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SUMMARY 
Multilayered feed-forward neural networks trained with back-propagation algorithm are one of the most popular “on-

line” artificial neural networks. These networks are showing strong inherit parallelism because of the influence of high 
number of simple computational elements. So it is natural to try to implement this kind of parallelism on parallel computer 
architecture. The Parallel Hybrid Ring Architecture (PAHRA), which is described in this article, provides flexible platform 
for simulation of multilayered feed-forward neural networks trained with back-propagation algorithm. The computational 
model of given architecture, bound to the modified error back-propagation algorithm, allows to describe the formal elements 
of parallel implementation of multilayered feed-forward neural network. It also allows the mathematical tool for verification 
of performance, which is used in simulation experiments of multilayered feed-forward network on specific hardware 
platform. 
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1. INTRODUCTION 
 

Artificial neural networks [2] are gaining high 
popularity over time in many application areas 
which emphasis is put on gathering of results in real 
time. Although there are many different 
implementations of artificial neural networks 
available for uniprocessor computer architectures 
based on the von Neumann type, most of these 
models require enormous amount of time for 
training and the live phase in case of large neural 
network (the number of neurons in network is 
≥ 1000). 

Therefore new concepts were developed, which 
contain the modification of original models and 
learning algorithms, together with the 
implementation of specialized [3] and / or universal 
[6] type of models based on the parallel computer 
architecture. These concepts focuses primary on the 
time reduction, especially on the time of learning of 
neural network. One of the most popular neural 
networks are multilayered feed-forward neural 
networks (FFNN) [2] with error back-propagation 
(BP) algorithm, which represent the most standard 
configuration of biological inspired mathematical 
models of simplified neural system. These networks 
represent massive parallel systems with a high 
number of simple process elements and therefore it 
is natural to try to implement this kind of systems on 
parallel computer architecture [9, 10]. 

 
2. THE PAHRA ARCHITECTURE 
 

The Parallel Hybrid Ring Architecture (PAHRA) 
architecture is developed on DCI FEEI TU 
of Košice within the frame of projects [10] and [11] 
and is based on the conception of multiprocessor 
architectures. The PAHRA architecture is assigned 
primary on the implementation of FFNN with the 
use of training set parallelism. With the use of its 

architectonical conception and computational model 
it allows to separate the computation within neural 
network (processed on particular processing 
elements) from the hardware (the type of processing 
element). 

 

Fig. 1  The PAHRA architecture 
 

The design of PAHRA parallel architecture (Fig. 
1) was focused on the possibility to cower many 
classes of multiprocessor architectures as possible. 
Therefore the synchronizing interconnection bus was 
established as the central component of PAHRA 
architecture. The synchronizing interconnection bus 
allows to interconnect either independent 
computational elements (processors) or complex 
systems (computer clusters, MIMD systems, 
dataflow systems, etc.) [8, 9]. This conception of 
parallel architecture consists of defined number of 
processing elements (n) with the synchronizing 
simplex interconnection bus (type ring), control unit 
and interconnection bus which provides access to the 
memory (storage) devices. 

Each processing element has its own execution 
unit (or execution units, in the case of complex 
systems located in node of synchronizing 
interconnection bus), local memory and set of 
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communication lines to be able to communicate with 
other processing elements. The raw computational 
power of each processing element is characterized 
by the execution time of one elementary operation 
(arithmetical or logical). The synchronizing 
interconnection bus uses point-to-point method of 
connection with the synchronous communication. 

The use of simplex communication and the 
overlay of computational and communicational 
phases disallow the all-to-all broadcasting which is 
characteristic for node parallelism (neuron and 
synapse parallelism) with vertical segmentation [7]. 

The time taken to inter-processor communication 
for the transmission of m words between adjacent 
processing elements is defined by  

_com com init wordt t m t= + ⋅  (1) 

where comt  is the time taken to transmission of m 
words, _com initt  is the transmission initialization 

time and wordt  is the time taken to transmission of 
one word. Within the frame of project [10] the task 
of mapping of FFNN into the PAHRA architecture 
was solved. 

The mapping of neural network into a parallel 
environment is not a simple task. Two steps are 
needed to define the optimal mapping scheme. 
These steps contain the parallelization of classical 
BP algorithm (mentioned in [2]) and the 
identification of optimal decomposition of 
multilayered neural network (with the use of neural 
parallelism) or training set (with the use of training 
set parallelism). In next chapters, the mapping task 
related to the training set parallelism in PAHRA 
architecture is described. 

 
2.1. Training set parallelism and PAHRA 
 

When the training set parallelism as a form of 
course-grained data parallelism is applied, each 
processing element of the PHARA system gets a 
copy of a whole multilayered neural network and 
only the patterns are divided into processing 
elements (PE) [5]. In the suggested model, each PEi 
(1 i n< ≤ ) accept subset of patterns Pi with the 

cardinality Pi, training set T with the cardinality Ptot, 
what is defined as follows: 
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Figure 2 shows the suggested conception of 
decomposition and allocation of training set on the 
PE’s of the PAHRA architecture. Processing 
elements are executing forward and error back-
propagation phase of BP algorithm with regard to 
the allocated patterns on each of them and they are 
computing the vector of weights and biases (Δw ). 
In the phase of weight update, each PE sends locally 
computed Δw  (regard to the allocated set of 

patterns Pi) to its neighbor PE on the right side and 
receives the vector Δw from the PE on the left side.  

The aim of applying the pattern parallelism 
during the learning phase of FFNN resulted into 
changes in the BP (mentioned in [2]) algorithm for 
the parallel execution in the PAHRA architecture.  
 

 

Fig. 2  The principle of decomposition and 
allocation of training set on processing elements  

 
2.2. The model of computation and PAHRA 
 

Steps of parallel execution of BP algorithm on 
(1 i n≤ ≤ ) in the PAHRA architecture are described 
as follows: 

1. Each PEi initializes Δw for given epoch on zero 

(process Δ
i
wP  with the time it

0Δw ). 
2. Each PE executes forward and error BP phase. 

The deviation between the network output and 
the target value is computed also in this step 
(process i

BPP  with the time i
BPt ). 

3. Processing elements swap Δw between each 
other. In the PAHRA architecture with the 
number of n processing elements, each PE 
requires to send (process i

sendP  with the time 
i
sendt ) and to receive  (process i

recP  with the time 
i
rect ) ( 1n − ) of Δw. When the PE’s are unable to 

finish the computation in the same time 
according to step 2 (e.g. in the case of 
heterogeneous behavior of PE’s), latency occurs 
in data acceptance from the left (PEj) neighbor 
processing element (latency ,

i
L rec jW P ) and in data 

dispatching to the right neighbor processing 
element (latency ,

i
L send jW P ). The update of all 

weights in the network (process i
wP with the 

time i
wt ) on single PE with the index i can be 

started only after receiving of all partial 
Δw from the left neighbor PE’s with the index j. 

4. All processing elements update the weights and 
therefore gains new set of weights for their local 
copies of FFNN. Because each PE works above 
copies of the whole FFNN, the values of weights 
and biases will be the same. 

5. All processing elements execute convergent test 
(the deviation between the network output and 
the target value is tested). If the process of 
learning is not converges, new iterating process 
is started from the step one. Otherwise the 
algorithm can be considered as finished. 
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The presented procedure represents basic steps 
for parallel BP algorithm with the learning-by-epoch 
(lbe) strategy. Figure 3 shows the meaning of 
processes, needed to realize steps 1 to 5, their 
interconnection and the mechanism of process 
synchronizing. By using a semiformal meaning, the 
graph shows the computational and communication 
processes, their parallel or concurrent execution 
during the execution of one iteration of designed 
parallel algorithm. On the basis of depicted graph it 
is possible to determine the realization time of 
individual processes which are participating on the 
process of learning based on the lbe strategy. Figure 
3 shows the process synchronizing graph of parallel 
BP algorithm in PAHRA architecture with number 
of processing element 3n = . 
 

 
 

Fig. 3  Process synchronizing graph of parallel error 
back-propagation algorithm 

 
Nodes in graph are representing processes and 

edges of latency between them. Time needed to 
process execution is listed in nodes. 

The synchronization points between individual 
processes are represented by using places which are 
representing the conditions of concurrent processes 
execution (on individual levels j) in graph. Places in 
graph are given by using horizontal line which 
connects one or more processes above given line 
with one or more processes under given line. The 
meaning of places is as follows: process (processes) 
under the line can be started only after process 
(processes) above the line had finished. 

There are two types of places. Intra-processor 
place ( i

jJ ) manages (synchronizes) processes 
runtime within one PEi. Inter-processor place 

( ( 1)i i
jJ − + ) manages (synchronizes) processes runtime 

on different PEi. In this designated model, the 
functionality of every single computational and 

communicational process is described by using 
elementary operations from which they are 
consisting. The mathematical formulation of the 
price of computation depends on concrete 
implemental or simulation architecture.  

 
2.3. The processing time 
 

The computational model of parallel simulation 
of FFNN based on the principle of training set 
parallelism, was designed in [10] on the basis of ure 
3. The functionality of processes is defined by using 
elementary computational and communicational 
operations which are defining given process. If we 
know the time of realization of elementary 
operations (which are defined in designed adaptation 
algorithm), it is possible to set up a mathematical 
formula for determining the price of realization of 
one epoch (or algorithm). The processing time is 
also defined as the sum of all prices of realization of 
individual processes and their latencies on their way 
from the “Start” point to the “End of one epoch” 
point. On the basis of this consideration and Fig. 3, 
the processing time in PAHRA architecture with the 
number of processing elements 3n =  ( _ 3epocht ) is 
defined as (3). 
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In the formula (3), the value of expression 
1

,12 sendt is equal to sum 1 1
,1 ,3send sendt t+ , because the size 

of Δw in the case of training set parallelism is the 
same. Afterwards the epoch price for the number of 
processing element equal to n ( _iter nt ) is defined as 

1 1 1
_ , , ,2

2

1 1 1
,2

n

epoch n rec k rec k L w
k

w w end

t W t W

t t W

Δ
=

Δ

⎡ ⎤= + + +⎣ ⎦

+ + +

∑ P P
 (4) 

The formula in (4) is explicitly defining only the 
time cost of realization of certain computational 
processes and inter-processor communications. 
Other elements which define the whole processing 
time are implicitly occurring in the form of latencies 
W. 

 
3. DESIGN OF SIMULATION MODEL 

 
The simulation architecture consists of the 

network of workstations (NOW) which is configured 
by the PAHRA model. There are 24 workstations 
interconnected by using the 100Mbit Ethernet. The 
communication between them is provided by the 
LAM/MPI interface. The synchronizing ring 
topology is established on the software level by 
using the C++ language and the LAM/MPI interface. 
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In the nodes of NOW there were placed 
workstations with next configurations: A:{P4 
2,8GHz:512 MB RAM}, B:{P4 2,4GHz:256MB 
RAM}. The processing time ( _epoch nt ) was used as 
the parameter of performance of simulation 
architecture. Multilayered feed-forward neural 
network used in simulation experiments is 
configured as a three-layer neural network with 
configuration 256×126×256 (64,512 weight 
connections), in the role of auto-associated memory. 
The input synaptic layer (synaptic connections 
between input and hidden layer) is ensuring coding 
(compression) of input data of the neural network 
and the output synaptic layer (synaptic connections 
between hidden and output layer) is ensuring 
decoding (decompression) of data. As the training 
set a grayscale picture (with the dimension 80×32) 
was used. The training set was divided into 10 
sectors of the dimension 16×16 (totally 256 points) 
which were representing the input and the output 
vector. 

Three experiments were realized. Their 
description is as follows: 

Exp-1. In this experiment a network of 
homogenous workstations of type A was used (Fig. 
4a). 

Exp-2. In this experiment workstations of type B 
were connected to the synchronizing ring topology 
between workstations of type A (Fig. 4b). 

Exp-3. In this experiment workstations of type A 
and B were cross-connected to the synchronizing 
ring topology (Fig. 4c). 

In all experiments was used a mapping scheme 
based on the proportional distribution of patterns. 
The number of patterns allocated on PE’s was 
depending on the speed of floating point 
multiplication operation on given workstation 
(ALLOC-PR). 

 
3.1. Results of simulation experiments 

 
In the frame of every experiment, two 

simulations were performed. The goal of the first 
experiment was to illustrate time flow of realization 
of one iterating step of BP algorithm with regard to 
the number of used workstations in designated 
simulation architecture. Figure 5 shows a time flow 
of optimal number of workstations 10,11,...,15n = . 
Considering results, the price of realization of one 
iteration step is lowest with the number of 
workstations 12n = . The second simulation provides 
information about the rate of speed up (Fig. 6). The 
speed up (S) was calculated as  

_

_

( ) epoch A

epoch n

t
S n

t
=  (5) 

where _epoch At  is the time taken to realization of 
one iteration step on one A type workstation. 

A1 A2 A23 A24  

( a ) Experiment 1 

B1 B2 B12 A1 A2 A12  

( b ) Experiment 2 

A1 B1 A6 B6 A12 B12  

( c ) Experiment 3 
 

Fig. 4  Simulation architectures for 3 types of 
experiments 
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Fig. 5  Simulation no. 1 
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Fig. 6  Simulation no. 2 
 
3.2. Conclusions from simulation experiments 
 

On the basics of results from the simulation 
experiments, it is possible to write down these 
conclusions. 

• The processing time depends on the network 
configuration (homogenous; heterogeneous 
NOW type Exp-2 or Exp-3). 

• When the homogenous NOW is used, then the 
epoch price is lowest. 
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• In the case of heterogeneous NOW, the 
configuration depicted on Fig. 4c provides 
slightly better results than the configuration 
depicted on Fig. 4b. 

• All results show a significant speed up in the 
learning phase compared to uniprocessor 
systems. 

• The speed up for 1 12n< ≤  is approximately 
similar to / 2n , where n is the number of 
workstations connected to the parallel simulation 
architecture based on the PAHRA model. 

• The highest speed up for given configuration and 
solved task, can be achieved with 12n = . 

• For 12n > , the effectiveness is declining. 

 
4. CONCLUSION 
 

The implementation of multilayered feed-
forward neural networks represents a very effective 
way how to reduce the time of learning phase of 
network. Both phases can be implemented as 
parallel, but with regard to higher computational 
load of learning phase, so the research has focused 
on a parallel approach of this phase. In technical 
areas there are many application based on artificial 
neural networks [4]. Most of them are using 
multilayered feed-forward neural networks with BP 
algorithm. This combination, together with parallel 
computer architectures has become a subject of 
research projects [10] and [11]. Within the frame of 
these projects a numerical model of parallel 
architecture PAHRA was designed. This model is 
bounded with the application of parallel computation 
in multilayered feed-forward neural network on the 
level of training set. PAHRA is able to provide a 
formal description of individual aspects of parallel 
implementation of multilayered feed-forward neural 
network and also is able to provide a mathematical 
tool for verification of performance of selected 
simulation architecture.  

During the simulation experiments, gained 
results are showing a significant speed up if the 
learning phase compared with a uniprocessor 
systems. This speed up reinforces the position of 
parallel architectures in the modeling process of 
neural networks, especially in application areas 
where consequence is focused on the real-time 
acquisition of required results. 
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