
 Acta Electrotechnica et Informatica No. 1, Vol. 5, 2005

34

UDDP - UNIVERSAL DECISION DIAGRAM PACKAGE

Suzana STOJKOVI
Faculty of Electronics, Beogradska 14, 18000 Nis, Serbia and Montenegro,

E-mail: suza@elfak.ni.ac.yu

SUMMARY
Decision diagrams (DDs) are frequently used and efficient data structures for discrete functions representation and

manipulation. For different applications, different types of DDs have been defined. Most DD packages developed previously,
such as: CUDD, BuDDy, TUD DD, BXD, CAL,... manipulate with binary decision diagrams (BDDs). This paper presents an
approach for developing of a Universal Decision Diagram Package (UDDP) - application provided for manipulating with
different types of shared multi-valued decision diagrams. The main idea is to develop core of a system that permits
construction of various decision diagrams for different classes of discrete functions, and involve methods for DD
manipulation independently on a concrete DD type. The core is simply adaptable for manipulation with different DD types.
In the present version UDDP maintains manipulation with DDs for representation of functions defined in finite fields
(qDDs), Multi-terminal decision diagrams (MTDDs) and Edge-valued decision diagrams (EVDDs). On the other side,
UDDP is an "open source" project. It can be easy extended to the manipulation with other kinds of DDs. UDDP provides an
effective component for visual representation of DDs. This component is also independent on the type of the DDs.

Keywords: decision diagrams, programming of decision diagrams, visualization of decision diagrams

1. INTRODUCTION

Many problems in digital logic design, artificial
intelligence, telecommunications, etc. are based on
manipulations with discrete functions. Because of
that, various methods for representation of discrete
functions have been developed. In 1986, Bryant
proposed application of a graph-based representation
of Boolean functions called Binary Decision
Diagrams (BDDs) [2]. Analogously, for the multi-
valued discrete functions representation the
Multiple-place Decision Diagrams (MDDs) are
defined. Recently, decision diagrams (DDs) are a
widely used way for representing discrete functions
with a large number of variables. Decision diagrams
that represent several discrete functions are called
Shared DD [2]. In the last years, many algorithms
for DD manipulation have been developed [17], [18]
and different kinds of DDs have been proposed to
represent different classes of discrete functions [3],
[13], [19].

DD programming is also a very frequently
discussed problem in last years. In the papers [1] and
[2] basic principles for DD programming are
defined. In this paper we will discuss several DD
packages, including CUDD [16], PUMA [7],
BuDDy, TUD DD [8], CAL [14], etc. All these DD
packages are developed on the base of the principles
proposed in [1] and [2]. These packages are efficient
in dealing with some particular type of binary DDs
or for some classes of discrete functions. Because of
that, it is a very interesting and useful task to
develop a DD package for manipulation with
different kinds of DDs, which could be able to
realize a new kind of DDs and the corresponding
manipulation algorithms.

This paper presents an approach to the
programming of decision diagrams, which results in
a DD package that manipulates with different kinds
of DDs in a uniform way. To provide this, it is

needed to develop a package core, which has to be
independent of the domain and range of the function
represented as well as decomposition rules applied at
the nodes of the decision diagram. This core has to
be adaptable and extensible to manipulation with
different kinds of DDs.

This paper presents the UDDP (Universal
Decision Diagram Package) - application, which is
developed based on the presented approach. In the
present version, UDDP is specialized for working
with multi-valued qDDs (DDs that represent the
functions defined in finite fields), MTDDs (Multi-
terminal DDs) and EVDDs (Edge-valued DDs).
UDDP contains a component for visual
representation of DDs that is independent of the kind
of the DD. The object-oriented technology is used in
both design and implementation of the UUDP. It
enables an easy outbuilding of the package for
manipulation with other kinds of DDs. For the
object-oriented design of UDDP, we are using UML
and RationalRose tool. The package is implemented
in MS Visual C++.

2. DECISION DIAGRAMS

Decision diagrams are acyclic directed graphs
that contain non-terminal nodes, terminal nodes and
edges. In a DD for a function f with q-valued
variables, non-terminal nodes are labeled with
variables xi in f and have q outgoing edges. Outgoing
edges are labeled with all possible values for a
variable xi. Terminal nodes contain the values of the
function f at the points defined by n-tuples, which
label edges from the root node to the corresponding
terminal nodes.

DDs are classified with respect to the number of
outgoing edges of non-terminal nodes, type (logic,
integer, or rational numbers) and range of values for
terminal nodes and with respect to the processing
that is possible to be done. For example:

Acta Electrotechnica et Informatica No. 1, Vol. 5, 2005 35

- BDDs are DDs where non-terminal nodes have
two outgoing edges � they represent Boolean
functions;

- MDDs are DDs where non-terminal nodes have
more than two outgoing edges � they represent
multi-valued discrete functions;

- FDDs (functional decision diagrams) are DDs
where terminal nodes contain the Reed-Muller
spectral coefficients;

- MTDDs are DDs in which terminal nodes values
can be of any type and range;

- EVDDs are DDs in which edges contain additive
data assigned as weights of the edges.

- qDDs are DDs that represent discrete functions,
which are defined in finite fields, i.e. qDDs are
DDs where values for a terminal node are in a
finite set {0,1, �, q-1}.

Example 1. Fig. 1 shows BDD of a Boolean
function f(x1,x2,x3) defined by the truth-vector
F=[0,0,0,0,0,1,1,1] and a MTMDD of a ternary
function g(x1,x2,x3) defined by the truth-vector G=
[0,0,0,0,0,0,0,0,0,0,0,5,3,0,5,3,0,5,3,0,5,3,3,3,3,3,-2,-2].

Fig. 1 BDD for the function f (a) and MTMDD for
the function g (b) in Example 1

3. RELATED WORKS

3.1. Programming of DDs

Previous experiences in DD programming show
that the basic problems in DD package
implementation are to:

choose an appropriate data structure for
representation of nodes in the DD;
support basic principles for DD programming;
select an efficient algorithm for generation of
DD.

This section presents an approach to the solution

of the specified problems, which is used in existent
DD packages.

3.1.1. Data structures for representation of a

node in the DD

Data structure for BDD node representation,
defined in [2] which is usually used in existing BDD

packages is shown on Fig. 2. In the structure high
and low note pointers to the successor nodes,
index � the level of the node in BDD, id � unique
node identification number, value � the value of
terminal node, ref_counter � number of input
edges and mark notes if the node is processed in
some manipulation algorithm with the BDD.

struct node
{
 node *high,*low;
 int index;
 int value;
 int id;
 int ref_counter;
 boolean mark;
}

Fig. 2 Data structure for BDD node representation

The similar data structure for representation of
nodes in a MDD suggested in[11] is shown in Fig. 3.

typedef struct node *DDedge;
typedef struct node
{
 int ref;
 char value,flag;

DDedge next, previous;
 DDedge edge 0 ;
} node;

Fig. 3 Data structure for MDD node representation

3.1.2. Basic principles for DD programming

Basic DD programming principles are defined in
[1] and [2]. Most of the existing DD packages are
implemented by their use. The principles propose to:
1. Support dealing with shared DDs. � In shared

DDs, some nodes in the graph is shared by more
functions. The number of nodes in shared DDs is
smaller than the sum of nodes in separate DDs.

2. Store nodes into a unique node table. � Using the
unique node table guarantees that at any time
there are no isomorphic subgraphs and redundant
nodes. To minimize time for searching a node in
the table, the node table is usually realized as a
hash table.

3. Support strong canonicity. � Due to the existence
of the unique table, two equivalent functions are
represented by exactly the same subgraph within
the shared DD. This property is referred as
strong canonicity.

4. Have a unique compute table � Compute table
keep few recently computed functions. This table
is also implemented as a hash table.

5. Use complemented edges � If edge pointed to a
subgraph representing considered function is
denoted as complemented then complemented
values of function are used. Using of
complemented edges is one of the ways to reduce
the size of a DD defined as the number of nodes
in the DD [2].

36 UDDP � Universal Decision Diagram Package

6. Perform an efficient memory management. - In
DD manipulation, a large number of DDs are
constructed and than deleted. Nodes, which are
no longer used, are not freed immediately.
Instead, a garbage collection is called from time
to time to recover all the unused memory.

7. Support a dynamic variable reordering. - DD size
depends on the order of variables. Dynamic
variable reordering implies that every time when
the number of non-terminal nodes grows up to a
limited size, the re-ordering process is invoked
automatically.

3.1.3. DD building and manipulation

There are different ways for representation of
discrete functions (truth-table, cubes�). Due to,
different algorithms for DD building have been
developed. They are all based on building of partial
DDs and contain series of operations on DDs. In the
case of qDDs, operations in finite fields are used. In
other DDs considered in this paper, operations
corresponding to the type of values of terminal
nodes (integer, real, complex�) are used. One of the
basic principles for DD programming is usage of the
unique compute table. Due to, all operations in finite
field are improved by using one operator. In the
binary logic, this is the ITE operator [1], but in
multi-valued logic it is the CASE operator [17].

ITE operator is a 3-variable (F,G,H) Boolean

function defined as: If F then G else H, and in a
formal way as:

HFGFHGFite ,, (1)

CASE operator in q-valued logic is a (q+1)-

variable function defined as follows:

iFGGGGFCASE iq for 110 ,,,, . (2)

Instead of the CASE operator, the paper [12]

proposes using of MIN and MAX operators.

3.2. Visualization of DDs

Problem of visualization of DDs is not enough
resolved in existent DD packages. For example,
several packages use external programs for drawing
oriented graphs. For instance, CUDD and BuDDy
use DOT program, which contains its own algorithm
for placing nodes at the levels. Therefore, nodes
from the same �natural� level in DD, can be written
in different levels in the picture. Because of that,
pictures of DDs generated by DOT and similar
programs are often not sufficiently descriptive.

DD package Jade [4] contains its own
component for visual representation of DDs, which
determine the position of nodes according to the
position of their first appearance in the complete
decision tree. Because of that, picture of a DD can

be unsymmetrical. Fig. 4 shows an example of the
pictures of DD generated by Jade.

Fig. 4 Picture of a DD generated by Jade

In the package PUMA, the same arrangement of
nodes is used, but the nodes are allocated
equidistantly throughout the level. In this package,
all aesthetic components of visual representation are
hard-coded (color of the nodes and edges, size of the
nodes, distance between levels, etc), and all edges
are drawn as straight lines. Because of that a picture
of DD can contain many edges crossing and passing
of edges through the nodes. An example of picture
of a DD generated by PUMA is shown in Fig. 5.

Fig. 5 Picture of DD generated by PUMA

4. DD PROGRAMMING APPROACH USED

IN PROGRAMMING OF UDDP

The basic goal in UDDP programming is to
provide �universality�, i.e. feasibility of working
with different kinds of DDs. To achieve this goal,
the DD package should:
- Support traditional DD programming principles

(discussed in Section 3);
- Contain �universal methods� (methods applicable

to different types of DDs) always when it is
possible;

- Replace the existing 'universal method' by a
more efficient one whenever it is possible;

- Enable an easy extension of the package to
manipulation with other DDs type.

Acta Electrotechnica et Informatica No. 1, Vol. 5, 2005 37

�Universal methods� use �universal� operations
on DD nodes that can be implemented in different
ways for concrete kinds of DDs. For example, for
building of MDD, the operations MIN and MAX are
used. In the case of qDDs, these operations are
realized by using of CASE operator, as suggested in
[12]. In the case of MTDDs MIN and MAX is
realized by calling a �universal� recursive method for
evaluation of a binary operation on DD nodes. This
method is introduced because algorithms for
different operations on DD nodes are different only
at the level of terminal nodes. A programming code
for evaluation of any binary operation on DD nodes
in MTDDs is shown in Fig. 6.

BinOp(a,b,opCode)
{
 Result = computeTable.search(
 new computeFunction(a,b,opCode));
 if (result != 0)
 return result;
 if (a->level==0 && b->level==0)
 result=(*FunctionTable[opCode])(a,b);
 else
 {
 maxLevel = max(a->level,b->level);
 for(i=0; i<a->succNo; i++)
 succ[i]=BinOp(
 a->cofactor(maxLevel,i),

 b->cofactor(maxLevel,i),
 opCode);

 result=getNode(
 new Nonterminal(maxLevel,succ));
 }
 computeTable.add(new ComputeFunction(
 a,b,opCode,result));
 return result;
}

Fig. 6 Method for evaluation of binary operation on
DD nodes in MTDD

A �universal� method for evaluation of any

binary operation on DD node in qDDs has been
proposed in [5]. This method is based on a
relationship between the definition tables of
operations in finite fields and the CASE operator,
which is introduced in [5]. In that paper, there are
shown: a relationship between the definition table of
a Boolean operator and realization of that operator
by ITE and the relationship between definition table
of a q-valued operator and the corresponding CASE
operator.

Let Boolean operator OP is defined by a
definition table V as shown in the Tab. 1.

OP 0 1
0 v0,0 v0,1

1 v1,0 v1,1

Tab. 1 Definition table of Boolean operation OP

If two switching functions a and b are
represented by BDDs, and operator OP is defined by

the definition table V, computation of aOPb can be
realized by the ITE operator as follows:

0,01,00,11,1 ,vb,v,ite,vb,va,iteitea,bOP (3)

If a q-valued operator qOP is defined by a

definition table V as shown in the Tab. 2, and two
multi-valued functions a and b are represented by
qDDs, then the operator qOP can be realized by the
CASE operator as:

))1,1,,0,1,

),...,1,1,,0,1,

),1,0,,0,0,(,(,

qqvqvbCASE

qvvbCASE

qvvbCASEaCASEbaqOP

(

 (

 (4)

qOP 0 1 q-1

0 v0,0 v0,1 v0,q-1

1 v1,0 v1,1 v1,q-1

q-1 vq-1,0 vq-1,1 vq-1,q-1

Tab. 2 Definition table of a q-valued operation qOP

Besides in building, the operations on DD nodes
are also used in different DD manipulations. One of
often-resolved problems is calculation of a spectral
transform over DDs. In [5], is shown a generic
approach to calculation of spectral transforms over
DDs. Spectral transform computation on DDs can be
realized as a set of operations of addition (+) and
multiplication (*) in the corresponding algebraic
structure where the transform is defined. Because of
that, a method for spectral transform calculation can
be realized as a �universal� method. This method
uses the operations ADD for addition and MUL for
multiplication that are realized in different ways for
different kinds of DDs (similarly to the realization of
MIN and MAX operations).

It is shown that an object-oriented approach in
both UDDP design and implementation is the most
convenient way to achieve the proposed goals. To
satisfy the universality we should use parameterized
classes. For example, most of defined DD
manipulation algorithms are independent of the
terminal node values type. Mechanism of replacing a
given method with another one is available in the
object-oriented approach (in the derived classes
virtual methods from based classes can be re-
defined). Because of that, our approach in UDDP
development is: to define a set of basic classes
including all universal methods for DD
manipulation. For a concrete type of DDs, to define
appropriate system of classes derived from defined
basic classes in which, some methods from base
classes can be re-defined and some new methods
(characteristic for concrete DD type) can be added.
In that case, addition of a package for new types of
DDs representation will be simple. Classes for
representation and manipulation of a new type of

38 UDDP � Universal Decision Diagram Package

DDs will be derived from the classes for
representation of the most similar DD type.

5. FEATURES OF UDDP

An MDD program package should provide:
1. Manipulation with a different types of shared

MDDs (where BDDs are one special case of
MDDs);

2. Efficient visual representation of DDs;
3. Representation of DDs suitable for using by

different modules, applications and Internet;
4. A user-friendly interface.

The basic problem in development visual

representation of a decision diagram is to determine
optimal arrangement of nodes (arrangement with a
minimal number of edges cuttings and minimal
number of edges breaks-through the nodes). Second,
visual representation of DDs should not be static. It
should enable a manual moving of DD elements in
the viewer and showing different information about
DD elements (nodes and edges).

To transfer data between different modules,
applications, and through Internet, XML format is
usually used. Because of that, UDDP should to
contain a converter of internal DD representation
into the XML format, and vice versa.

A user of UDDP package need not to be
familiarized with implementation details, but he
must specify a way for construction of a DD;
processing that will be done; and an information
about final DD which he is interested in. It follows
that UDDP should contain an efficient visual user-
interface for management by DD manipulation.

6. UDDP IMPLEMENTATION DETAILS

Based on the approach discussed in Section 4,
we build the UDDP package. UDDP is provided for
manipulation with different kinds of shared multi-
valued DDs. In both design and implementation
process of UDDP, the object-oriented approach (as
suggested in Section 4) is used. For the design
process, the UML (Rational Rose tool) is used while
for a package implementation the C++ programming
language is used.

For realization of four fundamental features of
UDDP reviewed in Section 5, there are four basic
components provided in our application:
DDPLibrary, Graph, XMLProcessor and
IOManager. The main diagram of UDDP
architecture is shown in Fig. 7.

6.1. DDPLibrary

DDPLibrary is in charge for creating and
different processing of DDs. DDPLibrary contains
a set of base classes including all universal methods
for DD manipulation, and classes specialized for
qDDs, MTDDs (with different types of terminal
nodes values) and EVDDs (with different types of
terminal nodes and edges values) manipulation.

Package DDPLibrary contains three subpackages:
Node, Engine and DDCore.

DDPLibrary

Graph

XMLProcessor

IOManager

Fig. 7 Main-diagram of UDDP architecture

As shown in Section 3, the first task in DD
programming is to choose efficient data structure for
DD node representation. DDPLibrary contains
class system for DD node representation grouped in
the package Node (see Fig. 8).

ValueT

Terminal

value : ValueT

EdgeValT

ValuedEdge

value : EdgeValT

NonTerminal

succNo : unsigned
var : unsigned

DDNode

id : unsigned long
mark : bool
inEdgesNo : unsigned
level : unsigned
next : Node*
$ nodeNo : unsigned long

Edge

n+succ n

1

+targetNode

1

Fig. 8 Class diagram of the package Node

Base class in the system is a DDNode class
containing common attributes of all DD nodes such
as: unique id, mark, number of input edges, level
and pointer of the next node at the same level. From
this class, classes Nonterminal and Terminal
are derived. Class Nonterminal contains the
corresponding variable index, dynamic vector of
outgoing edges and their number. In ordered DDs,
there are non-terminal nodes labeled with the same
variable at the same level. In that case, the class
Nonterminal has not to contain attribute var
(variable index). This adding of attributes enables
manipulation with unordered DDs. Representation
of edges as a dynamic vector enables manipulation
with heterogeneous DDs (whose different non-
terminal nodes have different number of outgoing
edges). Class Terminal contains the value of the
represented function. The function value can be of
the different type. We use standard C++ types and
type Complex. It can be any type with defined
operators <<, >>, =, ==, <, + and *. Class Edge
represents edges in DDs. This class contains pointer
to the target node. UDDP can also manipulate with

Acta Electrotechnica et Informatica No. 1, Vol. 5, 2005 39

EVDDs. In EVDDs, the class ValuedEdge
represents an edge. This class contains value of the
edge (that is also of the optimal type). If it is needed
additional information about edges, a new class for
edge representation can be derived from the class
ValuedEdge.

Classes responsible for storing and manipulation
of a DD node are grouped into the package
Engine. Fig. 9 shows class diagram of the package
Engine.

EVDDEngine MTDDEngine

UniversalComputeFunction

operation : unsigned

qDDEngine

ComputeFunction

argNo : unsigned

DDEngine

hashSize : unsigned long
q : unsigned
levelsNo : unsigned
levelMap : unsigned*
varMap : unsigned*

1..n+computeTable 1..n

DDNode
(from DDNode)

n

+terminals

n

n
+arguments

n 1

+result

1

1..n

+nodeTable

1..n

n+levels n

Fig. 9 Class diagram of the package Engine

Basic class in this package is a DDEngine. It
contains both, unique node table and compute table
(which are realized as hash tables). In the
DDEngine all basic operations on DD nodes,
needed for DD building and manipulation, are
defined as pure virtual methods. There are
implementations of these operations in the classes
derived from DDEngine because the same
operation is realized in different ways for different
DD type. For example, in qDDs all DD node
operations can be realized by using only one
operator (CASE operator). One operator usage
speeds up DD manipulation because a finding of a
recent computation in the compute table is more
probable. The compute table for qDDs is also very
simple. It is sufficient to memorize only the input
arguments and result of every executed operation. In
other DD types, for each executed operation, the
operation type has to be known. This problem can be
resolved in two ways: by using different compute
tables for different operations or by using one
compute table in which for each computation the
operation code is memorized. In our UDDP the
second way is used.

There are set of classes for DDs representation in
the package DDCore. Fig. 10 shows the class
diagram of the package DDCore.

Basic class for multi-valued decision diagram
representation is a MDD class. It contains all standard
DDs manipulation methods (for building of DD on
the base of different representation of discrete
functions, function composition, cofactor
computing, spectral transforms... All methods in this

class are realized as virtual. If for a concrete type of
DDs there exist efficient algorithms for some
methods defined in this class, in the derived class
(representing a concrete DDs type) these methods
are redefined. In classes representing concrete DDs
type several methods are realized for few spectral
transforms. For example, in qDD class there exist
methods for GF and RMF transforms, in MTDD class
there are methods for Walsh and arithmetic
transform calculation, etc. There is also a universal
spectralTransform method in the MDD class.
This method is based on an algorithm proposed in
[5] and realizes any spectral transform defined by a
basic transform matrix and by definition tables for
operations + and *. Definition tables of operations
are used only in qDD, in other type of DDs
operations + and * coincide with arithmetic
operations of addition and multiplication.

qDD

ValueT
EdgeT

EVDD

ValueT

MTDD

TqDD

ValueT

MDD

qValue : unsigned
varNo : unsigned
outNo : unsigned

DDNode
(from DDNode)

1..n

#rootNodes

1..n

DDEngine
(from Engine)

1#ddEngine 1

1..n

+nodeTable

1..n

n
+levels

n

Fig. 10 Class diagram of the package DDCore

The component DDPLibrary is a basic
component for DD representation and manipulation.
Because of that, it was developed independently of
other components of the system, and can be
compiled and used absolutely in both DOS and
UNIX (LINUX) operating systems.

6.2. Graph

Graph component is in charge for visual
representation of DDs. For drawing of DDs, the
UDDP uses an algorithm for drawing directed
graphs proposed in paper [6]. This algorithm
contains four steps:

- placing the nodes in discrete levels;
- setting the order within levels;
- setting layout coordinates of nodes;
- drawing of edges.

In DDs, nodes are assigned to the levels. Because

of that, first step in DD drawing is creation of a
primary visual representation of the DD where Y
coordinates of nodes are determined by their levels

40 UDDP � Universal Decision Diagram Package

and X coordinates are determined by order of nodes
in depth-first traversal of graph.

The goal of ordering nodes within levels is
minimizing the edge crossings. This step is realized
by using an iterative algorithm that is proposed in
[6]. Each iteration of that algorithm consists of three
actions: computing median values of nodes (median
values of X coordinates of neighbor nodes), sorting
of nodes by median values throughout the levels,
and transposition of neighbor nodes at the levels
while edge crossings are reduced. The proposed
number of iterations in that step is 24.

The goal of shifting the nodes by X coordinates
throughout levels is minimization of edges lengths.
In our program, X coordinates of non-terminal and
terminal nodes are determined in different ways. For
setting of X coordinates of non-terminal nodes, an
iterative algorithm based on computation of the
median values is used. Terminal nodes are placed
evenly from the left to the right margin of the
picture.

In the last step edges are drowned as Bezier
curves with four control points. Bezier curves are
used when angles of edge crossings should be
increased and when edges should to bypass the
nodes.

Example 2. Figures 11 � 14 show pictures of the
DD of the function ADD2 (2-bit adder) after each
step of drawing algorithm.

4 4

3 3 3 3 3

2 2 2 2 2 2

1 1

0 1

Fig. 11 The first picture of the DD of the ADD2

4 4

3 3 3 33

2 22 2 22

1 1

0 1

Fig. 12 Picture of the DD after node ordering

4 4

3 3 3 33

2 22 2 2 2

1 1

0 1

Fig. 13 Picture of DD after X coordinates setting

 4 4

3 3 3 33

2 22 2 22

1 1

0 1

Fig. 14 Picture of DD after edges placement

Visual representation of DD in UDDP is not

static. It enables manual relocation of nodes; manual
deformation of edges, displaying different
information about node or edge in the DD; writing a
graph to a file, etc. User can define complete
appearance of the graph (size and color of the nodes,
distance between levels, data which will be shown at
the graph, etc.). Each element of the graph can be
marked by one left click. Reallocation of the marked
element is limited. Nodes can be moved only at the
same level; edges can be distorted, but choice and
target node cannot be changed. More information
about a particular node or edge is shown after left
double-click on the corresponding node (edge).

Fig. 15 The main window of the UDDP

6.3. IOManager

IOManager is in charge for the user interface.
UDDP is a Windows application and IOManager
enables communication between user and
application by using Windows resources (menus,

Acta Electrotechnica et Informatica No. 1, Vol. 5, 2005 41

dialogs, icons�). Main window of the application is
shown in Fig. 5.

6.4. XMLProcessor

XMLProcessor is responsible for conversion of
an internal DD representation into the XML format,
and vice versa. XMLProcessor contains two
components: XML-writer and XML-reader. XML-
writer converts internal DD representation into XML
format while XML-reader interprets a XML format
(builds DD on the base of its XML file). In
XMLProcesor implementation MSXML 4.0 is used.

7. CONCLUSION

DDs are a state-of-the-art data structure used in
modern VLSI CAD tools. Especially, BDDs are very
interesting. Several packages are provided for BDDs
manipulation. In the last decade there is a renew
interest in multi-valued logic. MDDs are efficient
data structure for multi-valued discrete function
representation and manipulation. Unlike to BDD
manipulation packages, the efficient MDD
manipulation packages are not developed yet. Some
particular examples are given in [11].

This paper presents the Universal DD Package,
which manipulates with qDDs, MTDDs and
EVDDs. However, it is designed in such a way that
represents an open source project and can be easily
adapted to deal with any other MDD types. UDDP is
a Windows application containing tools for visual
representation of DDs and their conversion into the
XML format.

REFERENCES

[1] Brace, K S, Rudell, R L, Bryant, R E: Efficient
implementation of a BDD package, In Design
Automation Conference, San Francisco, June
1991, 417-421.

[2] Bryant, R E: Graph-based algorithms for
Boolean functions manipulation, IEEE Trans.
on Computers, Vol. C-35, No. 8, August 1986,
677-691.

[3] Bryant, R E: Binary Decision Diagrams and
Beyond: Enabling Tehnologies for Formal
Verification, International Conference on
Computer-Aided Design ICCAD '95,
November, 1995, pp. 236-243.

[4] Drechsler, R: JADE: Implementation and
Visualization of a BDD Package in Java,
http://www.informatik.uni-bremen.de/grp/ag-
ram/doc/work/DATE_uni_booth.pdf.

[5] Drechsler, R, Jankovic, D, Stankovic, R S:
Generic implementation of DD Packeges in
MVL, Proc. EUROMICRO '99, Milano, 1999,
pp. 352-358

[6] Gansner, E R, Koutsofios, E , North, S C, Vo,
K-P: A Technique for Drawing Directed
Graphs. IEEE Transactions on Software
Engineering, March 1993, pp. 214-230.

[7] Hett, A, Drechsler, R, Becker, B: The DD
Package PUMA � An Online Documentation,
http://ira.informatic.uni-freiburg.de/software/
puma/puma.htm, 1996.

[8] Horeth S, Blank C: TUD Decision Diagram
Package, Preliminary C Programmers Manual,
http://www.rs.e-technik.th-darmstadt.de/~sth/
dd/dd.html

[9] Janssen, G: Design of a Pointerless BDD
Package, Proc. 10th Int. Workshop on Logic &
Synthesis,Granlibakken, Lake Tahoe, CA,2001

[10] Miller, D M, Drechsler, R: CMVL DDs
package, Proc. 28th Int. Symp. on Multiple-
Valued Logic, Fukuoka, Japan, 1998, 494-512.

[11] Miller, D M, Drechsler, R: Implementing a
multiple-valued decision diagram package,
Proc. 28th Int. Symp. on Multiple-Valued
Logic, Fukuoka, Japan, 1998, 52-57.

[12] Miller, D M, Drechsler, R: On the construction
of Muliple-Valued Decision Diagrams, Proc.
32nd Int. Symp. on Multiple-Valued Logic,
Boston, USA, 2002, 245-253.

[13] Minato S I: Graph-Based Representation of
Discrete Functions, Chapter in Representations
of Discrete Functions, edited by T. Sasao, M.
Fujita

[14] Sanghavi J V, Ranjan R K, Brayton R K,
Sangiovanni-Vincentelli A: High Performance
BDD Package Based on Exploiting Memory
Hierarchy, Proceedings of ACM/IEEE Design
Automation Conference, June 1996

[15] Sasao, T, Fujita, M: Representations of
Discrete Functions, Kluwer Academic
Publishers, 1996.

[16] Somenzi, F: CUDD Release 1.1.1, 1996.
[17] Srinivasan A, Kam T, Malik S, Brayton R K:

Algotithms for Discrete Function
Manipulation, Proceedings of the International
Conference on Computer-Aided Design,
November 1990, 92-96.

[18] Stankovic, R S; Stankovic, M; Jankovic, D:
Spectral Transforms in Switching Theory,
Definitions and Calculations, Nauka, Belgrade,
1999.

[19] Stankovi , R S, Sasao T: Decision Diagrams
for Discrete Functions: Classification and
Unified Interpretation, ASP-DAC�98, February
1998, pp. 439-446.

BIOGRAPHY

Suzana Stojkovi was born on 7.10.1966. in Ni�,
Serbia and Montenegro, and received B.Sc. and
M.Sc. degrees from Department of Computer
Science of Faculty of Electronic Engineering in Ni�
in 1990 and 1996, respectively. Since 1991 she is
working as a teaching assistant at the Department of
Computer Science. Hers research interest includes
decision diagrams, multi-valued logic and object-
oriented software design and implementation.

