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SUMMARY 
This paper offers another than standard  view of solving  the optimization problems occurring in practice. For 

description of a given problem we will take a suitable  mathematical model which uses the graph theory and the theory of 
computing complexity. The introduction explains basic terms and it contains the most widely known standard combinatorial 
problems on graphs. The next chapter describes a particular practical problem. The problem is to find an optimal 
distribution of the data network among single offices and components of self government when we consider more providers of 
telecommunication connections and various technical conditions of data transmission. We will transform this problem into 
one correspondent mathematical model. In this mathematical model, the graph and the used objective function will represent 
the given network with all its conditions, requirements and also with its limitations. We will find the solution of this 
optimization problem by solving this mathematical model through the use of known algorithms. The goal of this paper is to 
show that this alternative approach to the given problem offers more simple and more elegant solution in comparison to 
solutions of some practical problems using standard optimization methods which can be slow and complicated. 
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1. INTRODUCTION 
 

It is not satisfactory anymore to transform the 
optimization problems, which rise from 
technological progress and from the development of 
IT, into the standard optimization problems, which 
have mainly been used in their solvings. We also 
have to seek new mathematical models, which will 
enable us to give a look at the other optimization 
alternatives as well as at the new forms of evaluation 
and determination. Usage of graph theory and theory 
of computing complexity is a very suitable 
mathematical model for discreet structures and 
actions.    

Combinatorial optimization problem P is a pair   
P = (D, f), where D is a finite set of all feasible 
solutions (feasible sets) of a query P and f is  an 
objective function. There are two separate basic 
versions of the problem in the theory of computing 
complexity. 

 
1. If we seek such feasible set D from the system of 

feasible sets D, so that the value of objective 
function f(D) was minimal (maximal) on D, we 
call it optimization version of the problem.  

2. If we want to decide, if there is such feasible set 
D in the system of feasible sets D, so that 
unequality  f(D) ≤ k, (f(D) ≥ k) applies for 
predetermined k, we call it decision version of 
the problem.  
 
Sum, bottleneck and balanced problems belong 

to the best known standard combinatorial problems 
on graphs. We can formulate them as follows: 

Let us have the graph G = (V, E), where V is set 
of vertices, E is set of edges and the system of the 
feasible sets D(G). Let us assign the weight w(e) ∈ 

)0, ∞ to each edge e ∈ E and let  us have standard 

objective functions:1 
Sum function: 

1 ( )
e D

f w e
∈

= ∑ , where D ∈ D(G), 

Bottleneck function: 
2 max ( )

e D
f w e

∈
= , where D ∈ D(G), 

Balanced function: 
3 max ( ) min ( )

e De D
f w e w e

∈∈
= − , where D ∈ D(G). 

 
Then we get following types of optimization 

problems: 
 
Sum  problem:  1 D( )( ) minD Gf D

∈
⎯⎯⎯⎯→ , 

Bottleneck problem: 2 D( )( ) minD Gf D
∈

⎯⎯⎯⎯→ , 

Balanced  problem: 3 D( )( ) minD Gf D
∈

⎯⎯⎯⎯→ . 

 
2. PROBLEM 
 

At the present time, the effective communication 
among single components of self government, 
eventually among offices of public administration is 
increasingly important by the extensive competence 
transfer to the self governments. The communication 
networks serve those purposes (data networks are 
the most suitable ones). The single communication 
connections are operated by different providers 
under different economic and technical conditions. 
Let us have a group of telecommunication 
connection providers for a given telecommunication 
area that is represented by the communication 
network. Each direct connection between two 
junctions is realized by exactly one provider. Each 
connection could be realized for a prearranged  
                                                           
1 Those are most widely used objective functions in mathematical 
optimisation. 
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charge, and the transmission capacity of single 
connections per unit of time are known. The 
prearranged charge will guarantee the minimal 
transmission capacity per unit of time, which we will 
use by a given provider and the data transmission 
over this  limit will be charged by the particular 
provider according to separate tariff rate. We also 
know maximum possible transmission capacities for 
each connection. 

From the standard economic point of view we 
would like to minimize the data transmission 
expenses in order to ensure the connection to each 
office, so that none of the offices will remain 
isolated. 

We will solve the problem of such connection 
distribution for single offices in this paper, that 
approximately same dataflow will be provided with 
the lower-bound requirement for the data 
transmission capacity per unit of time among single 
offices. This approach is justifiable. By using the 
first optimization approach (strictly financial point 
of view) the following situation could occur: the 
problem with information availability from some 
offices can uprise at the price of lowest expenses or 
the other way round, which means that the low data 
transmission capacity per unit of time can cause 
information inapplicability in real time, that will 
cause malfunction or inefficiency of the particular 
network.  
 
3. MATHEMATICAL MODEL  
 

Let us repeat that the combinatorial optimization 
problem P is a pair (D, f), where D is a finite set of 
all feasible solutions of the given problem P . 
 

D = {D; D is feasible solution of the problem  P} 
 

and f is an objective function. The task is to find the 
optimal feasible solution D from the system of sets 
D. We are dealing with the minimization of the 
objective function f in this paper,  and therefore we 
can write the problem P in the form: 

 
( ) minD Df D

∈
⎯⎯⎯→ . 

 
We are dealing with optimization task on graphs 

where the feasible sets are the subsets of the set of 
edges of the given graph – subgraphs. We want to 
get  a minimal connected subgraph containing all the 
vertices which is the spanning tree of the graph.  
This problem was formulated in [6], [7]. 

Let us have the graph G = (V, E) and the 
decomposition of the edge set E into disjoint 
categories S1, ... , Sp; it is ensured this way, that each 
edge of the spanning tree T belongs exactly to one of 
these categories. For each edge e ∈ E is defined the 
weight w(e), where w(e) is nonnegative integer and 
our objective function  f  has the form L(T):  

 

( ) ( ) ( )
1
max max min

ii e S Ti p e S T
L T w e w e

∈ ∩≤ ≤ ∈ ∩

⎛ ⎞= −⎜ ⎟
⎝ ⎠

, 

where T ∈ D(G) and we assume that 
max ( ) 0e w e∈∅ = . (In this case D(G) presents the set 
of all spanning trees, but generally  D(G) can also 
present the ways between vertices  a and b, or 
perfect pairings in graph G.) 

Let us note that the problems with the above 
defined objective function L come down to the 
standard balanced problem, if the number of 
categories p = 1, which means, that we consider such 
case, where all the connections are covered by one 
provider. If the number of categories p equals to the 
number of edges (every possible connection is 
covered by a different provider), then the problem 
with the objective function loses the significance, 
because it comes down to the problem with constant 
objective function equal 0. 

The first remarks about complexity of similar 
problems appeared in authors Averbach, Berman 
[3], Richey and Punnen [14] and Punnen [13]. We 
can also find the problems with a similar idea of 
edges categorization in the papers [1, 2, 4, 5, 6, 8, 9, 
10, 12]. Mathematical terms and basic facts related 
with the graph theory which are discussed in this 
paper can be found for instance in authors 
Chartrand, Oellermann  [11]. 

Let us retransform the problem from the chapter 
2 into a mathematical model defined in this chapter.  
The simple graphical illustration of the 
transformation of the given problem is visible on the 
Figures 1-6.  

Let us assume, that there are p data services 
providers available. The regional data network will 
be represented by the graph G = (V, E) (Fig. 1), 
where the set of vertices V of the graph G presents 
the data services providers and their customers.  

We will not consider an unconnected graph. 
Such graph would represent a data network where 
some of the providers or customers or a group of 
providers and customers cannot be connected with 
the other providers. This way defined problem 
would not have any solution.  

 
 

G: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

- vertices in ring are providers. 
 
Fig. 1  G:  graph presenting the connections among 
all the customers and the providers – general data 

network 
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U: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

- vertices in ring are providers. 
 
Fig. 2  U: graph presenting the connections among  

the offices and the providers 
 

 
Ũ: 
         26/65                28/12 
   78/32 
  13/21 
   40/15 

            19/17 
       9/22 
               45/17   22/34 
 
               44/20 
 

    26/36             36/55 
                 33/32 
 
    24/21      27/44 
 
 
     58/42 

- vertices in ring are providers. 
 
Fig. 3  Ũ: graph presenting the connections among  
the offices and the providers with weights of edges 

 
 
Ū: 
 
           6/65              8/12 
   58/32 
  -7/21 
    20/15 
             -1/17 
         -11/22 
              25/17      2/34 
 
               24/20              7/44 
 
       6/36            16/55 
                13/32 
 
                    4/21   29/64 
 
 
        38/42 
 

lower bound of capacity = 20 
- vertices in ring are providers. 

 
Fig. 4  Ū: modified graph presenting the connections 
among  the offices and the providers with respect to 

the lower bound of capacity 

Umin:   
 
          6/65             8/12 

   58/32 
       
    20/15 
       0/0    
              h   
            25/17  2/34 
         0/0 
              24/20              7/44 
 
       6/36            16/55 
                 13/32 
 
    4/21      29/64 
 
 
   38/42 

- vertices in ring are providers. 
 
  edges from category S0 
  edges from category S1 
  edges from category S2 
 

Fig. 5  Umin:  resultant graph describing  
the problem P 

 
 
 
 

Topt: 
           6/65             8/12 
 
       
     
        0/0 
              h    
            
       0/0 
     7/44 
 
      6/36            16/55 
                13/32 
 
 
 
     
    

- vertices in ring are providers. 
 

Fig. 6  Topt: resultant graph – spanning tree 
describing the problem P. ( ) { } 33;2;0max ==optTL  

 
 
The set of edges  E is created by the edges that 

couple a pair of graph vertices if and only if there is 
a data connection between them. 

As we are interested only in offices of public and 
state administration, we will create an induced 
subgraph U (Fig. 2) on the set of vertices V(U) of the 
graph G, where V(U) is the set of those vertices of 
the graph G, which match the offices of public and 
state administration and the data services providers.  

Graph Ũ is graph with weights of edges. We will 
assign to the edges a pair of weights, where the first 
weigh presents the data transmission capacity per 
unit of time between the pair of vertices and the 
second weight defines the expenses for utilization of 
services provider on the particular edge (Fig. 3). 
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We have to adapt the weights of edges in this 
subgrap as well, because we need to guarantee the 
condition of the lower boundary of the transmission 
capacity per unit of time. We can reach that by 
modifying the first weights of edges so that we will 
reduce them by the value of the lower bound  (graph 
Ū on the Fig. 4).  

Then we will also modify the subgraph so that 
we eliminate all the edges which have negative first 
weight because those connections will not guarantee 
the wanted transmission capacity, therefore we 
cannot use them. We will mark this subgraph as 
Umin. We will divide the edges in the subgraph Umin 
into p categories so that the edges, which ensure the 
data transmission for the same providers, we will put 
into the same category. We will get p categories of 
edges S1, ... , Sp. So we could guarantee the option 
that any of service providers can be eliminated from 
the selection, we will create one special vertex  h, 
which we will bind by an edge with each vertex, 
which represents the data services provider (Fig. 5).  
We will assign to those edges the first and the 
second weight equal 0 and we will add all these 
edges to the new created zero category S0. This way 
is the graph construction finished.  

The problem P is given by the graph Umin , by 
the decomposition of the edges into the categories 
and by the objective function L. The system of the 
feasible sets  D contains all spanning trees T of the 
graph  Umin. If there was no spanning tree in the 
graph, there would be an isolated office or the set of 
offices, which would have no connection with the 
other ones. The aim is to find such spanning tree T 
from the set D, for which the value of the objective 
function L will be minimal with respect to the first 
weights. This means that there will be found an edge 
with maximal provided transmission capacity 
( ( )max

ie S T
w e

∈ ∩
) and an edge with minimal provided 

transmission capacity ( ( )min
ie S T

w e
∈ ∩

) for each provider 

in the given spanning tree.  We determine their 
differences  and after that we determine the maximal 
difference of all of them  

( ( ) ( )( )1
max max min

ii e S Ti p e S T
w e w e

∈ ∩≤ ≤ ∈ ∩
− ). 

The spanning tree with the minimal value of the 
maximal differences is the optimal solution Topt 
(Fig.6). That presents the transmission network with 
the smallest differences in the amount of data 
transmitted per unit of time among the offices. We 
will obtain this way the balance of the transmission 
and this also implies the balance of the expenses for 
single offices. The complexity of general case of 
problem P was published in [6] and its polynomial 
algorithm for solving of the problem P was 
published in [7].  

Our search for optimum solutions of some 
problems we will extensively use the following test. 
 
 

Feasibility test: 
 
For a given problem of the form  

( ) D minTL T ∈⎯⎯⎯→  

and a set EE ⊆0
 ( 

0E =allowed elements ) decide, 
whether there exists a feasible solution T ∈ D(G), 
containing only elements of set 

0E . 
In cases when D(G) consists of spanning trees, 
perfect matchings or ba −  path problems there are 
well known polynomial algorithms for solving the 
feasibility test. 

We briefly show that all the considered problems 
with objective function L is polynomially solvable 
for  p fixed, 2≥p . 
Denote by  
[ ] ( ){ }, for  the set ; .

T
T E e T w eα β α β⊆ ∈ ≤ ≤  

 
Advance for finding of optimum of problem L- 

spanning tree. 
 

For each category  Si and each feasible solution 
( ) ( ).max and minlet  ewewT

TSeiTSei
ii ∩∈∩∈

== βα  

Then T is a subset of union ∪
p

i
iM

1=

, where 

[ ]
iSiiiM βα ,=  and ( ) ( ).max

1 pi
iiTL

≤≤
−= αβ  

It therefore suffices to check all possible unions 
(using all combinations of  p-tuples of  ii βα , pairs ) 

whether where exists a feasible solution  ∪
p

i
iMT

1=

⊆ . 

Here we can employ the feasibility test.  

Clearly the minimum value of 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
∪

p

i
iML

1

 taken over 

union ∪
p

i
iM

1=

containing a feasible solution is the 

optimum of problem ( ) minD⎯⎯→⎯ ∈TTL . 
 

Since for each Mi there are at most 2E  
possibilities for choosing upper and lower bound 

ii βα ,  it sums up for all categories to pE 2  times 
performing the feasibility test. This takes only 
polynomial time providet that a polynomial 
feasibility test exists. 

If this previous way [7] will by applicated we 
find Topt - optimal solution of problem  L-spanning 
tree, if solution exists. 
 
4. CONCLUSION 
 

In this paper we have shown the specific option 
how to apply the mathematical optimization model 
using graph theory. It is possible to use similar 
approach not only for our problem solving from the 
chapter 2. A similar problem can be use also for 
various technical or industrial applications. There 
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are known many other objective functions except for 
the mentioned objective function which are 
published [6] and which present the problem 
optimization from various point of view and which 
consider different characteristics of graphs.  The 
algorithms for solutions of these problems are 
known [7]. For instance, if we were interested 
exclusively in expenses minimization in our 
problem, it would be the standard problem of 
minimal spanning tree, solution of which is 
generally known. Mathematical modelling of similar 
problems optimization finds a large versatility in 
praxis. 
 
 
REFERENCES 
 
[1] Aggarval, V.: The assignment problem under 

categorized jobs, European J. Oper. Res. 14 
(1983) 193-195. 

[2] Aggarvwal, V., Tikekar, V. G. and Hsu L.-F.: 
Bottleneck assignment problems under 
categorization, Comput. Oper. Res. 13 (1986) 
11-26. 

[3] Averbakh, I., Berman, O.: Categorized 
bottleneck-minimum path problems on 
networks, Operation Research Letters 16 
(1994) 291-297. 

[4] Berežný, Š., Cechlárová K. and Lacko, V.:  
Optimization problems on graphs with 
categorization of edges, in: Proc. SOR 2001, 
eds. V. Rupnik, L. Zadnik-stirn, S. Drobne  
(Predvor, Slovenia, 2001) 171-176. 

[5]  Berežný, Š., Cechlárová, K. and Lacko, V.:  A 
 polynomially solvable case of optimization 
problems on graphs with categorization of 
edges, in: Proc. of MME′99 (Jinřichúv 
Hradec, 1999) 25-31. 

[6] Berežný, Š., Lacko, V.: Balanced problems 
on graphs with categorization of edges, 
Discussiones Mathematicae Graph Theory 23 
(2003) 5-21. 

[7] Berežný, Š., Lacko, V.: Easy (polynomial) 
problems on graphs with categorization, in: 
Proc. New trends of development in aviation 
(Košice, 2000) 36-46. 

[8] Berežný, Š., Lacko, V.: Special problems on 
graphs with categorization, in: Proc. of 
MME′2000 (Praha, 2000) 7-13. 

[9] Berežný, Š., Lacko, V.: Easy (polynomial) 
problems on graphs with categorization, in: 
Proc. of New trends of aviation development 
(Air Force Academy of gen. M. R. Štefánik, 
Košice, 2000) 36-46. 

[10] Berežný, Š., Lacko, V.: The Colour-balanced 
Spanning Tree Problems, Kybernetika vol. 41 
(2005) 539 –546. 

[11] Chartrand, G., Oellermann, O. R.: Applied 
and Algorithmic Graph Theory, McGraw-
Hill, Inc., Kingstone, 1987. 

[12]  Gupta, S. K., Punnen, A. P.: Minmax linear 
programs with grouped variables, Opsearch 
26 (1989) 117-186. 

[13]  Punnen, A. P.: Traveling salesman problem 
under categorization, Operation Research 
Letters 12 (1992) 89-95. 

[14]  Richey, M. B., Punnen, A. P.: Minimum 
weight perfect bipartite matchings and 
spanning trees under categorizations, 
Discrete Appl. Math. 39 (1992) 147-153. 

 
BIOGRAPHIES 
 
Anna Grinčová was born in 1973 in Krompachy, 
Slovakia. She received the M. Sc. degree in 
Mathematics-Physics  in 1996 and she received 
RNDr. degree in 1999 at the University of P. J. 
Šafárik in Košice. Since 1996, she has been working 
as an assistant professor of mathematics at the 
Department of Mathematics of the Technical 
University Košice. 
 
Daniela Kravecová was born in 1973 in 
Krompachy, Slovakia. She received the M. Sc. 
degree in Mathematics-Chemistry at the University 
of P. J. Šafárik in Košice in 1997. Since 1997, she 
has been working as an assistant professor of 
mathematics at the Department of Mathematics of 
the Technical University Košice. 
 
Marcel Kudláč was born in 1974 in Michalovce, 
Slovakia. He received the M. Sc. degree in 
Mathematics-Physics in 1998 and he received 
RNDr. degree in 1999 at the University of P. J. 
Šafárik in Košice. Since 2000, he has been working 
as an assistant professor of mathematics at the 
Department of Mathematics of the Technical 
University Košice. 

 
 




