
32 Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009, 32–42

CODE INSPECTION APPROACHES FOR PROGRAM VISUALIZATION

Daniela da CRUZ∗, Mario BÉRON∗∗, Pedro Rangel HENRIQUES∗, Maria João Varanda PEREIRA∗∗∗
∗Universidade do Minho - Departamento de Informática, Campus de Gualtar, 4715-057, Braga, Portugal,

E-mail: {danieladacruz,prh}@di.uminho.pt
∗∗Universidade Nacional de San Luis - Departamento de Informática, San Luis, Argentina, E-mail: mberon@unsl.edu.ar

∗∗∗Instituto Politécnico de Bragança, Campus de Sta. Apolónia, Apartado 134 - 5301-857, Bragança, Portugal,
E-mail: mjoao@ipb.pt

ABSTRACT
The aim of this paper is to show the approaches involved in the implementation of two tools of PCVIA project that can be used for

Program Comprehension. Both tools use known compiler techniques to inspect code in order to visualize and understand programs’
execution but one of them modifies the source code and the other not.

In the non-invasive approach, we convert the source program into an internal decorated (or attributed) abstract syntax tree and
then we visualize the structure traversing it, and applying visualization rules at each node according to a pre-defined rule-base. No
changes are made in the source code, and the execution is simulated.

In the invasive approach, we traverse the source program and instrument it with inspection functions. Those functions, also known
as inspectors, provide information about the function-call flow and data usage at runtime (during the actual program execution). This
information is collected and gathered in an information repository that is then displayed in a suitable form for navigation.

These two different approaches are used respectively by Alma (generic program animation system) and CEAR (C Rooting Algorithm
Visualization tool). For each tool several examples of visualization are shown in order to discuss the information that is included in the
visualizations, visualization types and the use of Program Animation for Program Comprehension.

Keywords: Code inspection, Code analysis, Visualization, Program Comprehension.

1. INTRODUCTION

PCVIA, Program Comprehension by Visual Inspection
and Animation, is a research project looking for techniques
and tools to help the software engineer in the analysis and
comprehension of (traditional or web-oriented) computer
applications in order to maintain, reuse, and re-engineer
software systems.

To build up a Program Comprehension environment we
need tools to cope with the overall system, identifying its
components (program and data files) and their relation-
ships; complementary to those, other kind of tools is also
necessary in order to explore individual components. These
tools—that are our concern along the paper—deal with pro-
grams instead of applications (set of programs), and their
purpose is to extract and display static or dynamic data
about a program to help the analyst to understand its struc-
ture and behavior.

Depending on the actual program facet we want to ex-
plore, different approaches to inspection and visualization
can be followed. We are experiencing that in the context of
PCVIA. On one hand, we want to develop a tool (Alma [1])
that does not modify the source program and uses abstract
interpretation techniques, aiming at an easy and systematic
adaptation to cope with different programming languages
(see section 2). On the other hand we are working on a tool
specific for the C programming language (CEAR [2]) that
modifies the source code to be able to collect dynamic in-
formation at runtime (see section 3). In this paper we are
going to discuss these two approaches and the generated
visualizations.

Project goals, team, technical descriptions, and achieve-
ments can be found at the URL http://www.di.uminho.
pt/~gepl/PCVIA.

1.1. Related work

During our study of the state of the art we found sev-
eral software handling tools: classic program comprehen-
sion tools; software visualization tools that can be also seen
as program understanding tools; development environments
that use visual or textual representation to help the pro-
grammer; tools that are used just in some specific tasks
of software maintenance; graph visualization tools that can
be used for some program visualization tasks; and teaching
tools.

Almost all of those tools were constructed for some spe-
cific language and are totally dependent of that language.
Most of them use parsers automatically generated, and
compiler techniques to process information. Those parsers
transform the source code in order to instrument it with in-
spection functions or special data types. They can also build
an internal representation of the program. This representa-
tion can be then systematically used to generate explana-
tions, statistics, structured information, visualization or an-
imation of programs.

Some examples of tools that create and use internal rep-
resentation as the core: Moose [3], CANTO [4] or Bauhaus
[5]. In Moose (a reengineering tool) the information is
transformed from the source code into a source code model.
Moose supports multiple languages via the FAMIX lan-
guages independent meta-model. In most cases a parser is
constructed to directly extract information to generate the
appropriate model. The CANTO environment has a front-
end (for C) which parses the source code and creates a in-
termediate file with structural, flow and pointer informa-
tion. Then a flow analysis tool is used to compute flow
analysis on the code. The front-end also creates an ab-
stract syntax tree that is used by an architectural recovery
tool which recognizes architectural patterns. Bauhaus sys-

ISSN 1335-8243 c© 2009 FEI TUKE

http://www.di.uminho.pt/~gepl/PCVIA
http://www.di.uminho.pt/~gepl/PCVIA

Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009 33

tem has tools that use compiler techniques which produce
rich syntactic and semantic information creating a low level
representation of programs. Alma follows this kind of ap-
proach. Alma uses a parser to construct an internal repre-
sentation of the program and then uses a set of pattern based
rules to inspect the code.

TKSee [6] or SeeSoft [7] are tools that collect statis-
tical information about the source program and then this
information is shown in a structured way without changing
the source code. TKSee search the whole system for files,
routines or identifiers whose name or lines match a certain
pattern and build hierarchies to organize the information.
SeeSoft also extracts statistical information from a variety
of sources (like version control systems, programmer and
purpose of the code and static and dynamic analysis) and
shows the information using different colored lines. Our
second approach goes in that direction.

Like CEAR, some tools do code instrumentation. ISVis
[8] does instrumentation of the source code to track interest-
ing events and analyzes the event traces in several scenar-
ios using graphical views. PAVI [8] uses tags to annotate
source code to specify target variables or pointers to be vi-
sualized as three-dimensional objects and to define scopes
and styles for visualization.

2. NON-INVASIVE APPROACH

In this section, we discuss the approach to program in-
spection and visualization followed in the context of Alma,
one of the PCVIA developed tools. Although not a clas-
sic tool for program comprehension, we believe that it can
truly contribute for it, at the program understanding level
(as argued in the Introduction).

Alma is a system for program visualization and anima-
tion. The purpose of such a family of tools is to help the
programmer to inspect data and control flow for a given
program (static view of the algorithm realized by the pro-
gram — visualization), and to understand its behavior (dy-
namic view of the algorithm — animation).

Alma, as a generic tool for program visualization and
animation, is based on the internal representation of the in-
put program in order to avoid any kind of annotation of the
source code (with visual types or statements), and to be able
to cope with different programming languages.

To fulfill such requirements, we had been inspired in
the classic structure of a compiler and we conceived an
architecture that separates the source program recognition
from its animation, using a decorated abstract syntax tree
(DAST) as internal representation (see Fig. 1).

Fig. 1 Architecture of Alma system

Alma is implemented in Java, using and reusing the
compiler generator system LISA [9], as specified and de-
scribed in [10–12].

Alma system has a front-end (front-end) specific for
each language and a generic back-end (back-end). It uses a
decorated abstract syntax tree (DAST) for the internal rep-
resentation of the program’s meaning; it is the connection
between the front-end and the back-end. Using a DAST
as an internal representation, we isolate all the source lan-
guage dependencies in the front-end, while keeping the
generic animation engine in the back-end. The DAST is
built using a set of pattern rules as will be described in the
next subsection.

Applying specific rewrite rules (which are used accord-
ing to the pattern-tree found in the DAST) to the execution
tree, we obtain a description of the different program states,

simulating its execution.
A Tree-Walker Visualizer, traversing the execution tree

and applying visual rules create a representation for the
nodes generating a visualization of the program tree in that
moment. Then the DAST is rewritten (to obtain the next
internal state), and redrawn, generating a new visualization
which reflects the new state of the program.

This approach, using a DAST as internal representation
and a set of pattern rules allows us to easily construct dif-
ferent abstraction levels of the same program from the op-
erational view till the behavioral view. For that, it suffices
to associate a new set of rewrite and visualize rules to the
DAST patterns. This system is based on the concepts in-
volved in a program and not directly in the source code.

In the remainder of the section, we discuss the informa-
tion we need to extract from the source program, how do

ISSN 1335-8243 c© 2009 FEI TUKE

34 Code Inspection Approaches for Program Visualization

we do it, the format under which this information is repre-
sented, and how is it visualized to help the user to under-
stand the program.

2.1. Patterns: the information to extract

In contrast to the most common animators, we are look-
ing forward to building a more generic system, in the sense
that it can animate any algorithm and that it can be easily
adapted to work with different programming languages. To
go on that direction, it is essential to find out a set of pro-
gram patterns that we know how to deal with (display and
rewrite). This is, we need to discover the information, com-
mon to a set of programming languages, that describes the
structure and semantics of the program, and that we know
how to store and to display (we intend to create a set of rules
to systematically visualize those patterns).

An analysis of the programming languages, belonging
to the universe we want to deal with, allow us to state that
all of them have in common entities, like: literal values
and variables (atomic or structured), assignments, loops
and conditional statements, write/read statements, func-
tions/procedures.

Identified the common entities, we must find a way to
describe them at an abstract level, in order to establish a
generic set of rules to handle them in a language indepen-
dent way. The solution is a set of elementary program-
ming patterns. These patterns capture the abstract syntax
of each entity (value or operation) to preserve and keep, via
attributes, the necessary information to express its static se-
mantics.

2.2. Program representation: Pattern Tree

After deciding the information we need to extract from
a source language, we should define a way to represent it.
The internal representation chosen to store those patterns
is a DAST that describes the structure of the program we
intend to represent and visualize, being separated from any
particularity of a source language. The DAST is specified
by an abstract grammar, independent of concrete source
language, and is intended to represent the program in each
moment.

Given a source program, one possible representation for
it is the concrete syntax tree, shown in Fig. 2.

Fig. 2 Syntax Tree representation of the program

However, Fig. 3 shows the pattern tree (DAST) chosen
in our approach. Each node in a concrete DAST will match
and instantiate a specific pattern. These tree nodes are im-
plemented with attributes, whose values are obtained during
the information extraction phase, and describe the charac-
teristics of the source program to preserve.

Fig. 3 Pattern Tree representation of the program

2.3. Pattern extraction and pattern visualization

To extract information from a concrete source program
its is necessary to parse it. This operation will be carried out
by a front-end built specifically for the concrete language
under consideration. The front-end will be in charged of
identifying the source language constructs and map them to
the DAST patterns. To develop such a front-end we will use
a compiler generator based on an attribute grammar.

As we have decided which information we need to ex-
tract, the way to do that extraction, and how to represent
it, the visualization schema comes out as a natural conse-
quence of the previous decisions.

As we have a pattern tree as the intermediate represen-
tation between the front-end and the back-end (the DAST),
that tree will be used straight forward to build a visual rep-
resentation for the source program. Each pattern will be
extended with one more attribute: vr, that contains the cor-
responding visualization rule. Thus, the visualization of a
program is obtained just making a top-down traversal over
the DAST, applying that rule to each node instance. The
first traversal produces an overall picture of the program
before execution; successive traversals depict the program
state after the execution of each statement. Fig. 4 and 5
show the visualization of a program. The animation of a
program will be attained by multiple top-down traversals to
the DAST, until program is totally rewritten.

As can be seen in Fig. 4 and 5, Alma’s interface is split
in four windows—3 main windows and 1 with the buttons
for navigation—with the following content:

• The identifier table (on the upper left corner);

• The source text of the program to be animated (on the
bottom left corner);

• The program tree (to the center, occupying most of
the display);

• The interaction buttons, on the bottom of the screen,
that allow the user to control the system. Using back
and forward controls the user will be able to navi-
gate through the program animation, step by step.

ISSN 1335-8243 c© 2009 FEI TUKE

Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009 35

Fig. 4 Global visualization of the source program

Fig. 5 Program state after one step of animation

Colors are used to make easier to follow the animation
of a program: Red color indicates the identifier / subtree
that will be evaluated in the next execution step (the exe-
cution of the program-statement also colored in red); Green
color indicates the new status of the program (subtree /iden-
tifier) after the last evaluation.

To conclude, Alma allowed us to prove the usability of
our non-invasive approach to construct program compre-
hension tools. Several front-end’s were constructed in order
to animate programs in different programming languages.

ISSN 1335-8243 c© 2009 FEI TUKE

36 Code Inspection Approaches for Program Visualization

3. INVASIVE APPROACH

In this section we discuss a strategy that aims at ex-
tracting information from programs using code instrumen-
tation [13, 14]. To implement this technique we insert in-
spection functions (or inspectors) in strategic places of a
program to capture its execution flow. The information ex-
tracted along this inspection will be used to show different
views to help understanding program behavior.

This approach was applied to CEAR, a C Rooting Algo-
rithm Visualization Tool, that will be described at the end of
this section. To apply our code instrumentation technique
we need to build a parser for the source language and select
the places where the new code will be inserted. Besides
capturing execution flow, we use the recovered static infor-
mation to build different program views, corresponding to
different abstraction levels.

Our approach consists of three tasks clearly defined:

• Code instrumentation;

• Trace summarization;

• Visualization.

In the next subsections we describe these three different
tasks.

3.1. Code Instrumentation

To define a strategy to annotate the source code we have
to know: which information we need to extract; and what
are the strategic points in the source code.

To answer these questions we conceptualize a system as
a state machine (SM). The input values represent the initial
state and the final state can be represented by the variable
values after execution. The intermediate states are repre-
sented by the variable values reached during the system ex-
ecution. The transition between states is carried out through
the system functions (build in or defined by the user). We
believe that is useful to show only the states used by the
system to build its output. In our case, we just keep track of
global variables and those defined in the main function.

We use as inspection units the program functions be-
cause they produce system state transitions and it is useful
to know the effects of their execution.

So, we think that the beginning and the end of the func-
tions are convenient check points, i.e., are the right places
to locate the inspectors.

To implement this strategy we need to build a parser for
the source language extended with semantic actions. These
actions insert into the program new statements that will al-
low to trace the state and the transitions. These statements
are inspectors that show the global variables and the name
of the functions called by the program. Table 1(a) shows a
C function pattern and Table 1(b) illustrates the annotated
version of the same function.

The problem with this approach is that the recovered
information is huge, once the functions can contain loops
and inside loops we can have other functions calls. Some
special functions are then used to control the number of in-
spected iterations and a stack is used to store historical in-
formation.

Unfortunately, the recovered information is yet huge.
For this reason we need to apply other strategy to reduce it.
One possibility is to inspect smaller parts at each time. In
other words, the programmer could want to see only some
aspects of the system. For this reason we create and im-
plement one strategy aimed at tracing summarization that
uses the dynamic information recovered by our annotation
schema.

3.2. Program Trace Summarization

Trace summarization [15] is a synthesis of the program
flow just containing the execution main points. In this ap-
proach, we remove the details doing the selection and gen-
eralization of the program main aspects. An approach for
carrying this task consists in the instrumentation the pro-
gram iteration.

In this context, we distinguish three main points (indi-
cated in Table 2 on the right side). In 1 and 3, we insert
a control function showFunction(value). In 2, we insert
another control function called dec(). The function show-
Function(value) enables the inspector functions to show the
called functions during the iteration. The parameter value
and the dec function will be described after explaining the
control scheme. Besides these functions we also need a
stack. It is so because the program can have nested itera-
tion sentences and the user may want to see the functions
invoked during the iterations a given number of times. To
better understand this situation, please consider the code
segment of Table 3.a and assume that the user wants to see,
once or several times, the functions invoked during the iter-
ation. The code transformation can be seen in Table 3.b.

int f(int x, int y) int f(int x, int y)
{float z, y; {float z,y;
/*more declarations*/ /*more declarations*/
.......... INPUT_FUNCTION("f")
/*actions*/
return value /*actions*/

} OUTPUT_INSPECTOR("f");
return value;

}
(a) (b)

Table 1 Insertion of Inspectors (inspection functions)

ISSN 1335-8243 c© 2009 FEI TUKE

Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009 37

for(init.; cond.; action)
actions;

{
1
for(init.; cond.; action)
{actions;
2;
}

3
}

Table 2 Iteration Control: Check Points

for(i=0;i<10;i++)
{for(j=0;j<10;j++) f(j);
g(j);
}

(a)

{showFunction(value);
for(i=0;i<10;i++)
{
{showFunction(value);
for(j=0;j<10;j++)
{f(j);
dec(value);
}

showFunction(value);
}
g(i);
dec(value);
}

showFunction(value);
}

(b)

Table 3 Iteration Control Scheme: Example

The parameter value is used to indicate the number of
times that the functions within the loop will be showed. The
function dec decrements the parameter value each time that
it is executed. When the parameter value is zero the inspec-
tion function does not show the function name.

This strategy uses an fe-Tree (Function Execution Tree)
to inspect only the important/interesting aspects. An fe-Tree
is a tree with arity r where: The root is the first function ex-
ecuted by the system (normally called main); for each node
(function) n, its children are the functions called directly by
n at execution time.

With the fe-Tree we can explain any function in the sys-
tem. Furthermore, we can know the different context where
the functions were invoked. For this reason, we can use the
fe-Tree to inspect only the aspects chosen by the user.

Fig. 6 shows an example that illustrates the procedure
we followed to describe just a partial aspect. On the left is
the hypothetical system fe-Tree and on the right is the list
that contains the functions selected by the user. In this fig-
ure, the reader can see the context and explanation for each
function.

Fig. 6 Strategy to explain system aspects

ISSN 1335-8243 c© 2009 FEI TUKE

38 Code Inspection Approaches for Program Visualization

3.3. Visualization of the Information

In this section we present the approach used to visual-
ize [16] the static and dynamic information recovered by
the application of our code annotation strategy. We think
that it is a good idea to present the information in different
abstraction levels. We distinguished the following abstrac-
tion levels:

1. Machine — describes the assembly code used to im-
plement the system functions;

2. Program — describes the source code;

3. Function and data used in runtime — symbolize the
recovered dynamic information;

4. Function — symbolizes the recovered static informa-
tion at function level;

5. Module — represents the recovered static informa-
tion at module level;

6. Behavioral — concerns the system output.

As can be seen in Fig. 7, we conceptualize the first five
levels as Program Domain Levels and the last level as Prob-
lem Domain Level. Each level acquires importance depend-
ing of the program inspection state. For this reason, and to
facilitate this task, we think that an important feature is to
allow the navigation between levels.

Levels 1 and 2 are represented naturally by the assem-
bly and source code. The third level can be represented by
a function list or using an fe-Tree. We think the fe-Tree rep-
resentation is better because it allows the user to know the

relation called-caller clearer. The level 4 and 5 are repre-
sented by two graphs: The Module Communication Graph
(MCG) and Function Call Graph (FCG). We intend to dis-
play these graphs as layered directed graphs. It is because
the relation between the different component (functions or
modules) is normally hierarchical. Therefore a graph with
these characteristics is adequate to represent it.

The visualization system uses an information reposi-
tory, that contains:

1. Runtime functions: Name, Module, Place;

2. System Module: Name, Directory, Functions and
data defined in the module, FCG for this module;

3. System functions: Parameters, Local variables, Mod-
ule where the function is defined;

4. The MCG;

5. The FCG.

It is possible to relate level 2 and 3 using code instrumenta-
tion. The other levels can be related to each other using the
information stored in the repository.

Our big challenge was to relate levels 5 and 6, because it
requires to interconnect the program domain with the prob-
lem domain.

To relate the operational (program domain) and behav-
ioral (problem domain) views, we use the program execu-
tion flow. Our strategy to capture the execution flow re-
turns us the functions used to build the output (program
trace summarization in Sec. 6). On the other hand, we know
the problem domain objects (produced by the program), be-
cause we can observe the system output.

Fig. 7 Program Comprehension Tool Architecture

ISSN 1335-8243 c© 2009 FEI TUKE

Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009 39

So, our behavioral-operational relation strategy (known
as BORS) has three steps clearly defined:

1. Detect the functions related with each Problem Do-
main Object;

2. Build a fe-Tree with the function used at runtime;

3. Explain the functions found in step 1 using the tree
built in step 2.

The first step is carry out recovering the Abstract Data Type
interface. The second step consist in using the runtime in-
formation. The third step is implemented applying a breath-
first traversal to visit each fe-Tree node. When the name of
a visited node match some name of the function selected to
be described we report the corresponding subtree.

3.4. The Program Comprehension tool CEAR

As a case study and aiming at testing the applicability
of our approach as well as the reduction of the recovered in-
formation, we applied our strategies to EAR (Evaluador de
Algoritmos de Ruteo), an environment to experiment and
assess routing algorithms. This tool has two main function-
alities: visualization of routing schema; and evaluation of
routing algorithms. The description of these tasks can be
red in [17]. EAR has more than 4000 lines of C code that
implement algorithms to build planar graph and routing al-
gorithms and metric evaluations.

To carried out our task, the PC tool CEAR was imple-
mented by extending EAR functionalities with: (1) Object

and source code and runtime function inspection; (2) MCG
and FCG visualization. The first extension (1) implements
levels 1, 2, 3 of the visualization architecture, and the sec-
ond extension (2) implements levels 4 and 5.

The implementation and the usage of CEAR allowed us
to determinate the usefulness of the abstraction levels. In
this context, we learned that:

1. The MCG is a useful view because allows us to have
a clear insight over the system without information
overload. FCG presents an important view when the
program is small but when it is too big this repre-
sentation give us few information. For this reason it
is better to build the FCGs for each module instead
to build it for the complete system. We can say this
when observing the MCG and FCG graph. The first
is more condensed and present a clearer view. The
second is big and it is very difficult to understand.

2. It is a good idea to integrate the level 6 and 1, 2, 3 in
a single window (see Fig. 8) because it facilitates the
inspection and debugging.

3. The integrated view allows us to relate problem and
program domains, which is indeed a relevant aid to
program understanding. As can be seen in Fig. 9, it
is possible to display, on the output window, the list
of functions responsible for each step of the routing
algorithm.

Fig. 8 System views

ISSN 1335-8243 c© 2009 FEI TUKE

40 Code Inspection Approaches for Program Visualization

Fig. 9 Behavioral-Operational relation strategy in CEAR

4. CONCLUSION

To help the software engineer to understand the behav-
ior of a given program (in the context of program com-
prehension environments), it is necessary to extract and
collect static data—concerned with variables/types dec-
laration and statements structure—and dynamic data—
concerned with the actual data and control flows.

It was our intention, along the paper, to report on
some of the lessons learned during the live research project
PCVIA. More specifically in the paper we focussed on the
invasive/non-invasive approaches to program analysis and
visualization in order to show that for a similar purpose
(program understanding) different techniques should be im-
plemented, according to the characteristics of the informa-
tion we want to exhibit and the interaction we want to pro-
vide.

In the first case, the objectives are to show the program
structure (the hierarchy of the statements),and t o illustrate
the execution flow and how it affects the program state. For
that, Alma system shows an animation of an abstraction
of the program. It does not work directly on the code and
it generates visual representations that allow to understand
what the program does. In this case, the user does not care
about the syntax of the programming language neither with
lexical or syntactic errors that the program may have. This
approach is totally language independent. The user inter-
action with the system is not crucial because the system
provides an animation of all the program. We just have to
parse the source program in order to collect the information
that defines its state (values and variables) and to find out

its structure. A symbol table and an abstract syntax tree is
enough to store this information. The visualization process
is then performed by a systematic tree traversal, applying
straightforward rules to each tree node, and to each symbol
table row. We do not need any more the source program
and we are able to give visual details helpful for the user
to get easily an operational view of it. This approach does
not modify the source program, and is relies upon a visual-
ization/animation engine (the Back-End of the tool) that is
independent of the source language; thus, tuning the tool to
analyze program in different languages is not a hard task.

In the second case, a code instrumentation technique
was used to trace program beha An actual flow graph can
be built and displayed at different abstraction levels. A spe-
cific function can be selected from the sequence of func-
tions called and some querying operations can be offered;
for instance, one can see the source code of that function,
or its object code. Moreover, we believe that we are able to
relate that runtime operational view (at the program domain
level) with the behavioral view, or output computed by the
program (at the problem domain level). This approach, that
obviously changes the source program, extracts much more
information and enables us to provide another kind of de-
bugging navigation and a richer interaction; however, it is
language dependent, and the inspectors’ weaver needs to be
recoded for a different source language.

At present we are applying the analysis and visualiza-
tion techniques, so far explored to another domains, namely
to XML documents, modeling and domain specific lan-
guages. Mainly the non-invasive approach is being con-
sidered.

ISSN 1335-8243 c© 2009 FEI TUKE

Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009 41

Concerning the first case, we have proposed in [18]
a system called eXVisXMLto analyze and visualize XML
documents and the underlying DTD or XML-Schema in
order to evaluate a set of metrics and allow a qualita-
tive/quantitative study of both. An initial prototype was de-
veloped, and a more elaborated one is under development.

We also extended that approach to study UML models
(more extended with OCL constraints and sets of tests. A
prototype is being developed and a paper was submitted to
an international conference.

A master thesis, under development, has as main objec-
tive to study the use of our non-invasive approach to visu-
alize the problem domain and map both domain context of
DSLs (Domain Specific Languages).

At last, a Ph.D. work is starting to study the adaptation
of the referred techniques (usually developed to work on
sou

REFERENCES

[1] da Cruz, D., Henriques, P.R., Pereira, M.J.V.: Con-
structing program animations using a pattern-based ap-
proach. ComSIS – Computer Science an Information
Systems Journal, Special Issue on Advances in Pro-
gramming Languages 4(2) (Dec 2007) 97–114 ISSN:
1820-0214.

[2] Berón, M., Henriques, P.R., Pereira, M.J.V., Uzal, R.:
Program inspection to interconnect behavioral and op-
erational view for program comprehension. In: York
Doctoral Symposium, 2007, University of York, UK
(Oct 2007)

[3] Ducasse, S., Girba, T., Lanza, M.: Moose: an agile
reengineering environment. In: ESEC-FSE’05, Lisbon
- Portugal (September 2005)

[4] Antoniol, G., Fiutem, R., Lutteri, G., Tonella, P.,
Zanfei, S., Merlo, E.: Program understanding and
maintenance with the canto environment. In: IEEE
International Conference on Software Maintenance
(ICSM’97), Bari, Italy (October 1997)

[5] Raza, A., Vogel, G., Plodereder, E.: Bauhaus - a
tool suite for program analysis and reverse engineering.
Lecture Notes in Computer Science 4006/2006 (May
2006) 71–82

[6] Herrera, F.: A usability study of the tksee software
exploration tool. Master’s thesis, University of Ottava
(1999)

[7] Eick, S., Steffen, J., Jr., E.S.: Seesoft - a tool for visu-
alizing line oriented software statistics. IEEE Trans-
actions on Software Engineering 18(11) (November
1992) 957–968

[8] Jerding, D., Rugeber, S.: Using visualization for archi-
tectural localization and extraction. In: Fourth Working
Conference on Reverse Engineering (WCRE’97), Am-
sterdam, The Netherlands (October 1997)

[9] Mernik, M., Lenic, M., Avdicausevic, E., Zumer, V.:
Compiler/interpreter generator system LISA. In: IEEE
Proceedings of 33rd Hawaii International Conference
on System Sciences. (2000)

[10] Varanda, M.J., Henriques, P.: Visualization / animation
of programs based on abstract representations and for-
mal mappings. In IEEE, ed.: HCC’01 - 2001 IEEE
Symposia on Human-Centric Computing Languages
and Environments. (September 2001)

[11] Varanda, M.J., Henriques, P.: Visualization / animation
of programs in alma: obtaining different results. In:
VMSE2003 - Symposium on Visual and Multimedia
Software Engineering (HCC’03), New Zealand. (Octo-
ber 2003)

[12] da Cruz, D., Henriques, P.R., Pereira, M.J.V.: Alma
versus ddd. ComSIS – Computer Science an Informa-
tion Systems Journal, Special Issue on Compilers, Re-
lated Technologies and Applications 5(2) (Dec 2008)
119–136

[13] Zaidman, A., Adams, B., Schutter., K.: Applying dy-
namic analysis in a legacy context: An industrial expe-
rience. In: PCODA: Program Comprehension through
Dynamic Analysis. (2005) 6–10

[14] Béron, M., Henriques, P.R., Pereira, M.J.V., Uzal, R.,
Montejano, G.: A language processing tool for pro-
gram comprehension. In: CACIC’06 - XII Argentine
Congress on Computer Science, Universidad Nacional
de San Luis, Argentina. (2006)

[15] Hamou-Lhadj, A.: The concept of trace summariza-
tion. In: PCODA: Program Comprehension through
Dynamic Analysis. (2005) 38–42

[16] Balmas, F., Werts, H., Chaabane, R.: Ddgraph: a tool to
visualize dynamic dependences. In: PCODA: Program
Comprehension through Dynamic Analysis. (2005) 22–
27

[17] Béron, M., Henriques, P.R., Pereira, M.J.V.: A sys-
tem for evaluate and understand routing algorithms.
In: Interacção’06-Conferência Nacional em Interacção
Pessoa-Máquina, Universidade do Minho. (2006)

[18] D. da Cruz, P. R. Henriques, Pereira, M.J.V.: Explor-
ing and visualizing the ”alma” of XML documents. In
XATA - XML: Aplicações e Tecnologias Associadas,
Portalegre - Portugal, Fev 2008.

Received April 24, 2009, accepted July 21, 2009

BIOGRAPHIES

Daniela da Cruz received a degree in “Mathematics and
Computer Science”, at University of Minho), and now she
is starting a Ph.D. degree in ”Computer Science” also at
University of Minho, under the MAPi doctoral program.
She joined the research and teaching team of “gEPL, the
Language Processing group” in 2005. She is teaching as-
sistant in different courses in the area of Compilers and
Formal Development of Language Processors; and Pro-
gramming Languages and Paradigms (Procedural, Logic,
and OO). As a researcher of gEPL, Daniela is working with
the development of compilers based on attribute grammars

ISSN 1335-8243 c© 2009 FEI TUKE

42 Code Inspection Approaches for Program Visualization

and automatic generation tools. She developed a com-
pleted compiler and a virtual machine for the LISS lan-
guage (an imperative and powerful programming language
conceived at UM). She was also involved in the PCVIA
(Program Comprehension by Visual Inspection and Ani-
mation), a FCT funded national research project; in that
context, Daniela worked in the implementation of “Alma”,
a program visualizer and animator tool for program under-
standing. She is now enrolled in a new bilateral cooperation
project with Slovenia under the subject “Program Compre-
hension for Domain Specific Languages”.

Mário Marcelo Béron has four Computer Science degree,
obtained at the National University of San Luis (UNSL),
Argentina: ”Programador Superior” in 1995; ”Computer
Science Lecturer” in 1996; ”Bachelor in Computer Sci-
ence” in 2002; and ”Master in Software Engineering” in
2005. Currently, he is preparing his Ph.D thesis on Pro-
gram Comprehension, under a Alfa LERNet EC-contract,
at University of Minho, UM (Braga, Portugal), and Na-
tional University of San Luis (Argentina). He works as as-
sistant professor at the Informatics Department of National
University of San Luis and he is a research member of
the following projects: PCVIA, Program Comprehension
by Visual Inspection and Animation (UM); and Ingenierı́a
de Software: Conceptos, Métodos y Herramientas en un
Contexto de Software en Evolución (UNSL). His research
interests include Compilers, Program Comprehension, Pro-
gramming Languages, Domain Specific Languages, Do-
main Engineering, Systems Specification using Rigorous
and Formal Methods.

Pedro Rangel Henriques got a degree in “Electrotech-
nical/Electronics Engineering”, at FEUP (Oporto Univer-
sity), and finished a Ph.D. thesis in “Formal Languages
and Attribute Grammars” at University of Minho. In 1981
he joined the Computer Science Department of Univer-
sity of Minho, where he is a teacher/researcher. Since
1995 he is the coordinator of the “Language Processing
group”. He teaches many different courses under the

broader area of programming: Programming Languages
and Paradigms (Procedural, Logic, Functional and OO);
Compilers and Formal Development of Language Proces-
sors; etc. He is co-author of the “XML & XSL: da teoria
á prática” book, publish by FCA in 2002. Pedro Rangel
Henriques has supervised M.Sc. (16) and Ph.D. (14) the-
sis, and more than 100 graduating trainingships/projects,
in the areas of: language processing (textual and visual),
and structured document processing; program animation
and program comprehension; knowledge discovery from
databases, data-mining, and data-cleaning. He also was
responsible for several applicational projects (in the inter-
face university/external-community, industry), mainly in
the area of information systems (databases and web ori-
ented). From 2002 until 2004 he was the Head of the
Department, and at moment he is the President of APPIA,
the Portuguese Association for Artificial Intelligence.

Maria João Varanda Pereira received the M.Sc. and
Ph.D. degrees in computer science from the University of
Minho in 1996 and 2003 respectively. She is a member of
the Language Processing group in the Computer Science
and Technology Center , at the University of Minho. She is
currently an adjunct professor at the Technology and Man-
agement School of the Polytechnic Institute of Bragança,
on the Informatics and Communications Department and
vice-president of the same school. She usually teaches
courses under the broader area of programming: program-
ming languages, algorithms and language processing. But
also some courses about project management.
As a researcher of gEPL, she is working with the develop-
ment of compilers based on attribute grammars, automatic
generation tools, visual languages and program understand-
ing. She was also responsible for PCVIA project (Program
Comprehension by Visual Inspection and Animation), a
FCT funded national research project; She was involved
in several bilateral cooperation projects with University of
Maribor (Slovenia) and, at the moment, a new one is under
development about the subject Program Comprehension
for Domain Specific Languages’.

ISSN 1335-8243 c© 2009 FEI TUKE

