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SUMMARY 
In the presented paper we deal with the determination of magnetic field in the elastomagnetic sensor core. The 

elastomagnetic sensor core consists of the ferromagnetic plates which thickness is negligible to the rest of the core 
dimensions so it is sufficient to solve the magnetic field in one core plate. The dimension of the plate is designed in such a 
way that the plate can be divided into the squares a number of  which is equal to a number of  the holes in each plate. Each 
of the square is called as an integrative element of the sensor and the magnetic field in such one is solved. 

The magnetic field in this integrative element is computed by using Partial Differential Equation Toolbox of MATLAB  
that provides effectual tool for the solution of partial differential equations in two space dimensions and time. The use of this 
toolbox requires only a basic level of the partial differential equation knowledge what is considered to be the most important 
advantage of this toolbox. The magnetic field in the integrative sensor element for the plane case can be expressed by the 
elliptic partial differential equation for the magnetic vector potential. The partial differential equation coefficients are 
magnetic permeability and the current density for the domain in which the magnetic vector potential field is solved. The 
domain consists of three subdomains so the coefficients in each of these regions have to be determined. For the subdomain 
that represents ferromagnet the functionality between the magnetic permeability and the magnetic flux density is needed 
because ferromagnet permeability is dependent on the field strength. The boundary conditions specifying for the outer 
boundaries and the interior ones is the necessary part of the PDE problem formulation too.  

The toolbox provides execution the most of hard work such as the mesh generation, the partial differential equation 
transformation to the discrete form by the finite element method and the approximation to the solution itself. The results can 
be visualized in several ways. In our case the equipotential lines of magnetic vector potential in the integrative sensor 
element are selected. 
 
Keywords: magnetic field modelling, elliptic partial differential equation, finite element method, elastomagnetic sensor, 
ferromagnetic material. 
 
 
1. INTRODUCTION 
 

MATLAB is an interactive numerical 
computation program. It contains powerful built-in 
routines that enable a very wide variety of 
computations. The graphics commands can be easily 
used too so the visualization of obtained results is 
immediately available. Very important part of 
MATLAB are the toolboxes that make the solution 
of specific applications possible for their users. One 
of them is the Partial Differential Equation (PDE) 
Toolbox that provides an effective environment for 
the solution of partial differential equations in two 
space dimensions and time. The solution is based on 
the discretization of this equation by the Finite 
Element Method (FEM) and its numerical 
calculation. 

This toolbox was used for the magnetic field 
determination of a pressure force elastomagnetic 
sensor. 
 
2. ELASTOMAGNETIC SENSOR 
 
2.1. Elastomagnetic effect 
 

An elastomagnetic sensor operates on the Villari 
effect principle of which is based on the 
proportionality between change of the ferromagnetic 

material and acting mechanical stress. The 
permeability increment μV  proportional to the 
mechanical stress σ  can be described by relation  
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μ = μ σV , 

 
where msλ  is a coefficient of magnetostriction for 

sB B= , sB  is the saturation flux density, μ  is the 
magnetic permeability. The permeability increment 
causes the voltage change in the output of the 
elastomagnetic sensor. 
 
2.2. Description of the elastomagnetic sensor 
 

The elastomagnetic sensor for pressure force 
measurement consists of two basic parts: 
ferromagnetic core with couple of holes system and 
excitation coils system as it is illustrated in Fig. 1. A 
simplifying representation of the sensor core is in 
Fig. 2. The core consists of n = 50 ferromagnetic 
plates which thickness h = 0.5 mm is negligible in 
comparison with their other dimensions. Each of the 
plates has m holes with radius a = 0.001 m. arranged 
equidistantly on the cross axis of the plate and the 
distance of their centers is 2b = 0.012 m. All 
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dimensions of the plates are designed in such a way 
that each of them can be divided into m = 4 squares 
we called integrative sensor element. In cartesian 
coordinates the spatial arrangement of the core 
magnetic field will depend only on two coordinates 
and doesn’t depend on this coordinate which axis is 
parallel to the current wire wound between the 
couples of m = 4 holes and created excitation coil 
system. So the solution of the magnetic field in the 
sensor core is reduced to the solution of the 
magnetic field in one plate. Further, the dimensions 
of the plates are designed in such a way that each of 
them can be divided into m squares, called as the 
integrative sensor element (Fig. 3). If the influence 
of the leakage magnetic flux at the plate edges is 
neglected the resultant magnetic field in the plate is 
a m – multiple of the magnetic field in one square. 
 
 

 
 

Fig. 1  The pressure force elastomagnetic sensor. 
 
 

 
 
Fig. 2  A pressure force elastomagnetic sensor core 

in simplified form. 
 
 

 
 

Fig. 3  An integrative element of pressure force 
elastomagnetic sensor. 

3. EQUATION FOR MAGNETIC VECTOR 
POTENTIAL DETERMINATION 

 
Maxwell’s equations for steady case (the time 

rate of change is slow) are: 
 
rot =H J  (1) 
 

0div =B  (2) 
 

further, for a nonlinear magnetic environment is 
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and material equation is 
 
= μB H  (4) 

 
where H  is the magnetic field intensity, J  is the 
current density, B  is the magnetic flux density, and 
μ  is the material’s magnetic permeability. 

Since 0div =B , there exists a magnetic vector 
potential A  such that  
 

rot=B A  (5) 
 
and  
 

1( )rot rot =
μ

A J  (6) 

 
For the plane case we assume that the current flows 
are parallel to the z-axis, it means that 
 

J=J k       
 
so only the z component of A  is present, 
 

A=A k       
 
and the equation (6) we can simplify to the scalar 
elliptic PDE 
 

1( )div div A J− =
μ

 (7) 

 
where ( , )J J x y= . 
 

For the plane case, the magnetic flux density B  
can be computed as 
 

( )A A
y x
δ δ

= + −
δ δ

B i j  (8) 

 
and the magnetic field intensity H  is 

 
1

=
μ

H B   (9).
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4. FORMULATION PDE PROBLEM FOR 
INTEGRATIVE SENSOR ELEMENT 

 
The PDE problem formulation for the integrative 

sensor element requires determining the domain in 
which the magnetic field will be solved, to write the 
boundary conditions and to formulate the PDE 
specification. 
 
4.1. The domain definition 
 

The domain in which the magnetic field will be 
solved is the integrative sensor element, so it 
consists of three regions (Fig.4): 

• the current wire (subdomain 2), 

• the ferromagnetic sensor core (subdomain 1), 

• the air gap between the wire and ferromagnetic 
core (subdomain 3), 

so that 2-D geometry of the integrative sensor 
element is created. 
 

 
 
Fig. 4  The domain in which elliptic PDE is solved. 

 
4.2. The boudary conditions 
 

The Dirichlet boundary condition specifies the 
magnetic vector potential value on the exterior 
boundary. For our case the Dirichlet boundary 
condition is equal zero on the exterior boundary. The 
interface conditions between regions of different 
material properties have to satisfy the Neumann 

boundary condition, i.e. the continuity of 1 A
n
∂

μ ∂
, 

which does not require special treatment since the 
variational formulation of the PDE problem is used. 
 
4.3. PDE specification 
 

For determining the magnetic field in the 
integrative sensor element the scalar elliptic PDE (7) 
will be used, so the magnetic permeability μ  and the 
current density J  must be defined in each of three 
regions from which the domain consists of. 

The magnetic permeability in the air and in the 
copper wire is equal 0μ  and in the ferromagnetic 
sensor core it depends on the field strength B, so the 
B – H curve must be measured for computation of 
ferromagnetic material permeability. For the 
obtained set of data points (μ , B) the curve fitting 
by fourth order polynomial  
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is made (Fig. 5). 
 

 
 

Fig. 5  The curve fitting μ=μ (B). 
 

The current density is equal 0 everywhere 
except the current wire, where it is 13.518 A/mm2. 
 

 
 

Fig. 6  A triangular mesh for the domain in which 
 the magnetic field is solved. 

 
5. NUMERICAL SOLUTION PDE PROBLEM 

OF AN INTEGRATIVE SENSOR 
ELEMENT 

 
After creating 2 – D geometry for our PDE 

problem, specification the boundary conditions, 
specification of PDE type and determination of the 
PDE coefficients for each subdomain independently, 
the automated mesh generator is initialized to 
generate and plot the triangular mesh. 
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For our domain we decided that a number of 
triangles in the mesh would be 11712 (Fig. 6). 

Then the parameters μ and J for solving PDE are 
selected. Because μ is nonlinear in the sensor core, 
our PDE problem is a nonlinear one and the 
nonlinear solver has to be invoked. The tolerance 
parameter 1.0 E-6 is adjusted for this solver. After 
solving our PDE the equipotential lines of the 
solution – the magnetic vector potential – are 
automatically plotted using a contour plot (Fig. 7).  

For our PDE problem we decided to draw the 
magnetic flux density field too. This field is 
visualized by using arrows in the Fig. 8. The plot 
clearly shows, as expected, that the magnetic flux 
density lines are parallel to the equipotential lines of 
the magnetic vector potential. 
 

 
 

Fig. 7  Equipotential lines of magnetic vector 
potential in the integrative sensor element 

 

 
 
Fig. 8  Magnetic flux density field in the integrative 

sensor element 
 
6.  CONCLUSION 
 

The magnetic field in the integrative element of 
the elastomagnetic sensor was solved in this paper 
without the force application by now. The magnetic 
vector potential field of this element is represented 
by the elliptic partial differential equation which 
analytical solution is complicated and challenging 
task in generally and requires above standard 

knowledge of this part of mathematics. The 
numerical solution of the PDE using PDE Toolbox 
requires the minimal knowledge about the partial 
differential equations and their solution. It requires 
only a correct formulation of a PDE problem – to 
draw and to characterize the domain, to write the 
boundary conditions and specify the PDE. 

The obtained solution for the magnetic field in 
our elastomagnetic sensor integrative element is in 
full accord with our theoretical assumptions and 
experimental results. 
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