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SUMMARY 

In the article presented we deal with one method of stochastic programming – probabilistic programming. It is a 
programming in which the probabilities of the values of the variables are of interest. Our approach is that solving  problem 
we can construct in logical reasoning over some mathematical theories. In this approach we use category theory for 
construction of type theory and of the logical system. Then we formulate the logical theory to enclose the solution of the 
problem. These steps we show at well-known examples: the random number generator and the Blackjack game. 
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1. INTRODUCTION 
 

We usually model many decision problems by 
mathematical programs which seek to maximize or 
minimize some objective which is a function of the 
decisions. Decisions are represented by variables. 
Objective and constraints are functions of the 
variables, and problem data. Stochastic programs are 
mathematical programs where some of the data 
incorporated into objective or constraints are 
uncertain. One of the methods of stochastic 
programming - probabilistic programming - refers to 
programming in which the probabilities of the values 
of variables are of interest [5]. The term “predicative 
programming” describes the programming according 
to the first-order semantics. The purpose of this 
paper is to show how the stochastic programming 
can be applied in the mathematical theory of 
programming. 

 
2. BASIC NOTIONS 
 

For every problem we need to define variables. 
Usually we deal with inputs and outputs – that’s why 
we define: 

• list of input variables: Κ,, 21 xx=σ  
• list of output variables: Κ,, 21 xx ′′=′σ  

Next we introduce types for these variables and 
define typed context. 

In this part we briefly introduce basic notions 
and recent results which are necessary for applying 
them in next research. 
 
2.1. Probabilistic and predicative programming 
 

Probabilistic programming is a programming in 
which the probabilities of the values of the variables 
are of interest. For example, if we know the 
probability distribution from which the inputs are 
drawn, we may calculate the probability 
distributions of outputs. Predicative programming is 
a way of writing programs so that each 

programming step is proven as it is made [5]. First 
step is to decide what quantities are of interest, and 
to introduce a variable for each such quantity. A 
specification is defined as a boolean expression 
whose variables represent the quantities of interest. 
In a specification, some variables may represent 
inputs, and some may represent outputs. A 
specification is implemented on a computer when, 
for any values of the input variables, the computer 
generates values of the output variables to satisfy the 
specification. 
 
2.2. The Linear logic 
 

In mathematical logic, linear logic is a type of 
substructural logic that denies  the structural rules of 
weakening and contraction; it allows only restricted 
versions of that rules. Girard's linear logic [4] 
(introduced in 1987) becames a natural mean for 
research and applications in computer science. It has 
offered great promise, as a formalism particularly 
well-suited to serve at the interface between logic 
and computer science. It is able to describe systems 
that are changed during they are used. Using Curry-
Howard correspondence, propositions of linear logic 
are interpreted as types [3]. This paradigm has been 
a cornerstone of new approach concerning 
connections between intuitionistic logic, functional 
programming and category theory. The 
interpretation in linear logic is of hypotheses as 
resources: every hypothesis must be consumed 
exactly once in a proof. The most important feature 
of linear logic is that formulae are consider as 
actions. This differs from usual logics where the 
governing judgement is of truth, which may be 
freely used as many times as necessary. While 
classical and intuitionistic logics treat with the 
sentences that are always true or false, in linear logic 
formulae describe actions and the truth values 
depend on an internal state of a dynamic system. For 
instance, linear implication ψϕ o⎯   is causal, i.e. 
the action described by ϕ  is a cause of the action 
described by ψ ; the formula ϕ  does not hold after 
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linear implication. Linear logic uses two 
conjunctions: multiplicative ψϕ ⊗  expressing that 
both actions will be performed ('⊗ ' is read as 
"times") and additive ψϕ &  expressing that only 
one of two actions will be performed and we shall 
decide which one (external indeterminism). 
Intuitionistic linear logic uses additive disjunction 
'⊕ ' which expresses that only one of two actions 
will be performed but we cannot decide which one; 
this is a statement of internal indeterminism. Dual of 
multiplicative conjunction is multiplicative 
disjunction that uses the symbol '℘ ' and is read as 
"par". 

We consider here intuitionistic linear logic 
because we would like to use it to describe program 
execution. Precisely, reduction of linear terms 
corresponding to proofs in intuitionistic linear logic 
can be regarded as computation of programs [10]. 
 
2.3. The Type theory 
 

As the first step in problem solving we have to 
introduce types of data structures and operations on 
them [8]. We enclose types and operations for 
problem solution in the well-known notion of 
algebraic specification - a many-typed signature. A 
many-typed signature ( )F,T=Σ  is a couple 
consisting of finite set T  of (the names of) basic 
types necessary for a given problem denoted by 
(possibly indexed) symbols iτττ ,,, 21 Κ  and of finite 
collection F  of function symbols. Every function 
symbol Ff ∈  is of the form 1,, +→ nn τττ Κ1:f  for 
some natural number n , i.e. it takes inputs of types 

nττ ,,Κ1  and yields an output of a type 1+nτ . 

To form terms we assume a countably infinite set 
of variables ( )Κ,, 21 vvVar =  that range over basic 
types. Every variable in a term has to be typed, i.e. it 
has assigned a unique basic type from a signatureΣ , 
written τ:v  as a variable declaration. A finite 
sequence ( )nnvv ττ :,: 11 Κ=Γ  of variable 
declarations is called a type context. A sequent of 
term calculus has a form 
 

 Γ ├ τ:M  
 
and it is read as a term M  of type τ  with variables 
in Γ . From basic types we construct more complex 
Church's types using type constructors '× ', ' + ' and 
'→ ' [7]. If  T∈θτ ,  then θτ ×  is a product type, 

θτ +  is a coproduct (sum) type, θτ →  is an arrow 
(function) type. 

In constructing the classifying category of type 
contexts containing variable declarations of Church's 
types we have the advantage that we can use 
Church's types instead type contexts as category 
objects [8, 12]. The product type ensures that any 
term τ:M  of a Church's type τ  
 

nnvv θθ :,,: 11 Κ ├ τ:M  

is in one-to-one correspondence with a term  
 

nv θθ ××Κ1: ├ τ:N  
 
which’s context consists of a single variable v  of 
product type nθθ ××Κ1 . Now we are able to 
construct type theory as linear classifying category 

( )ΣLinCl , which is a symmetric monoidal closed 
category containing linear types as objects and linear 
terms as morphisms. 
 
2.4. The Category theory 
 

Category theory [1] is a part of mathematics. It 
was introduced in 1945 and its importance for 
theoretical computer science growth in last decade. 
Categorical methods are already well-established for 
the semantical foundation of type theory, data type 
specification frameworks and graph transformation 
[2, 15]. Categories are structures which enable to 
work with objects of arbitrary complexity. 
Fundamentals of category theory are relations 
between objects. These relations are expressed by 
morphisms. A fibration (Fig. 1) is a special functor 
which allows indexing and substitution. The 
properties of fibration can be found in [6, 9]. The 
classifying category ( )ΣLinCl  is a base category for 
fibration. Every subcategory is a fibre over each 
type. A fibre contains linear logic over that type and 
type indexes the fibre. The objects of fibre are 
formulas and morphisms are sequents. Term t  in 
classifying category induces the substitute 
functor *t , which is a part of proof tree. Then all the 
total category expresses the linear logic over the 
given signature together with defined set of axioms. 
 

 
 

Fig. 1  Linear logic over type theory 
 
 

In the Fig. 1 

• ( )ALL ,Σ  is fibration containing linear logic 
over type theory with axioms A , its 
subcategories over contexts are  fibres, i.e. 
logics over contexts 
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• ( )ΣLinCl  is the type theory for solved 
problem 

• t is the term in classifying category 

• *t is the substitute functor, which is a part 
of proof tree 

• l is the fibration 

 
2.5. The indeterminism 
 

In this article we deal with indeterminism. 
According to some authors [5], nondeterminism 
comes in several varieties: angelic, demonic, 
oblivious and prescient. To illustrate the differences, 
consider 

 
( ) 1:0:;2: === yyrandx or  

 
and we want the result '' yx = . If or is angelic 
nondeterminism, it chooses between its operands 

0:=y  and 1:=y  in such a way that the desired 
result '' yx = is always achieved. 
If or is demonic indeterminism, it chooses between 
its operands in such a way that the desired result is 
never achieved. Both angelic and demonic 
indeterminism require knowledge of the value of 
variable x  when choosing between assignments to 
variable y . 
Oblivious nondeterminism is restricted to making a 
choice without looking at the current (or past) state. 
It achieves '' yx =  half the time. Now consider 
 

( )2:;1:0: randyxx === or  
 
and we want '' yx = . If or is angelically prescient, x 
will be chosen to match the future value of y, always 
achieving '' yx = . If or is demonically prescient, x 
will be chosen to avoid the future value of y, never 
achieving '' yx = . If or is not prescient, then '' yx =  
is achieved half the time. 

In predicative programming, indeterminism is 
disjunction. Angelic, demonic, oblivious, and 
prescient are not kinds of indeterminism, but ways 
of refining indeterminism. In the example 
 

( ) 1:0:;2: =∨== yyrandx  
 

with desired result '' yx =  we can refine the 
indeterminism angelically as xy =:  or demonically 
as xy −=1:  or obliviously as either 0:=y  or 

1:=y . 
In the example 
 

( )2:;1:0: randyxx ==∨=  
 
with desired result '' yx =  we first have to replace 

( )2rand  by boolean variable r having probability 

1/2. Then we can refine the indeterminism with 
angelic prescience as rx =:  or with demonic 
prescience as rx −=1:  or without prescience as 
either  0:=x  or 1:=x . 
 
2.6. Constructing the theory 
 

The solution of the problem we can enclose into 
the logical theory [11]. A logical theory is a list of 
basic type symbols nττ ,,1 Κ , terms called basic 
constant symbols mcc ,,1 Κ  in the 
parameters nττ ,,1 Κ , and the sentences kαα ,,1 Κ  in 
the parameters nττ ,,1 Κ , mcc ,,1 Κ . We consider 
 

( )kmn ccT ααττ ,,,,,,,,' 111 ΚΚΚ=  
 

as a theory, where ( )mn cc ,,,,, 11 ΚΚ ττ  is the basic 
language of 'T  and kαα ,,1 Κ  are the axioms of  'T . 
This theory is in correspondence with the theory 

( )ατ ,,cT =  where 

• the list of  types we replace by one product 
type nτττ ××= Κ1  

• the list of constants we replace by one 
constant ( )mccc ,,1 Κ=  

• the list of axioms  kαα ,,1 Κ  we can replace 
by the axiom kαα ∧∧Κ1  but only in 
classical logic 

 
For constructing models of the theories we use 

special categories called toposes (or topoi) [11, 13]. 
The objects of topos correspond to types, morphisms 
correspond to constant symbols and for axioms there 
is the subobject classifier [14]. 
 
3. EXAMPLES OF STOCHASTIC 

PROBLEMS 
 

Our idea is that to solve large scientific problems 
by mathematical machines we always start with the 
formulation of their theoretical foundations [10]. We 
need to formalize these theoretical foundations as 
logical reasoning in some mathematical theories 
because the programs should really prove the 
correctness of their results. Program consists of data 
structures and algorithms. Data structures always 
have some types. These types can frequently be very 
complex structures as algebraic structures, vector 
spaces, etc. In such cases set theory does not suffice 
our needs to describe and represent them. 
Mathematics provides a useful discipline - category 
theory that enables us to work with the structures of 
arbitrary complexity and describe their properties 
and relations between them. Using of category 
theory in computer science has extremely growth in 
the last decade [2]. In the next parts we present some 
aspects about probabilistic predicative programming 
and follow the interpretation of  this style in 
categorical terms [12]. 
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To illustrate the combination of indeterminism 
and probability, we look at well-known problems of 
random number generator and Blackjack game. In 
these situations we have to deal with values that are 
uncertain from view of external observer. In [12] we 
showed how to construct the solution of very famous 
Monty Hall problem in categorical terms. 
 
3.1. Random Number Generator 

 
Many programming languages provide a random 

number generator; sometimes called a “pseudo-
random“ number generator. The usual notation is 
functional and the usual result is a value whose 
distribution is uniform over nonempty finite range. 
If natn : , we use the notation ( )nrand  for 
a generator that produces natural numbers uniformly 
distributed over the range n,..0  - from (including) 0 
to (excluding) n . So ( )nrand  has value r  with 
probability ( ) nnr /,..0: . 

Functional notation for a random number 
generator is inconsistent. Since xx =  is a law, we 
should be able to simplify ( ) ( )nrandnrand =  to T, 
but we cannot because the two occurrences of 

( )nrand  might generate different numbers. Since 
xxx ×=+ 2  is a law, we should be able to simplify 

( ) ( ) ( )nrandnrandnrand ×=+ 2 , but we cannot. To 
restore consistency, we replace each use of ( )nrand  
with a fresh integer variable r  whose value has 
probability ( ) nnr /,..0:  before we do anything else. 
Or we can replace each use of ( )nrand with a fresh 
variable nr ,..0:  whose value has probability n/1 . 
But this is a mathematical variable, not a state 
variable; in other words, there is no 'r . For example, 
in one state variable x : 
 

( ) ( )
( )∑ ∑ +==≡

+==

sxxrxsr
randxxrandx

:;:.3,..0:.2,..0:
3:;2:

 

( )∑ ∑ +=≡ srxsr '.3,..0:.2,..0:  
( ) ( ) ( ) ( ) 6/3'3/2'3/1'6/0' =+=+=+=≡ xxxx  

 
which says that 'x  has values 0 and 3 one-sixth of  
the time and values 1 and 2 one-third of the time. 

In the process of construction the categorical 
solution we have to define: 

• Types: 2,..0=θ , 3,..0=τ  (subtypes nat) 
• Inputs: ( )τθ :,: sr=Γ  
• Outputs: ( )τ:'' x=Γ  
• Terms: ': Γ→Γt , ( ) srsrsrtx += α,:,'  

 

We formulate the logical formulas describing the 
problem: ( )2:1 randr =ψ  and ( )3:2 rands =ψ : 

21 ψψ o⎯  

But the result of the problem we can describe by 
another formulas: ixi =':ϕ . So the whole result has 
the form 

4321 ϕϕϕϕ ⊕⊕⊕  
 

( ) ( ) ( ) ( )3'2'1'0' =⊕=⊕=⊕= xxxx  
 
All that process was formulated in [12]. Finally the 
logical theory for the problem is 
 

( )4321;; ϕϕϕϕτθ ⊕⊕⊕×= tT  
 
3.2. The Blackjack Game 
 

This example is a simplified version of the card 
game known as Blackjack. Player is dealt a card 
from a deck; its value is in the range 1 through 13 
inclusive. Player may stop with just one card, or has 
a second card if he wants. Player‘s object is to get a 
total as near as possible to 14 , but not over 14 . The 
strategy is to take a second card if the first is under 
7. Assuming each card value has equal  probability 
(actually, the second card drawn has a diminished 
probability of having the same value as the first card 
drawn, but let's ignore that complication), we 
represent a card as ( )131 rand+ . In one variable x , 
the game is 
 

( )
( ) ( ) okrandxxx

randx
elsethenif 131:7

;131:
++=<

+=
 

 
First we introduce variables 13,..0:, dc  for two uses 
of  rand : each with probability 1/13. The program 
becomes 
 

( ) okdxxx
cx

elsethenif 1:7
;1:

++=<
+=

 

 
or by substitution 
 

( ) 1'2'71 +=++=<+ cxdcxc elsethenif  
 

Then x‘ has the distribution 
 

( ) ( )213/1
1'

2'71
.13,..0:, ⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

++=<+
∑ cx

dcxc
dc

else
thenif

 
by several omitted steps 
 

( ) ( ) ( )(
( ) ( )) 169/'2020'14

1914'71'7'2
xx

xxx
−⋅<≤+

⋅<≤+−⋅<≤=Κ
 

 
Similarly as in the previous example, we define: 
Types: 13,..0=τ  
Inputs: ( )ττ :,: dc=Γ  
Outputs: ( )τ:'' x=Γ  
Terms:  ':1 Γ→Γt ; ( ) 2,:,' 1 ++= dcdccctx α , 

':2 Γ→Γt ; ( ) 1:' 2 += ccctx α  
 

Logical formulas describing the problem are then:  

( )( ) ( )( )
( )

0

1

: 1 13 1 13

: 7

c rand d rand

x

ϕ

ϕ

= + ⊗ = +

<
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1

2

: ' 2

: ' 1

x c d

x c

ψ

ψ

= + +

= +
 

and the whole problem can be expressed as 
 

( ) ( )( )21110 & ψϕψϕϕ ooo ⎯⎯⎯ ⊥  
 

The logical theory for the problem is 
 

( ) ( ) ( )( )( )2111021 &;,; ψϕψϕϕτ ooottT ⎯⎯⎯= ⊥  
 

In this example we used strategy „under 7“. There 
are many variations of that game, i.e. „under 8“ 
strategy, etc. We can find distribution and then 
construct the solution in similar ways. 
 
4. CONCLUSION 
 

In this article we presented some aspects about 
constructing the solution of solving stochastic 
problem in the mathematical theory of 
programming.  We formulated necessary steps: type 
theory for given problem, logical theory of the 
problem and showed them in examples of random 
number generator and the Blackjack game. We are 
able to model the logical theory in topos, so our next 
goal is to find the relation between the topos of 
theories and the category of linear logic for the given 
problem. 
 
This work was supported by VEGA Grant 
No.1/2181/05:  Mathematical Theory of 
Programming and Its Application in the Methods of 
Stochastic Programming. 
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