptive interpreter which consists
of lexical analyser, adaptive translator and evaluator (every
module was implemented in Haskell functional language)
such that interpreter k = eval . translate k . lexical, where k
is a variant, which depends on the result in the stack (in our
case, the result was a number value). This means, that de-
pending on the result of interpretation, the LL(1) language
should be changed, and the next interpretation follows dif-
ferent semantics, i.e. potentially different result of the same
source expression. This language had simple grammar of
operations (+), (−), (∗), and (/) with various associativity
and priority. Then according to the result in the stack, the
grammar of the language (associativity and priority of listed
operations) was changed according to the metadata (which
are represented by variants). The principle of adaptability
is depicted on the Fig. 1.

source

code

translate evallexical

stack

value

metadata

variantsmetalevel

base level

Fig. 1 Adaptive language implementation

4. MONADS

Functions in Haskell [5] are pure, meaning that they de-
fine a relationship between inputs and outputs, and have no
side effects. Impure functions refer to external state, mod-
ify their behavior based on external state, or change external
state.

Haskell makes impure functions available, but isolates
them through the use of monads, which are actually built
from pure functions. Monads [16] have two main purposes,
they encapsulate common computational patterns and iso-
late code that interacts with the outside world. There are
various types of monads, some of them are listed in the
Table 1. Pure functions cannot call monad functions but
monad functions can be called by other monad functions.

Table 1 Selected types of monads

Monad Computation

Maybe may not return a result

Error can fail or throw exceptions

List can return multiple results

IO perform I/O

State maintain state

ISSN 1335-8243 c© 2009 FEI TUKE



Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009 45

A type m is a monad if it implements four operations
[15]: bind (the �= operator), then (the � operator), re-
turn, and fail. On the Fig. 2 is depicted an example of a
return function and on the Fig. 3 is depicted an example of
a bind function for the IO monad.

IO

Int

Fig. 2 Example of a return function for the IO monad

IO

Int

Char

f

Fig. 3 Example of a bind function for the IO monad

Monads are a higher order type. Thus a monad m is
something that acts as a container over some other type. A
monad function is simply a function that returns a monad
value. It can also take monad arguments. Developing hi-
erarchical structure of monads seems to be promising ap-
proach for exploiting monadic style for adapting monadic
systems.

5. EXPERIMENT WITH MONADS

The IO monad is one of the most frequently used mon-
ads. It is associated with input/output and acts as a con-
tainer that isolates external side effects in a Haskell pro-
gram. For example IO String is the type of value returned
by user input funcions or IO Int can by returned by various
random-number generators.

Our adaptive metalevel architecture (Fig. 4) requires in-
put and output operations, because it works with files, thus
the IO monad is appropriate solution for this purpose. This
architecture consists of two layers: a base level and a meta-
level. The base level consists of data files, lexical decompo-
sition module and data generation module. The metalevel
consists of various adapters and meta-transformers. This ar-
chitecture is based on basic principles of metaprogramming
and reflection.

Metalevel components access to the base level compo-
nents - this operation’s name is introspection, and then they
modify or manage base level components, in our case files
(if it is required) are influenced by adapters and the rest two
modules are influenced by meta-transformers. Listed influ-
ences are operations, which name is intercession. Metalevel
components may comunicate also with another metalevel
components. From metaobject protocol point of view we
can regard these components as metaobjects.

In our architecture, base level data is represented
through 3 files:

1. source file (srcF), which consists of digits in String
representation,

2. intermediate (data) file (inmF), which consists of list
of integers [Int],

3. target (value) file (valF), which consists of integer
value Int.

There are two types of transformers:

1. lexical decomposition transformer (lexT), which al-
lows transformation srcF→ inmF,

2. value generation transformer (genT), which allows
transformation inmF→ valF.

These two types of transformers can perform three types
of transformations:

1. transformation12 :: String→ [Int], it is direct trans-
formation,

2. transformation23 :: [Int]→ Int, it is direct transforma-
tion,

3. transformation13 :: String→ Int, it is strided transfor-
mation.

These transformations are controlled from metalevel
through corresponding meta-transformers. There are six
types of adapters on metalevel:

1. self adapter11 :: String→ String,

2. self adapter22 :: [Int]→ [Int],

3. self adapter33 :: Int→ Int,

4. backward adapter21 :: [Int]→ String,

5. backward adapter32 :: Int→ [Int],

6. backward adapter31 :: Int→ String.

If strided transformation is used, then it does not allow
utilization of backward adapter21 and self adapter22.

Adaptability is performed according to given conditions
which are in individual adapters. We can see these condi-
tions as some variants. For example, variants for adapter11
may depend on the lenght of a string (or on occurence of in-
dividual character in any position in the string), variants for
adapter21 or adapter22 may depend on number of digits in
the list (or on occurence of individual digit in any position
in the list) and variants for adapter33, adapter32 or adapter31
may depend on the final result calculated from the list of
integers.

ISSN 1335-8243 c© 2009 FEI TUKE



46 Reflective Monadic Adaptation

When an adapter finish changes, it calls metatrans-
former, which informs the transformer on the base level,
that it can load input file and make transformation. Trans-
formation process (with display possibility) for lexical de-
composition module is as follows: readFile ”srcF”�=

return.lexT�= return.show�= putStr, transformation
process for value generation module (also with display
possibility) is as follows:
readIntFile ”inmF”�= return.genT�= return.show�=
putStr.

source file

lexical

decomposition

self adapter

intermediate

file

value

generation

value file

backward

adapter

backward

adapter

self adapter self adapter

backward

adapter

b
a
s
e
 l
e
v
e
l

m
e
ta

le
v
e
l

m
-t
ra

n
s
fo

rm
e
r

1
2

13

2
3

m
-t
ra

n
s
fo

rm
e
r

m-transformer

11 22

32

33

31

21

Fig. 4 Adaptive metalevel architecture

6. CONCLUSION

Presented adaptive experiment is our another contribu-
tion in the field of adaptability with utilization of metapro-
gramming and reflection. It utilizes monad principle, which
constitutes an interface between functional and imperative
world of programming.

The next step of our work will be proposal and imple-
mentation (or modification) of an existing execution envi-
ronment, which will support language transformation (in
sense of interpreter transformation). One of the suitable
candidates for this purpose should be Smalltalk-like envi-
ronment Squeak [13], which offers several reflective possi-
bilities.

Practical utilization of our proposal can be evolution of
complex software system through incremental design of its
programming language with possibility of its modification
(special importance for our research has mainly run-time
modification). Another important issue is addition of new
domain oriented languages during evolution of a software
system. We have named process of language transforma-
tion as transformation of language through weaving (e. g.
grammar weaving) as an analogy to the program weaving
in aspect-oriented programming paradigm.

ACKNOWLEDGEMENT

This work was supported by VEGA Grant No.
1/4073/07 Aspect-oriented Evolution of Complex Software
Systems.

REFERENCES

[1] BENNETT, K. – RAJLICH, V.: Software Maintenance
and Evolution: A Roadmap, in A. Finkelstein, ed., The

Future of Software Engineering, In A Finkelstein (ed.)
The Future of Software Engineering, ACM Press, 2000,
pp. 73–90

[2] BOBROW, I. D. G. – GABRIEL, R. G. – WHITE, J.L.:
CLOS in Context - The Shape of the Design Space, In
Object Oriented Programming - The CLOS Perspec-
tive. MIT Press, 1993, pp. 29–61

[3] CZARNECKI, K. – EISENECKER, U.: Generative
Programming: Methods, Tools, and Applications, Ad-
dison Wesley (2005), 832 pp.

[4] FAVRE, J. M.: Languages evolve too - Changing the
Software Time Scale, Eighth International Workshop on
Principles of Software Evolution (IWPSE’05), 2005,
pp. 33-44

[5] Haskell home page, http://www.haskell.org, 30. 4. 2008

[6] KOLLÁR, J. – PORUBÄN, J. – VÁCLAVÍK, P. –
BANDÁKOVÁ – J., FORGÁČ, M.: Functional Ap-
proach to the Adaptation of Languages instead of Soft-
ware Systems, COMSiS - Computer Science and Infor-
mation Systems, 4, 2, 2007, pp. 115-129, ISSN 1820-
0214

[7] LEHMAN, M. M.: Laws of Software Evolution Revis-
ited, EWSPT96, Oct. 1996, LNCS 1149, Springer Ver-
lag, 1997, pp. 108-124.

[8] LEHMAN, M. M. – RAMIL, J. F. – KAHEN, G.:
Replacement Decisions for E-type Software - Some
Elements, ICSE 2000 2nd Workshop on Economics-
Driven Software Engineering Research, Limerick, Ire-
land, 6 Jun. 2000

[9] MALENFANT, J. – JACQUES, M. – DEMERS, F.: A
Tutorial on Behavioral Reflection and its Implementa-

ISSN 1335-8243 c© 2009 FEI TUKE



Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009 47

tion, Proceedings of Reflection 96, San Francisco, 1-20
(1996)

[10] MENS, T. – WERMELINGER, M. – DUCASSE, S.
– DEMEYER, S. – HIRSCHFELD, R. – JAZAYERI,
M.: Challenges in Software Evolution, In Proceedings
of the Eighth International Workshop on Principles of
Software Evolution (IWPSE’05), 2005, pp. 13-22

[11] ORIOL, M.: An Approach to the Dynamic Evolution of
Software Systems, PhD Thesis, University of Geneva,
Geneva, Switzerland, April 2004, 191 pp.

[12] RIVARD, F.: Smalltalk: a Reflective Language, Pro-
ceedings of Reflection ’96 Edited by G. Kiczales San
Francisco, April 1996, pp. 21-38

[13] Squeak homepage, http://www.squeak.org, 13. 5. 2009

[14] TANTER, E.: From Metaobject Protocols to Versatile Ker-
nels for Aspect-Oriented Programming, PhD thesis, Uni-
versity of Nantes, France, and University of Chile, Chile.
November 2004, 224 pp.

[15] TUROFF, A.: Introduction to Haskell, Part 3: Monads,
http://www.onlamp.com/pub/a/onlamp/2007/08/02/

introduction-to-haskell-pure-functions.html?

page=1, O’Reilly, published in 08. 02. 2007

[16] WADLER, P.: The essence of functional programming, In
19th Annual Symposium on Principles of Programming Lan-
guages, Santa Fe, New Mexico, January 1992, pp. 1-14

Received Jun 9, 2009, accepted September 2, 2009

BIOGRAPHIES

Ján Kollár was born in 1954. He received his MSc. summa
cum laude in 1978 and his PhD. in Computing Science in
1991. In 1978-1981, he was with the Institute of Electrical
Machines in Košice. In 1982-1991, he was with the Insti-
tute of Computer Science at the University of P.J. Šafárik in
Košice. Since 1992, he is with the Department of Comput-
ers and Informatics at the Technical University of Košice.
In 1985, he spent 3 months in the Joint Institute of Nuclear
Research in Dubna, Soviet Union. In 1990, he spent 2
month at the Department of Computer Science at Reading
University, Great Britain. He was involved in the research
projects dealing with the real-time systems, the design of
(micro) programming languages, image processing and
remote sensing, the dataflow systems, and the implemen-
tation of functional programming languages. Currently the
subject of his research are adaptive languages and software
systems.

Michal Forgáč was born in 1983. In 2006 he graduated at
Technical University of Košice. He is working on his PhD.
degree at the Department of Computers and Informatics,
Faculty of Electrical Engineering and Informatics, Tech-
nical University of Košice. His scientific research is fo-
cused on the aspect-oriented programming paradigm, soft-
ware evolution and adaptiveness of complex software sys-
tems.

ISSN 1335-8243 c© 2009 FEI TUKE

http://www.squeak.org
http://www.onlamp.com/pub/a/onlamp/2007/08/02/introduction-to-haskell-pure-functions.html?page=1
http://www.onlamp.com/pub/a/onlamp/2007/08/02/introduction-to-haskell-pure-functions.html?page=1
http://www.onlamp.com/pub/a/onlamp/2007/08/02/introduction-to-haskell-pure-functions.html?page=1

