
8 Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009, 8–15

ISSN 1335-8243 © 2009 FEI TUKE

THE DESIGN OF ON-LINE CHECKERS AND THEIR USE IN VERIFICATION
AND TESTING

Zdeněk KOTÁSEK*, Martin STRAKA**
*Department of Computer Systems, Faculty of Information Technology

Brno University of Technology, 612 66, Brno, Czech Republic, e-mail: kotasek@fit.vutbr.cz
**Department of Computer Systems, Faculty of Information Technology

Brno University of Technology, 612 66, Brno, Czech Republic, e-mail: strakam@fit.vutbr.cz

ABSTRACT
In the article, a survey of our research activities the goal of which is to develop a methodology allowing to design on-line

checkers for digital components and communication protocols are described. First, our experiments with PSL language and FoCs
tool are demonstrated for simple RT circuits and communication protocols. It is shown how PSL can be used to describe conditions
to be checked by an on-line checker of a digital component. It is demonstrated that on-line checkers generated from PSL description
demand more sources than the unit under check which is seen as unacceptable result. The principle of our methodology for
generating VHDL descriptions of hardware checkers from the formal model is presented, too. The results and compare of both
methodologies are described. The possibilities of utilizing these approaches in the design of Fault Tolerant Systems are described in
conclusion.

Keywords: on-line checker, on-line testing, verification, communication protocol, PSL, FoCs, ModelSim, FPGA

1. INTRODUCTION

On-line checkers in digital system design can be used
for several purposes: 1) design verification, 2) on-line
testing, 3) fault-tolerant systems design (FTS). Various
papers deal with the use of on-line checkers either for
verification or on-line testing purposes.

For the purposes of design verification, methods exist
which enable to synthesize checker monitors from
declarative specifications written in Property Specification
Language (PSL) standard [1]. Assertion-Based
Verification (ABV) is emerging as a powerful
methodology for design verification. In recent years more
and more system designers discovered the importance of
ABV in coverage driven, functional simulations to keep
pace with ever-increasing complexity of modern systems
on chip (SoC) [2]. Using assertions plays a central role in
the design-for-verification (DFV) methodology which is
widely used in the industry [3]. Using temporal logic, a
precise description of the expected behavior of a design is
modeled, and any deviation from this expected behavior is
captured by simulation or by formal methods. Hardware
verification assertions are written in verification languages
such as PSL or SystemVerilog Assertions (SVA) [4].
When used in dynamic verification, a simulator monitors
the Device Under Verification (DUV) and reports when
assertions are violated. Information on where and when
assertions fail is an important aid in the debugging
process, and is the fundamental reasoning behind the ABV
[5].

Modern semiconductor technology applications are
characterized by an increased demand for high availability
and reliability. Self-Checking Circuits (SCC) and on-line
checking are a widely used solution due to their ability to
detect errors on-line during the normal operation. An SCC
consists of a functional circuit (the Circuit Under
Monitoring) whose outputs are monitored by a checker.
The checker produces an error indication signal whenever
the Circuit Under Monitoring produces a incorrect state in
the output. In addition, in case of checker’s internal faults,

it must also provide an error indication and localization.
The above requirements are covered by the Totally Self-
Checking (TSC) and the Strongly Code-Disjoint (SCD)
properties [6].

 The problem of on-line testing is widely discussed in
numerous papers, e. g. [7], [8]. In [9], it is presented how
path (min) delay faults when designing on-line testable
circuits should be taken into account. The challenges that
it poses to the existing on-line testing strategies are
discussed. Examples showing the possible incorrect
behavior of a self-checking circuit as a result of this kind
of faults are given. In [10], the idea of combining self-test
technology for production test and for on-line self test is
presented.

In [11] the method of highly reliable digital circuit
design method based on totally self checking monitors
implemented in reconfigurable architecture is described.
The bases of the self checking monitors are parity
predictors. The parity predictor design method based on
multiple parity groups is proposed. Proper parity groups
are chosen in order to obtain minimal area overhead and
to decrease the number of undetectable faults.

Field Programmable Gate Arrays (FPGA) are
increasingly demanded by aircraft and spacecraft
electronic designers because of their high flexibility in
achieving multiple requirements such as high
performance, low cost and fast turnaround time. In
particular, SRAM-based FPGAs are very valuable for
remote missions and long-time mission because of the
possibility of being reprogrammed by user as many times
as necessary in a very short period. These properties of
FPGA circuits and a concurrent online testing becomes a
strong feature in the design of Fault-Tolerant Systems and
reliability design [12].

2. DEFINITION OF THE PROBLEM

In our research we tried to evaluate the possibilities of
constructing hardware on-line checkers of components
which can possibly occur in digital systems covering

Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009 9

ISSN 1335-8243 © 2009 FEI TUKE

various functions. On-line checkers can check simple
circuits like counters, coders, comparators, their
combinations, and specification of communication
protocols. The architectures based on checkers can be
used in on-line testing methodologies on the RT (Register
Transfer) level, verification of design or in FT design. In
our research activities we concentrated primarily on
assessing the features of PSL language and FoCs tool and
their possible use for digital components on-line checkers
design of various complexity.

As already mentioned, different tools exist for the
description of conditions required to be fulfilled by the
design, e.g. PSL and SVA languages. It is a widely
referenced fact that the software packages which exist to
support them are intended to be used primarily for the
design verification purposes. In our research, we had also
a goal to gain all possible information about the following
professional tools:

PSL (Property Specification Language), which was
adopted by Accellera as IEEE 1850, is an attempt to
provide a worldwide standard to endorse assertion based
verification.

FoCs is a productivity tool for automatic generation of
simulation monitors from formal specification in PSL.

ModelSim is UNIX, Linux, and Windows-based
simulation and debug environment, combining high
performance with the most powerful and intuitive GUI in
the industry. ModelSim provides a comprehensive
simulation and debug environment for complex ASIC and
FPGA designs. Support is provided for multiple languages
including Verilog, SystemVerilog, VHDL and SystemC.
 Xilinx ISE (Integrated Software Environment) is a
powerful yet flexible integrated design environment that
allows to design Xilinx FPGA and CPLD devices. ISE
includes our world class design entry, synthesis and
implementation tools delivering the industry's fastest place
and route times, highest performance, and most advanced
design methodologies.

3. PROPERTY SPECIFICATION LANGUAGE
AND FOCS TOOL

PSL (Property Specification Language), which was
adopted by Accellera as IEEE 1850, is an attempt to
provide a worldwide standard to endorse assertion based
verification [13]. With PSL, system designers are able to
describe the properties of a system in a tight syntax and
clear defined semantics. This enables the implementation
of the whole specification in a form that can be verified.

Furthermore PSL offers the opportunity to improve the
quality of the verification process through functional
coverage models which are based on formally specified
properties. One of the main requirements of an assertion
language is the ability of concise description of design
behavior over multiple clocks. PSL supports Sequential
Extended Regular Expressions (SEREs) to meet this
requirement. SEREs describe single or multi cycle
behavior built from a series of Boolean expressions. It
provides an easy and familiar way to capture sequential
behavior. The syntax is derived from standard UNIX
regular expressions. The first and foremost requirement of
any temporal sequence is a neat way to describe the
advance in time. PSL uses SERE concatenation to achieve

this. For a complete review of PSL, which is beyond the
scope of this paper, we refer the reader to the language
reference manual [13]. The principle of verification
process is shown in Figure 1. Tool for generating
hardware checkers from PSL assertions is IBM’s FoCs
[14].

Fig. 1 Demonstration of methodology principles for PSL

FoCs (short for Formal Checkers), Property Checkers
Generator is a productivity tool for automatic generation
of simulation monitors from formal specifications. FoCs
Property Checkers Generator takes properties written in
the PSL/Sugar specification language and automatically
translates them into checkers, or monitors, which in turn
are integrated into the chip simulation environment. These
checkers monitor the simulation results on a cycle-by-
cycle basis for violation of the properties. Each checker
implements a state machine that enters and asserts an error
state if the respective property fails to hold in a simulation
run. FoCs Property Checkers Generator can also be used
for coverage analysis, that is, to create checkers that track
the occurrences of events of interest during simulation.
FoCs Property Checkers Generator can produce code in
Verilog, C++, and VHDL, and it supports the conventions
of popular simulators such as Model Technology's
ModelSim. Demonstration of methodology principles with
FoCs tool is shown in Figure 2.

Fig. 2 Demonstration of methodology principles with FoCs tool.

4. ON-LINE CHECKERS DESIGN BASED

ON FORMAL MODEL

The faults which possibly occur in digital devices can
be described in many different ways. Usually, to describe
errors in communication protocols and digital circuits,
formal models such as grammars, Finite States Machine
(FSM), or formal languages are used. As a result of our
research a language was developed which allows to
describe possible failures or correct states in
communication protocols or simple digital circuits. The
description is then used as an input to automatic generator
which develops checker description in VHDL language.
The main advantage of this approach is such that based on
the description the checker can be generated automatically
without the intervention of experienced designer. The
language description is composed of two phases.

10 The Design of On-line Checkers and Their Use in Verification and Testing

ISSN 1335-8243 © 2009 FEI TUKE

When a protocol or circuit is checked, then not only
the combinations of control signals must be monitored but
also their sequences and data correctness. The checker
behavior must therefore have features of sequential
behavior which can be described by means of FSM. The
definition of language for digital circuit errors detection
therefore arises from the formal description of FSM –
(Definition 1):

Definition 1. A deterministic Finite State Machine is

an initialized complete deterministic machine that can be
formally defined as a 5-tuple A = (Q, T, P, S0, Serr),
where Q is a finite set of states, S0 is the initial state and
S0 ∈ Q, T is a finite set of input symbols, P is a next state
(or transition) function: P: Q x T → Q and Serr is the
finite state Serr∈ Q. Furthermore Q ∩ T = 0.

The first part of the language defines the conditions

and input symbols of automata. The Definition 2 defines
the conditions over the input control signals (the syntax of
formal description):

Definition 2. A condition is formally defined as a X =
Sig x Oper x Int, where Sig is the name of control signal,
Oper ∈ (<; >; <=; =; ==; <>) is the comparison
operator between controlled signal and Int ∈ N is a
numeric constant.

The Definition 3 defines the input alphabet symbols

that uniquely specify the transitions between automata
states. Each input symbol is defined as the set of
conditions over the input and output signals. The syntax of
formal description is here:

Definition 3. An input automata symbols are defined

as conjunction or disjunction of conditions, formally
defined as a C: Xi (and Xi+1)* (or Xi+1)*, where C∈ T and
i=1,2,..M, where M = ∑(control signals in checking
protocol or circuit).

The second part of the language defines the transition

function of automata (Definition 4). For each state and
input symbol, the transition to the next state is defined.
The syntax of definition language and formal description
are here:

Definition 4. A transition function which is

represented by a set of transitions in the form and is
formally defined as a P : Q x T → Q.

As the first step of the input file analysis, the symbols
of the files are analyzed together with conditions assigned
to them. The set containing all input symbols is created
and the syntax analysis of conditional statements is
performed. For each conditional statement a syntax tree is
formed which is then used during mapping the conditions
onto the description in VHDL language. As the result of
the analysis, an FSM is constructed, A = (Q,T,P,S0,Serr).
The steps of generation process are shown in Figure 3.

The second phase starts with creating the interface of
the checker. The names of signals are extracted from
transition conditions. The conditions are then mapped
onto VHDL processes. The interface signals are the input

to the process, the output of the process is the only signal,
whose name reflects one of input symbols. The contents
of the process is generated from the syntax tree developed
in the first phase of the analysis. The mapping of FSM
into VHDL is performed by means of two processes. One
of them operates as a register in which current state is
stored and the second process describes the combinational
logic reflecting transition conditions.

Fig. 3 Phasis of core generator processing.

5. CHECKER FOR SIMPLE CIRCUIT BASED ON
PSL AND FORMAL MODEL

We did a research in the area of possible PSL use
either for verification or diagnostic purposes. We decided
to verify this idea on RTL components, like coders,
decoders, multiplexers, register, etc. We tried to
investigate how big the checker generated from PSL
description is. During the research we were realizing that
the area needed for checker is required to be comparable
to that one of the functional element.

To verify the idea, a counter was chosen. For the 4 bit
counter, the functions of the checker were described in
PSL. The counter has the following inputs:
synchronization clock, asynchronous signal “RST” and
synchronized signal “STR” After the “RST” signal is
activated, the outputs of the counter are reset to zero
values. The counter starts counting after “STR” signal is
activated, the values which appear on its outputs are 0 –
15. The counter and its inputs/outputs are demonstrated in
Figure 4 and counter with checker is demonstrated in
Figure 5.

Fig. 4 Counter and its interface.

Fig. 5 Counter and its checker.

Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009 11

ISSN 1335-8243 © 2009 FEI TUKE

The counter checker was designed to check the
following functions:

• the sequences of counter states (outputs) 0 – 15
(the impact of clock signal),

• the state of the counter after “RST” signal is
generated,

• counter activation after “STR” signal is activated,
• the effect of “STR” signal after which the counting

is released,
• the concurrent occurrence of “STR” and “RST”

signals which is not allowed.

The functions of checker were described in PSL
language. The description satisfies the requirements
defined for entities supposed to be processed by FoCs.
The description has the following form:

library modelsim_lib;
vunit count15(count15(beh_count)){
default clock is (rising_edge(CLK));
cover{[+]; OUT="0000"; OUT="0001"; OUT="0010";
OUT="0011"; OUT="0100"; OUT="0101"; OUT="0110";
OUT="0111"; OUT="1000"; OUT="1001"; OUT="1010";
OUT="1011"; OUT="1100"; OUT="1101"; OUT="1110";
OUT="1111"};
assert always {RST} |=> {OUT="0000"};
assert always {STR}|=>{OUT="0001"};
assume always (not(RST and STR));}

This PSL description can be then transformed into

HDL description which can be further utilized for
emulation purposes (e.g. in ModelSim) or to generate
resource efficient circuits suitable for hardware emulation.

Then, the PSL description was converted into VHDL
code of checker (FoCs was used for this purpose), the
VHDL code was synthesized with Xilinx ISE application.
The area needed to cover checker functions is represented
by 92 slices. It can be stated that checker area is too big
compared with the sources needed to cover counter
functions (3 slices). Similar results were gained for other
components (decoders, multiplexers, their combinations,
etc). We judged that it is so because codes generated by
FoCs are supposed to be used primarily for verification
purposes not for the implementation into physical design.
It covers significantly more functions than needed for on-
line checker for diagnostic purposes.

The same functions of checker were described in our

formal model too. The description for 3-bits counter has
the following form:

C0: OUT==000 and RST==0 and STR==0;
C1: OUT==001 and RST==0 and STR==0;
C2: OUT==010 and RST==0 and STR==0;
C3: OUT==011 and RST==0 and STR==0;
C4: OUT==100 and RST==0 and STR==0;
C5: OUT==101 and RST==0 and STR==0;
C6: OUT==110 and RST==0 and STR==0;
C7: OUT==111 and RST==0 and STR==0;
C8: RST==0 and STR==1;
C9: RST==1 and STR==0 and OUT==000;

(S0,C0):S1; (S1,C1):S2; (S1,C9):S0; (S2,C2):S3; (S2,C9):S0;
(S3,C3):S4; (S3,C9):S0; (S4,C4):S5; (S4,C9):S0; (S5,C5):S6;
(S5,C9):S0; (S6,C6):S7; (S6,C9):S0; (S7,C7):S0; (S7,C9):S0;
A=(Q,T,P,S0,Serr)

Fig. 6 Demonstration of methodology principles for counter.

The principles of methodology based on formal model
which allows to develop FSM checkers for counter is
shown in Figure 6. First of all, the function of circuit by
means of our formal definitions is described, then it is
translated into VHDL checker by our core generator. The
circuit and his checker are then synthesized into FPGA by
XILINX ISE tool.

6. CHECKER FOR COMMUNICATION
PROTOCOL BASED ON PSL AND FORMAL
MODEL

Very often it is reported that FPGA based designs are
constructed as fault tolerant designs with the possibility of
recovering from errors by means of reconfiguration
procedures. In our opinion, testing proper function of
communication protocol can increase significantly the
diagnostic quality of the design. The idea of technique
which allows to develop checkers for communication
protocol is shown in Figure 7.

Fig. 7 The idea of checking procedure.

The checker is supposed to operate on different levels
of detecting communication protocol faults:

1. The check of protocol control signals and their correct
combinations.

2. The check of correct sequences of control signals and
evaluation of transitions between communication protocol
states.

3. The check of contents of data.

12 The Design of On-line Checkers and Their Use in Verification and Testing

ISSN 1335-8243 © 2009 FEI TUKE

The complexity of the checker will be different based
on the type of communication protocol fault supposed to
be detected by the checker. As an important aspect of the
methodology we saw that the alternative of automated
design of the checker should be available to a designer.

The proposed approach for generating checker
structure was tested on LocalLink (LL) communication
protocol developed by Xilinx company which is used
especially for FPGA components interconnection. The LL
protocol has been integrated to many IP Cores. The LL is
based on synchronous point-to-point communication
protocol which transfers data in the form of packets. To
the LL advantages generic data width of transferred data
belongs which is a very important aspect for stream
processing applications. The example of LL
communication protocol is shown in Figure 8.

Fig. 8 LocalLink Protocol Timing Diagram.

Additionally, LL offers upstream and downstream
flow control, efficient link bandwidth utilization and
optional parity checking. The LL interface contains six
control signals, data bus and signals identifying the
number of valid bytes available in the last data word. Two
control signals (SRC_RDY_N and DST_RDY_N)
participate in the flow control, allowing both
communication sides (source and destination component)
can stop the communication. Other four control signals are
used for identifying the structure of transferred packet.
SOF_N specifies the start of frame, SOP_N identifies the
end of the header and the beginning of packet payload,
EOP_N determines the end of the payload and the start of
the footer. Finally, EOF_N specifies the end of the frame.
All control signals are active in L level. Detailed
specification of Local Link protocol is available in [15].

Firstly, we defined correct control signals
combinations from LL protocol specification. The next
part covers data monitoring transported by means of the
protocol, checking the condition rules describing the
contents of data. An example: the first transported byte
must contain 0xAB (Start-of-Frame Delimiter), the ninth
byte must have the value which is lower than 124 (the
width of the word is 4 bytes). The last type of rules
considers the sequences of control signals.

The functions of LL checker were described in PSL
language and by formal model. The description satisfies
the requirements defined for entities supposed to be

processed by FoCs. The example of description for LL in
PSL has the following form:

vunit locallink_timing{
default clock is (rising_edge(CLK));
assume always{ [*] ; SRC_RDY_N & DST_RDY_N & SOF_N &
SOP_N & EOP_N & EOF_N };
assert always{ [*] ; !SRC_RDY_N & !DST_RDY_N & !SOF_N &
SOP_N & EOP_N & EOF_N } |=> { [*] ; !SRC_RDY_N &
!DST_RDY_N & SOF_N & !SOP_N & EOP_N & EOF_N };
assert always { [*] ; !SRC_RDY_N & !DST_RDY_N & SOF_N &
!SOP_N & EOP_N & EOF_N } |=> { [*] ; !SRC_RDY_N &
!DST_RDY_N & SOF_N & SOP_N & !EOP_N & EOF_N };
assert always { [*] ; !SRC_RDY_N & !DST_RDY_N & SOF_N &
SOP_N & !EOP_N & EOF_N } |=> { [*] ; !SRC_RDY_N &
!DST_RDY_N & SOF_N & SOP_N & EOP_N & !EOF_N };
…}

The description in formal model for LL has the

following form:

C0 : SRC_RDY_N==0 and DST_RDY_N==0 and SOF_N==0

 and SOP_N==1 and EOP_N==1 and EOF_N==1;
C1 : SRC_RDY_N==0 and DST_RDY_N==0 and SOF_N==1

and SOP_N==0 and EOP_N==1 and EOF_N==1
and DATA_0[7 downto 0]==0xAB;

C2 : SRC_RDY_N==0 and DST_RDY_N==0 and SOF_N==1
and SOP_N==1 and EOP_N==0 and EOF_N==1

and DATA_1[7 downto 0]<124;
C3 : SRC_RDY_N==0 and DST_RDY_N==0 and SOF_N==1

and SOP_N==1 and EOP_N==1 and EOF_N==0;
C4 : SRC_RDY_N==0 and DST_RDY_N==0 and SOF_N==1

and SOP_N==1 and EOP_N==1 and EOF_N==1;
 C5 : SRC_RDY_N==0 or DST_RDY_N==0;

(S0,C5):S0; (S0,C0):S1; (S1,C5):S1; (S1,C1):S2; (S1,C4):S1;
(S2,C5):S2; (S2,C2):S3; (S2,C4):S2; (S3,C5):S3; (S3,C3):S0;
(S3,C4):S3; A=(Q,T,P,S0,Serr)

In the first approach we consider the protocol as an

entity which cannot be partitioned into communication
segments. Locallink checker was developed and the
requirements on FPGA sources evaluated. The checker of
LocalLink is shown in Figure 9. Recently, we have
developed a methodology which allows to partition the
communication protocol into time segments and develop
the checker for each segment separately. This approach
allows to assemble selected segments and their checkers
together.

Fig. 9 FSM checker for LocalLink Protocol.

It allows the user to develop checkers which check
only the most important segments of the communication
and thus can reduce the circuitry needed. The checker
which checks combinations of control signals
participating on communication protocol is seen in
Figure 10.

Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009 13

ISSN 1335-8243 © 2009 FEI TUKE

Fig. 10 Segment-checker for LocalLink Protocol.

Each checker checks certain part of the protocol and
then the checker structure consists of modules, each of
them checking certain part of the protocol. The first
module (CHCK_PH1) checks the combinations of control
signals during protocol phase1 when header is transmitted.
The second checker (CHCK_PH2) checks the protocol
during data transmission while the third one is responsible
for checking the phase during which footer is transmitted
(CHCK_PH3). The last module detects the final phase of
the protocol and the idle period of the communication
protocol. The error outputs of all modules are evaluated
by the main checker which then generates the error signal
of the system together with the identification of the
module which identified the error. We then compared the
results and analyzed possible use of both approaches.

It is important to state that the methodology described
in this paper and demonstrated on the design of hardware
checkers for LocalLink protocol can be used for other
protocols as well.

7. EXPERIMENTAL RESULTS

During this part of our research we aimed at gaining
experience with PSL, FoCs tool and formal model. We did
so because we needed to verify the possibility of utilizing
PSL and FoCs as tools which can be used for the
description of function to be checked by on-line hardware
checkers implemented into design. Based on our
experience and on other references it can be stated that
FoCs is intended to be used primarily in the area of design
verification and simulation. The results gained from
experiments with PSL and FoCs represent for us a
justification for the development of our own tool to be
used for the design of on-line checkers of digital
components with various complexity.

The experiments were performed on XILINX FPGA
platform. The components and checkers were synthesized
into Virtex5. We compared the number of slices needed to
cover the function and checker implementation. Table 1
demonstrates these requirements. The meaning of the
columns is as follows: 1st column – the slices needed to
cover the function of circuit, 2nd column - the slices
needed to cover the function of checker, which is based on
formal description (FSM) and 3rd column - the slices
needed to cover the function of checker, which is realized
as segment-based FSM. It can be seen that a checker
requires more sources than the component being checked.

Table 1 The slices needed to cover the function and checker
implementation for Virtex5.

Comparison of results for checker created by FoCs
tool and formal methodology are summarized in Table 2.
We judged that it is so because codes generated by FoCs
are supposed to be used primarily for verification
purposes not for the implementation into physical design.

Table 2 The slices needed for checker based on formal model
and FoCs tool.

Virtex5 - XC5VLX50T FSM checker FoCs checker
Circuit [slices] [slices]

COUNTER4b - only states 5 48
COUNTER4b - full checking 7 92
DECODER4b 5 66
SHIFTER4b 4 52

The last set of experiments was performed for

Locallink (LL) communication protocol. We compared
the requirements on the number of sources for both types
of checker methodology design and different levels of
communication protocol checking. We checked the phases
of the communication protocol with a checker generated
for each phase. The Table 3 demonstrates the number of
slices needed for different levels of checking procedure.

Table 3 The slices needed for LL checker based on formal
model and FoCs tool.

LocalLink - correct states FSM checker FoCs checker
Virtex5 - XC5VLX50T [slices] [slices]

LL - only combination (1) 3 29
LL - combin. and sequenc. (2) 7 42
LL - all states with data (3) 16 -

It can be recognized from tables, that the area covered

by our on-line checkers is not always smaller than the
counter. We do not see this as a negative aspect of the
methodology – diagnostics and testing always requires
additional hardware and additional costs because it
delivers to the design additional features which are
important for the design quality.

Virtex5 – XC5VLX50T Circuit
FSM

Checker
Segment
Checker

Circuit [slices] [slices] [slices]

COUNTER 8bits 4 15 11
COUNTER 16bits 7 34 23
COUNTER 32bits 11 79 45
COUNTER input 8bits 9 21 13
COUNTER input 16bits 25 47 29
COUNTER input 32bits 71 87 57
DECODER 4bits 2 5 3
DECODER 8bits 5 7 5
MULTIPLEXOR 4bits 4 8 -
MULTIPLEXOR 8bits 7 10 -

14 The Design of On-line Checkers and Their Use in Verification and Testing

ISSN 1335-8243 © 2009 FEI TUKE

8. CONCLUSIONS

Hardware verification aims to ensure that a design
fulfils its given specification by either formal or dynamic
(simulation based) techniques. Assertion-Based
Verification (ABV) is quickly emerging as the dominant
methodology for performing hardware verification in
practice. Assertions are statements added to the source
code that specify how a design should behave. Hardware
assertions are typically written in a verification language
such as PSL (Property Specification Language) or SVA
(SystemVerilog Assertions). In dynamic verification, a
simulator can monitor the Device Under Verification
(DUV) and report assertion violations. It can be concluded
that PSL is supposed to be primarily used in design
verification methodologies. In our opinion, PSL cannot be
used as a tool for the description of properties to be
covered by hardware on-line checker. This is the
experience we gained as a result of experimenting with
PSL and FoCs tools.

It can be summarized that in our research we have
covered the following goals:

• to investigate tools for generating hardware
checkers from PSL assertions into VHDL code,

• to verify the possibility of utilizing the checkers
developed from PSL descriptions for on-line
testing, area overhead being the criterion,

• to evaluate the results and experience gained in
previous steps,

• based on previous steps, to develop formal tool for
the description of functions to be checked by
hardware checker,

• to develop a compiler to transform formal
description of properties to be checked into
synthesizable VHDL code,

• to compare the effectiveness of our formal tool for
generating checkers with checkers based on PSL
assertions on the RT level, area overhead being the
criterion.

So far, the effectiveness of tool (in terms of the
resources needed to cover the functions of the checker)
was tested on communication protocol checker and RTL
components checkers. The methodology was developed
with the goal of lower extent of resources needed to cover
the functions of the checker compared with the resource
needed to cover the functions of the component under
checking.

The research we have done in the area of on-line
checkers has additional consequences which were
described in [16]. We used Markov dependability model
to demonstrate that the identification of faulty module
increases dependability parameters of the system, like
system availability or MTBF/MTTR parameters. To be
able to do so, a checker or any other diagnostic tool (e.g.
on-line test) can be used. This is the trend we are going to
follow in our future research activities. The goal is to
develop a methodology which will allow to design a
system with required dependability parameters based on
various architectures with on-line identification of faulty
modules. Different possibilities of faulty modules
identification will be taken into account in the

methodology. One of the possible approaches based on the
use of on-line checkers was described in this paper.

ACKNOWLEDGMENTS

This work was supported by the Research project No.
MSM 0021630528 - Security-Oriented Research in
Information Technology c GACR Project No.
102/09/1668 – SoC circuits reliability and availability
improvement and GACR project No. 102/09/H042 -
Mathematical and by the Engineering Approaches to
Developing Reliable and Secure Concurrent and
Distributed Computer Systems.

REFERENCES

[1] K. Morin-Allory and D. Borrione: Proven correct
monitors from PSL specifications. In DATE ’06:
Proceedings of the conference on Design,
automation and test in Europe, pp. 1246–1251,
Leuven, Belgium, 2006.

[2] M. Boule, J.-S. Chenard, and Z. Zilic: Assertion
checker in verification, silicon debug and in-field
diagnosis. In ISQED ’07: Proceedings of the 8th
International Symposium on Quality Electronic
Design, pp. 613–620, Washington, DC, USA, 2007.

[3] M. Boule and Z. Zilic: Efficient Automata-Based
Assertion-Checker Synthesis of SEREs for Hardware
Emulation. ASP-DAC 2007, pp. 324-329.

[4] H. Obereder and M. Pfaff: Behavioral synthesis of
property specification language (PSL) assertions. In
RSP '07: Proceedings of the 18th IEEE/IFIP
International Workshop on Rapid System
Prototyping, pp. 157—160, IEEE Computer Society,
Washington, DC, USA, 2007.

[5] M. Boule and Z. Zilic: Automata-based assertion-
checker synthesis of PSL properties. ACM journal
volume 13, pp. 1–21, New York, USA, 2008.

[6] S. Matakias, Y. Tsiatouhas, T. Haniotakis, A.
Arapoyanni and A. Efthymiou: Fast, Parallel Two-
Rail Code Checker with Enhanced Testability. In
Proceedings of the 11th IEEE international on-Line
Testing Symposium, IOLTS. IEEE Computer
Society, Washington, DC, pp. 149-156, 2005.

[7] M. Straka, Z. Kotasek and J. Winter.: Digital
Systems Architectures Based on On-line Checker. In
DSD´08: 11th EUROMICRO Conference on Digital
System Design. Parma, Italy. pp. 81-87, IEEE
Computer Society, 2008.

[8] S.-Y. Yu and E. J. McCluskey: On-line testing and
recovery in TMR systems for real-time applications.
In ITC ’01: Proceedings of the 2001 IEEE
International Test Conference, pp. 240-246,
Washington, DC, USA,IEEE Computer Society,
2007.

[9] C. Metra, M. Omana, D. Rossi, J. M. Cazeaux, and
T. Mak: Path (min) delay faults and their impact on
self-checking circuits’ operation. In IOLTS06:

Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009 15

ISSN 1335-8243 © 2009 FEI TUKE

 Proceedings of the 12th IEEE International
Symposium on On-Line Testing, pp. 17–22, Corno,
Italy, IEEE Computers Society, 2006.

[10] C. Galke, M. Grabow, and H. T. Vierhaus:
Perspectives of combining on-line and off-line test
technology for dependable systems on a chip. In
IOLTS03: International Symposium on On-Line
Testing, pp. 183-189, Los Alamitos, CA, USA, IEEE
Computer Society, 2003.

[11] P. Kubalik, P. Fiser, and H. Kubatova: Fault tolerant
system design method based on self-checking
circuits. In IOLTS06: Proceedings of the 12th IEEE
International Symposium on On-Line Testing, pp.
185–186, Corno, Italy, IEEE Computer Society,
2006.

[12] M. Straka, J. Tobola and Z. Kotásek: Checker
Design for On-line Testing of Xilinx FPGA
Communication. In: The 22nd IEEE International
Symposium on Defect and Fault Tolerance in VLSI
Systems, Rome, Italy, pp. 152-160, IEEE CS, 2007.

[13] Accellera, “Property Specification Language
Reference Manual, ”www.eda.org/vfv/docs/PSL-
v1.1.pdf, 2004.

[14] IBM, „FoCs - Formal Checkers - a Produktivity
Tool, Version 1.0. http://www.haifa.ibm.com/
projects/verification/focs/focs2.pdf, 2008.

[15] Xilinx Inc. 2100 Logic Drive. LocalLink Interface
Specification. San Jose, September 2006.

[16] M. Straka and Z. Kotasek: High Availability Fault
Tolerant Architectures Implemented into FPGAs. to
appear at 12th EUROMICRO Conference on Digital
System Design, Patras, Greece. 8 pages, September
2009.

Received May 4, 2009, accepted September 2, 2009

BIOGRAPHIES

Zdeněk Kotásek was born in 1947. He received his MSc.
and PhD. degrees (in 1969 and 1991) from Brno
University of Technology (BUT), both in computer
science. Between 1969 and 2001, he worked at
Department of Computer Science of the the Faculty of
Electrical Engineering and Computer Science (FEE), since
2002 at the Department of Computer Systems (DCSY) of
the Faculty of Information Technology (FIT), both at
BUT. He is an Associate Professor at BUT since 2000 and
the head of the DCSY (since 2005). His research interests
include digital circuit diagnostics and testing, testability
analysis and design and synthesis for testability and
reliability. He is an IEEE member (since 2003).

Martin Straka was born in 1981. In 2006 he graduated
(MSc) at the department of Computers Systems of the
Faculty of Information Technology, Brno University of
Technology. In 2006 he started his PhD studies at the
Department of Computers Systems. His scientific research
is focused on fault tolerant systems design and on-line
testing of FPGA based systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

