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SUMMARY 
In our paper we present a dealing with a mathematical language as a basis for formulating different kinds of 

specifications for a general problem solving by computers. We concentrate on the mathematical basis of data abstractions as 
program units with mathematically defined meanings and we concern with the development of programs from requirements 
to results. 
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1. INTRODUCTION 
 

The computers of von Neumann type are able to 
solve problems not only by methods of µnumber 
crunching¶. We know that there is computer music, 
computer graphic, etc. Computers are able to solve 
theoretical problems which can be described by 
mathematics and they can also solve practical 
problems of the fields of mathematical economy, 
theory of games, econometrics, operation research 
and many others. These facts inspired us to an 
intention to solve by computers such aesthetical 
theoretical and practical problems that are 
characterizable by mathematics. 

In this paper we firstly describe a mathematical 
language. Then we characterize data abstractions as 
reusable programming units defined upper 
mathematical theories, so that they have strong 
connection to these theories and so that the program 
development process from requirements to results 
can be characterized by mappings between such 
mathematical entities that contain all information 
about the underlying mathematical theory and the 
syntax and semantics of data abstractions. 
 
 
2. MATHEMATICAL LANGUAGE 
 

At  the beginning  we recall the language of the 
classical first-order predicate logic [1] and we  
extend it by new symbols: we enable variables of 
different sorts, and we introduce function symbols 
of the form  

f:(s1,...,sn)  s 
 

with their profiles, where s1,...,sn , s are (not 
necessarily different) sorts. In such a language we 
can formulate (true or false) sentences, i.e. closed 
formulae, and from them we can prove truthness of 
another sentences. Such extended language of the 
first-order predicate logic we denote by L.  

In the language L we can formulate axioms of a 
set theory, for which we know that they are 
consistent and complete. These two properties of the 
axiomatic set theory are very important in 
programming, because the problems that we intend 

to solve by computers can be formulated in possibly 
dangerous manner. 

Moreover, in the later phase of the program 
development process we need to extend the language 
L by new notions of algorithms and algorithmic 
formulae to the language L¶ of algorithmic logic.  
We show this extension in Section 5 of this paper. In 
algorithmic logic we often need to examine the 
complexity of algorithms really solving the 
considered problems by computing values of those 
functions that correspond with function symbols in 
signatures of data abstractions and that can be 
examined in models of them. 

 
 

3. SPECIFICATIONS UPPER SUBTHEORIES 
 

It is well-known in mathematics that the whole 
poor and applicable theories can be formulated as 
conservative extensions of a good axiomatic set 
theory. In this paper we assume that we already have 
such axiomatic set theory and a conservative 
extension of it that is a subtheory of the axiomatic 
set theory. 

Following Niklaus Wirth [2],  we can formulate 
that µproblem specification = data structures + 
algorithms¶. We start the program development 
process with formulating scientific presuppositions 
of solved problem and goals of this problem solving 
as a solution. The presuppositions and solution 
together we call the requirements specification of 
the problem.  

From Software Engineering we know that we 
can formulate a requirements specification as data 
abstractions written in some appropriate 
specification language. The syntax of a data 
abstraction is an algebraic many-sorted signature 

 
 = ( S,  , Pred ) 

 
that is already formulated in a very simple 
mathematical structure in the framework of our 
subtheory. In the following text we use for 
simplicity only the word signature for the concept of 
many-sorted signature. A signature  contains the 
realizations of sorts symbols as a set S, of function 



32 Mathematical Language in Programming 

symbols as a set   and of predicate symbols as a set 
Pred  from the logic. Elements of the set Pred are 
interpreted so that the predicate symbols are 
contained in closed formulae of the subtheory upper 
which the signature is defined and those closed 
formulae are pseudo-axioms and/or theorems of this 
subtheory.  

To a signature  as a syntax of a data abstraction 
we firstly construct many-sorted -algebras of the 
form 

A = ( AS , A ), 
 

where AS is an S-sorted set of carrier sets As , for 
every sort s  S, and A is a set of functions 
 

fA: As1  « Asn  As , 

for every function symbol  f:(s1,...,sn )  s  from . 
We are interested in such -algebras, in which 

are also pseudo-axioms and/or theorems of the 
subtheory that solve as a basis for proving new 
sentences about the properties of functions defined 
on carrier sets. Such many-sorted -algebras we call 

-models. They constitute the semantics of the 
considered data abstraction. We note here, that 
instead of saying  µa is an element of a carrier set As
µ, we can use µa inhabits in a type As µ. In such a 
manner we found the closed relation between many-
sorted algebras and type theory [3].  

From sentences, signatures and models we can 
construct in unique manner the institution that 
characterize the whole specification. We can 
consider that function symbols in signatures and 
functions in the corresponding models are actually a 
simple or more elaborated form of algorithms. As 
we follows by arrows from the requirements 
specification institution to the program specification 
institution, in which models already contain 
formulae of algorithmic logic, we are working out a 
mathematically proved program in some appropriate 
programming language. We deal with institutions 
and institution arrows in Section 6 of this paper. We 
suppose also that the underlying operating system of 
the computer contains an appropriate program 
development system that correctly creates 
executable specifications from program 
specifications and finally the result specification. 
The meaning of these two kinds of specifications are 
models created by methods of automata theory. 
 
4. DATA STRUCTURES 
 

In the previous section we have established the 
relation between carrier sets in models of data 
abstractions and type theory. Types determine data 
structures in the sense, that all elements of data 
structures and relations between them are actually 
determined by the properties of their types. Because 
category theory deals with mathematical structures 
and morphisms between them, we use it for 
formulating concepts and properties of data 
structures. 

An abstract category A consists of A-objects 
creating a class, of A-morphisms between objects 
containing identities for every A-object, and of 
associative composition of A-morphisms.   A functor  

 
F: A  B 

 
is a morphism from the category A  to the category  
B  that assigns to every A-object a B-object and to 
every A-morphism a B-morphism, such that it 
preserves composition of morphisms and identities.  

We can define concrete categories that retain 
more information about their objects and 
morphisms. A concrete category over a base 
category B is a pair (A, U), where A is a (total) 
category and U: A  B is a forgetful functor (it 
forgets some information from A). Detailed 
definitions of these concepts can be found in [4].  

Three basic kinds of type theory, i.e. simple, 
dependent and polymorphic type theories [5], differ 
in the forms of indexing types. Simple type theory 
uses no indexing, dependent type theory uses 
indexing by term variables and polymorphic type 
theory uses indexing by type variables.  

In our approach we introduce indexing of 
categories by so-called fibration [6]. Putting a 
fibration on the top of the categorical structure 
corresponding to type theory, we can put together 
complicated structures in a modular way. In 
indexing of categories we use the approach of 
display indexing. Let X be a class of sets and I be an 
index set. We define a function  d: X  I, so that the 
elements (sets)  x appear as  fibres over  i: 
 

d -1(i) = { x  X |  d(x) = i } 
 

for every x  X and i  I.  The fibres  d -1(i) are 
necessarily disjoint. We say that  d  displays  X, and 
that  X  is over I.  
   Now we define fibration over categories as 
follows. 
 
Definition 1: Let (A, U) be a concrete category over 
B. The functor U: A  B can be seen as a display 
class  

(U : A  B) 
 

of categories. For a B-object I, the fibre category  
 

AI = U-1( I ) 
 

over I is the category whose objects are A-objects A 
with U(A) = I; and whose morphisms are A-
morphisms  f: A  A¶ with U( f ) = idI , i.e. identities 
on I in B. 

 
 
Example 1: As an example we can construct the 
category Sign of signatures and its fibration. 

Sign-objects are signatures  = ( S, , Pred) and 
Sign-morphisms are signature morphisms  :   
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¶, which satisfy the properties of associativity and 
the existence of identities. 

We can construct a forgetful functor 
 

U: Sign  Set 
 
From this category of signatures to the category of 
sets (that contains sets as objects and functions 
between them as morphisms) as follows: 
 
 functor U assigns to every signature  its 

underlying set of sorts (types) S; and 
 functor U assigns to every signature morphism   
 :   ¶ the function u: S  S¶ between the 

corresponding set of sorts. 
   

We construct the category Class(Set), whose 
objects are classes of sets (Xi)i I  and morphisms are 
pairs (u, f),  where f is a class of morphisms  

  
fi : Xi  Yu(i). 

 
The functor K: Class(Set)  Set is trivially a 
fibration.  

For every signature   = ( S, , Pred) , the set  
can be consider as a function 
 

 : S*  S  Set , 
 
that yields for every (n+1)-tuple  (s1,...,sn , s) a set  
 

 (s1,...,sn)  s
 
of function symbols with the profile (s1,...,sn)  s, 
and  Pred  can be considered as a function 

 
Pred: S* Set, 

 
that yields for every n-tuple (s1,...,sn) a set of  
predicate symbols with the arity (s1,...,sn).  

Then we can construct the functor G: Set  Set, 
which assigns to every set S of sorts from   a set  

 
( S*  S ) + S*, 

 
where µ+¶ denotes disjoint union of sets.  

From the change-of-base theorem [5] and from 
the pullback diagram in Figure 1 we obtain that       
U : Sign  Set is fibration functor. 
                   

      Sign                            Class(Set) 
 
   
   U                                           K 
 
     Set                                  Set 
                        G 
 

Fig. 1  Pullback of Sign 
 

Fibration Sign  Set implicitly defines also 
the type system of a model that will be the semantics 
of signatures. This fibration is also useful because it 
enables construction of function values of a concrete 
types (by using algorithmic logic, see Section 5), i.e.  
values which inhabit in  carrier sets indexed by sorts. 
 
5. ALGORITHMS 
 

In requirements specifications we have in their 
syntax function symbols and in their semantics 
functions. These function symbols and functions 
shortly express an algorithm that construct the 
values of the functions. The construction of function 
values needs more as allows the first-order predicate 
logic. Some kind of the intuitionistic logic is needed. 
We make the first step to the extension of the first-
order predicate logic to an intuitionistic logic that 
enables on the basis of proofs in models also the so-
called deliverables, i.e. preconditions, expressions,  
postconditions and so also the final result of the 
basis of proved annotation.  

We extend our logical language L to the 
language L¶ of algorithmic logic. We add to 
symbols of the language L new symbols called 
algorithms as follows: 
 
 An algorithm is every expression of the form 

 
x:= t     or    q:=  

 
where x is a variable and t  is a term of the same sort 
s ; q is a proposition (a predicate symbol with zero 
arity) and  is an open formula. Such algorithm we 
call assignment. 
 
 Let P and P¶ be algorithms. An algorithm is   

    
i) every expression of the form 

if    then P else P¶ fi 
 
that we call branching between P  and P¶;  
 
ii) every expression of the form 

while   do P od 
 

that we call iteration of P; 
 
iii) every expression of the form  

 
begin P; P¶    end 

 
that we call  composition   of  P   and  P¶. 
 

We can recognize these algorithms as special 
function symbols on the set  P  of all algorithms. 
The iteration can be recognized as the unary 
function symbol  µ
 ¶, composition and branching as 
binary function symbols µo¶ and µif ¶, respectively, 
with the function profiles as follows: 
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          *  : P  P 
           o : ( P , P ) P 
         if  : ( P , P )  P. 
 
Now we extend the language also by new kind of 
formulae, so-called algorithmic formulae. Assume 
that P is an algorithm and  is a formula. An 
algorithmic formula can be of one of the following 
forms: 
 
 as P , i.e. values of variables occurring in P are 

assigned to the variables occurring in the formula ; 
 as P , where the symbol µ ¶ acts as the 

existential iteration operator; 
 as P , where the symbol µ ¶  acts as the 

universal existential operator. 
 
The language L extended with algorithms and 
algorithmic formulae is the language of algorithmic 
logic and we denote it by L¶. 
 
Example 2: Consider a simple example of an 
algorithm and two algorithmic formulae.  

Let x, y, z, i be variables of  the same sort s; µ+¶, 
µ-µ, µ.¶ two binary predicate symbols: 
 
                  +: (s, s)  s 
                   -: (s, s)  s 
                  . : (s, s)  s 
 
a and b two function symbols with no arguments, 
i.e. constants: 
 
               a: s      and       b: s 
 
and µ ¶, µ<¶ be two binary predicate symbols 
 
           : (s, s)     and     < : (s, s). 
 
Then P is an algorithm: 
 
     P: begin z:= z; i:= a; 
              while  y   z do 
                                    z:= z ± y; 
                                    i:= i + b 
                                  od; 
         end; 
 
Algorithmic formulae can be as following: 
 
          P(x = ((i.y) + z)  ( a  i))) 
and 
          ( y)((x:= y)  (x:= x+b)(z  x)) 

 
 

From this example we can say that annotated 
program (with special comments of the form of 
formulae) can be treated in algorithmic logic as 
algorithmic formulae. 

The algorithmic construction is an extension of 
the proof of sentences in the models of signatures 
and so as semantics of data abstractions. This 

extended model enables the construction of already 
normal programs in some appropriate programming 
languages according to the algorithmic constructions 
in models. 
 
6. INSTITUTIONS 
 

The concept of institution enables us to describe 
the whole specification in unique manner. An 
institution is a construction that put together all 
important information about specification: its 
signatures, i.e. syntax of data abstractions; its 
models; and axioms and/or theorems of the 
conservative extension of the axiomatic set theory 
upper which the specification is considered. 

Formally we define an institution as follows. 
 
Definition 2: An institution of a specification 
 

I = ( Sign, Sen, Mod ) 
 
consists of 

 a category Sign of signatures of data abstractions 
from the specification; 

 a functor  
Sen: Sign  Set 

 
providing to every signature  a set of -sentences, 
i.e. axioms and/or theorems of the considered 
subtheory; and to every signature morphism :   

¶ a mapping translating -sentences to ¶-
sentences; 

 a functor 
Mod: Signop  Cat 

 
from the dual category of signatures to the category 
of small categories that provides for every signature 

  from Sign a category Mod( ) of -models; and to 
every signature morphism   :   ¶ a functor 
Mod( ) : Mod( ¶)  Mod(  ); 

Signature morphisms have to preserve validity of 
sentences in corresponding models. 

 
 

In the program development process we need a 
well-defined mapping from one kind of a 
specification to the next kind, e.g. from requirements 
specification to the corresponding program 
specification, etc. Because any specification is 
uniquely determined by an institution, it is enough to 
construct a morphism between institutions, i.e. some 
arrow from one institution to the other one. There 
are several possibilities of constructing such arrows. 
Because we assume that we construct from the 
µmore poor¶ institution a µricher one¶, which has 
more insformation about specification, we choose 
the concept of institution representation [7].  

Let I = ( Sign, Sen, Mod ) and I¶ = ( Sign¶, Sen¶, 
Mod¶) be such institutions. An institution 
representation  
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 : I  I¶ 
consists of 
 
 a functor  

 Sig: Sign  Sign ; 
 

 a natural transformation (i.e. a morphism between 
functors)  

 
 Mod: (  Sig)op o Mod¶  Mod, 

 
i.e. a class of functions ( Mod) Sign, such that the 
diagram in Figure 2 commutes: 
 
                                   
                                      1

Mod

  1          Mod( 1)                          Mod¶( Sig( 1)) 
 
 

           Mod( )                                       Mod( ¶) 
 
 

2        Mod( 2)                           Mod¶(  Sig( 2)) 
                                     2

Mod

 
Fig. 2  Natural transformation Mod 

 
 a natural transformation 

 
Sen: Sen    Sig o Sen¶, 

 
i.e. a class of functions ( Sen) Sign, such that the 
diagram in Figure 3 commutes and preserve the 
validity of sentences in corresponding models. 
 
                                      1

Sen 
   1         Sen( 1)                            Sen¶( Sig( 1)) 
 
 

          Sen( )                                       Sen¶(  Sig( )      
 
    

2        Sen( 2)                              Sen¶(  Sig( 2)) 
                                    2

Sen  
 

Fig. 3  Natural transformation  Sen 
 

In the framework of an institution arrow the 
construction of the appropriate mappings is not 
trivial. For example, it is not trivial to construct such 
mappings if during the program development 
process we map an institution constructed upper one 
subtheory  onto  an  another  institution   constructed  

upper another subtheory. In such a case the 
mappings should respect the rather different axioms 
and/or theorems constituting the sentences of the 
institutions and their role in two models.  

Moreover, if the second institution is an 
institution in which models contain deductions in the 
framework of algorithmic logic, the mappings has to 
respect the relation between proofs in two different 
logics. In algorithmic logic the proofs are more 
difficult and such a more difficult model is actually a 
target model of the mapping which has to be 
constructed so that it simultaneously proves also 
correctness of the arrow between institutions. 
 
 
7. CONCLUSION 
 

In our paper we have tried to show that the 
programming process from requirements to results ( 
in this short presentation only from requirements to 
program) is intellectually a non-trivial process. This 
process is highly rationalistic and strictly 
philosophically founded scientific process. 
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