
Acta Electrotechnica et Informatica No. 3, Vol. 3, 2003 31

MATHEMATICAL LANGUAGE IN PROGRAMMING

Valerie N2VIT=KÈ
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical 8niversity of Koãice, Letni 9, 042 00 Koãice, Slovak Republic, E-mail: Valerie.Novitzka@tuke.sk

SUMMARY
In our paper we present a dealing with a mathematical language as a basis for formulating different kinds of

specifications for a general problem solving by computers. We concentrate on the mathematical basis of data abstractions as
program units with mathematically defined meanings and we concern with the development of programs from requirements
to results.

Keywords: data abstraction, specification, models, category, algorithm, institution

1. INTRODUCTION

The computers of von Neumann type are able to
solve problems not only by methods of µnumber
crunching¶. We know that there is computer music,
computer graphic, etc. Computers are able to solve
theoretical problems which can be described by
mathematics and they can also solve practical
problems of the fields of mathematical economy,
theory of games, econometrics, operation research
and many others. These facts inspired us to an
intention to solve by computers such aesthetical
theoretical and practical problems that are
characterizable by mathematics.

In this paper we firstly describe a mathematical
language. Then we characterize data abstractions as
reusable programming units defined upper
mathematical theories, so that they have strong
connection to these theories and so that the program
development process from requirements to results
can be characterized by mappings between such
mathematical entities that contain all information
about the underlying mathematical theory and the
syntax and semantics of data abstractions.

2. MATHEMATICAL LANGUAGE

At the beginning we recall the language of the
classical first-order predicate logic [1] and we
extend it by new symbols: we enable variables of
different sorts, and we introduce function symbols
of the form

f:(s1,...,sn) s

with their profiles, where s1,...,sn , s are (not
necessarily different) sorts. In such a language we
can formulate (true or false) sentences, i.e. closed
formulae, and from them we can prove truthness of
another sentences. Such extended language of the
first-order predicate logic we denote by L.

In the language L we can formulate axioms of a
set theory, for which we know that they are
consistent and complete. These two properties of the
axiomatic set theory are very important in
programming, because the problems that we intend

to solve by computers can be formulated in possibly
dangerous manner.

Moreover, in the later phase of the program
development process we need to extend the language
L by new notions of algorithms and algorithmic
formulae to the language L¶ of algorithmic logic.
We show this extension in Section 5 of this paper. In
algorithmic logic we often need to examine the
complexity of algorithms really solving the
considered problems by computing values of those
functions that correspond with function symbols in
signatures of data abstractions and that can be
examined in models of them.

3. SPECIFICATIONS UPPER SUBTHEORIES

It is well-known in mathematics that the whole
poor and applicable theories can be formulated as
conservative extensions of a good axiomatic set
theory. In this paper we assume that we already have
such axiomatic set theory and a conservative
extension of it that is a subtheory of the axiomatic
set theory.

Following Niklaus Wirth [2], we can formulate
that µproblem specification = data structures +
algorithms¶. We start the program development
process with formulating scientific presuppositions
of solved problem and goals of this problem solving
as a solution. The presuppositions and solution
together we call the requirements specification of
the problem.

From Software Engineering we know that we
can formulate a requirements specification as data
abstractions written in some appropriate
specification language. The syntax of a data
abstraction is an algebraic many-sorted signature

 = (S, , Pred)

that is already formulated in a very simple
mathematical structure in the framework of our
subtheory. In the following text we use for
simplicity only the word signature for the concept of
many-sorted signature. A signature contains the
realizations of sorts symbols as a set S, of function

32 Mathematical Language in Programming

symbols as a set and of predicate symbols as a set
Pred from the logic. Elements of the set Pred are
interpreted so that the predicate symbols are
contained in closed formulae of the subtheory upper
which the signature is defined and those closed
formulae are pseudo-axioms and/or theorems of this
subtheory.

To a signature as a syntax of a data abstraction
we firstly construct many-sorted -algebras of the
form

A = (AS , A),

where AS is an S-sorted set of carrier sets As , for
every sort s S, and A is a set of functions

fA: As1 « Asn As ,

for every function symbol f:(s1,...,sn) s from .
We are interested in such -algebras, in which

are also pseudo-axioms and/or theorems of the
subtheory that solve as a basis for proving new
sentences about the properties of functions defined
on carrier sets. Such many-sorted -algebras we call

-models. They constitute the semantics of the
considered data abstraction. We note here, that
instead of saying µa is an element of a carrier set As
µ, we can use µa inhabits in a type As µ. In such a
manner we found the closed relation between many-
sorted algebras and type theory [3].

From sentences, signatures and models we can
construct in unique manner the institution that
characterize the whole specification. We can
consider that function symbols in signatures and
functions in the corresponding models are actually a
simple or more elaborated form of algorithms. As
we follows by arrows from the requirements
specification institution to the program specification
institution, in which models already contain
formulae of algorithmic logic, we are working out a
mathematically proved program in some appropriate
programming language. We deal with institutions
and institution arrows in Section 6 of this paper. We
suppose also that the underlying operating system of
the computer contains an appropriate program
development system that correctly creates
executable specifications from program
specifications and finally the result specification.
The meaning of these two kinds of specifications are
models created by methods of automata theory.

4. DATA STRUCTURES

In the previous section we have established the
relation between carrier sets in models of data
abstractions and type theory. Types determine data
structures in the sense, that all elements of data
structures and relations between them are actually
determined by the properties of their types. Because
category theory deals with mathematical structures
and morphisms between them, we use it for
formulating concepts and properties of data
structures.

An abstract category A consists of A-objects
creating a class, of A-morphisms between objects
containing identities for every A-object, and of
associative composition of A-morphisms. A functor

F: A B

is a morphism from the category A to the category
B that assigns to every A-object a B-object and to
every A-morphism a B-morphism, such that it
preserves composition of morphisms and identities.

We can define concrete categories that retain
more information about their objects and
morphisms. A concrete category over a base
category B is a pair (A, U), where A is a (total)
category and U: A B is a forgetful functor (it
forgets some information from A). Detailed
definitions of these concepts can be found in [4].

Three basic kinds of type theory, i.e. simple,
dependent and polymorphic type theories [5], differ
in the forms of indexing types. Simple type theory
uses no indexing, dependent type theory uses
indexing by term variables and polymorphic type
theory uses indexing by type variables.

In our approach we introduce indexing of
categories by so-called fibration [6]. Putting a
fibration on the top of the categorical structure
corresponding to type theory, we can put together
complicated structures in a modular way. In
indexing of categories we use the approach of
display indexing. Let X be a class of sets and I be an
index set. We define a function d: X I, so that the
elements (sets) x appear as fibres over i:

d -1(i) = { x X | d(x) = i }

for every x X and i I. The fibres d -1(i) are
necessarily disjoint. We say that d displays X, and
that X is over I.
 Now we define fibration over categories as
follows.

Definition 1: Let (A, U) be a concrete category over
B. The functor U: A B can be seen as a display
class

(U : A B)

of categories. For a B-object I, the fibre category

AI = U-1(I)

over I is the category whose objects are A-objects A
with U(A) = I; and whose morphisms are A-
morphisms f: A A¶ with U(f) = idI , i.e. identities
on I in B.

Example 1: As an example we can construct the
category Sign of signatures and its fibration.

Sign-objects are signatures = (S, , Pred) and
Sign-morphisms are signature morphisms :

Acta Electrotechnica et Informatica No. 3, Vol. 3, 2003 33

¶, which satisfy the properties of associativity and
the existence of identities.

We can construct a forgetful functor

U: Sign Set

From this category of signatures to the category of
sets (that contains sets as objects and functions
between them as morphisms) as follows:

 functor U assigns to every signature its

underlying set of sorts (types) S; and
 functor U assigns to every signature morphism
 : ¶ the function u: S S¶ between the

corresponding set of sorts.

We construct the category Class(Set), whose
objects are classes of sets (Xi)i I and morphisms are
pairs (u, f), where f is a class of morphisms

fi : Xi Yu(i).

The functor K: Class(Set) Set is trivially a
fibration.

For every signature = (S, , Pred) , the set
can be consider as a function

 : S* S Set ,

that yields for every (n+1)-tuple (s1,...,sn , s) a set

 (s1,...,sn) s

of function symbols with the profile (s1,...,sn) s,
and Pred can be considered as a function

Pred: S* Set,

that yields for every n-tuple (s1,...,sn) a set of
predicate symbols with the arity (s1,...,sn).

Then we can construct the functor G: Set Set,
which assigns to every set S of sorts from a set

(S* S) + S*,

where µ+¶ denotes disjoint union of sets.

From the change-of-base theorem [5] and from
the pullback diagram in Figure 1 we obtain that
U : Sign Set is fibration functor.

 Sign Class(Set)

 U K

 Set Set
 G

Fig. 1 Pullback of Sign

Fibration Sign Set implicitly defines also
the type system of a model that will be the semantics
of signatures. This fibration is also useful because it
enables construction of function values of a concrete
types (by using algorithmic logic, see Section 5), i.e.
values which inhabit in carrier sets indexed by sorts.

5. ALGORITHMS

In requirements specifications we have in their
syntax function symbols and in their semantics
functions. These function symbols and functions
shortly express an algorithm that construct the
values of the functions. The construction of function
values needs more as allows the first-order predicate
logic. Some kind of the intuitionistic logic is needed.
We make the first step to the extension of the first-
order predicate logic to an intuitionistic logic that
enables on the basis of proofs in models also the so-
called deliverables, i.e. preconditions, expressions,
postconditions and so also the final result of the
basis of proved annotation.

We extend our logical language L to the
language L¶ of algorithmic logic. We add to
symbols of the language L new symbols called
algorithms as follows:

 An algorithm is every expression of the form

x:= t or q:=

where x is a variable and t is a term of the same sort
s ; q is a proposition (a predicate symbol with zero
arity) and is an open formula. Such algorithm we
call assignment.

 Let P and P¶ be algorithms. An algorithm is

i) every expression of the form

if then P else P¶ fi

that we call branching between P and P¶;

ii) every expression of the form

while do P od

that we call iteration of P;

iii) every expression of the form

begin P; P¶ end

that we call composition of P and P¶.

We can recognize these algorithms as special
function symbols on the set P of all algorithms.
The iteration can be recognized as the unary
function symbol µ
 ¶, composition and branching as
binary function symbols µo¶ and µif ¶, respectively,
with the function profiles as follows:

34 Mathematical Language in Programming

 * : P P
 o : (P , P) P
 if : (P , P) P.

Now we extend the language also by new kind of
formulae, so-called algorithmic formulae. Assume
that P is an algorithm and is a formula. An
algorithmic formula can be of one of the following
forms:

 as P , i.e. values of variables occurring in P are

assigned to the variables occurring in the formula ;
 as P , where the symbol µ ¶ acts as the

existential iteration operator;
 as P , where the symbol µ ¶ acts as the

universal existential operator.

The language L extended with algorithms and
algorithmic formulae is the language of algorithmic
logic and we denote it by L¶.

Example 2: Consider a simple example of an
algorithm and two algorithmic formulae.

Let x, y, z, i be variables of the same sort s; µ+¶,
µ-µ, µ.¶ two binary predicate symbols:

 +: (s, s) s
 -: (s, s) s
 . : (s, s) s

a and b two function symbols with no arguments,
i.e. constants:

 a: s and b: s

and µ ¶, µ<¶ be two binary predicate symbols

 : (s, s) and < : (s, s).

Then P is an algorithm:

 P: begin z:= z; i:= a;
 while y z do
 z:= z ± y;
 i:= i + b
 od;
 end;

Algorithmic formulae can be as following:

 P(x = ((i.y) + z) (a i)))
and
 (y)((x:= y) (x:= x+b)(z x))

From this example we can say that annotated
program (with special comments of the form of
formulae) can be treated in algorithmic logic as
algorithmic formulae.

The algorithmic construction is an extension of
the proof of sentences in the models of signatures
and so as semantics of data abstractions. This

extended model enables the construction of already
normal programs in some appropriate programming
languages according to the algorithmic constructions
in models.

6. INSTITUTIONS

The concept of institution enables us to describe
the whole specification in unique manner. An
institution is a construction that put together all
important information about specification: its
signatures, i.e. syntax of data abstractions; its
models; and axioms and/or theorems of the
conservative extension of the axiomatic set theory
upper which the specification is considered.

Formally we define an institution as follows.

Definition 2: An institution of a specification

I = (Sign, Sen, Mod)

consists of

 a category Sign of signatures of data abstractions
from the specification;

 a functor
Sen: Sign Set

providing to every signature a set of -sentences,
i.e. axioms and/or theorems of the considered
subtheory; and to every signature morphism :

¶ a mapping translating -sentences to ¶-
sentences;

 a functor
Mod: Signop Cat

from the dual category of signatures to the category
of small categories that provides for every signature

 from Sign a category Mod() of -models; and to
every signature morphism : ¶ a functor
Mod() : Mod(¶) Mod();

Signature morphisms have to preserve validity of
sentences in corresponding models.

In the program development process we need a
well-defined mapping from one kind of a
specification to the next kind, e.g. from requirements
specification to the corresponding program
specification, etc. Because any specification is
uniquely determined by an institution, it is enough to
construct a morphism between institutions, i.e. some
arrow from one institution to the other one. There
are several possibilities of constructing such arrows.
Because we assume that we construct from the
µmore poor¶ institution a µricher one¶, which has
more insformation about specification, we choose
the concept of institution representation [7].

Let I = (Sign, Sen, Mod) and I¶ = (Sign¶, Sen¶,
Mod¶) be such institutions. An institution
representation

Acta Electrotechnica et Informatica No. 3, Vol. 3, 2003 35

 : I I¶
consists of

 a functor

 Sig: Sign Sign ;

 a natural transformation (i.e. a morphism between
functors)

 Mod: (Sig)op o Mod¶ Mod,

i.e. a class of functions (Mod) Sign, such that the
diagram in Figure 2 commutes:

 1

Mod

 1 Mod(1) Mod¶(Sig(1))

 Mod() Mod(¶)

2 Mod(2) Mod¶(Sig(2))
 2

Mod

Fig. 2 Natural transformation Mod

 a natural transformation

Sen: Sen Sig o Sen¶,

i.e. a class of functions (Sen) Sign, such that the
diagram in Figure 3 commutes and preserve the
validity of sentences in corresponding models.

 1

Sen
 1 Sen(1) Sen¶(Sig(1))

 Sen() Sen¶(Sig()

2 Sen(2) Sen¶(Sig(2))
 2

Sen

Fig. 3 Natural transformation Sen

In the framework of an institution arrow the
construction of the appropriate mappings is not
trivial. For example, it is not trivial to construct such
mappings if during the program development
process we map an institution constructed upper one
subtheory onto an another institution constructed

upper another subtheory. In such a case the
mappings should respect the rather different axioms
and/or theorems constituting the sentences of the
institutions and their role in two models.

Moreover, if the second institution is an
institution in which models contain deductions in the
framework of algorithmic logic, the mappings has to
respect the relation between proofs in two different
logics. In algorithmic logic the proofs are more
difficult and such a more difficult model is actually a
target model of the mapping which has to be
constructed so that it simultaneously proves also
correctness of the arrow between institutions.

7. CONCLUSION

In our paper we have tried to show that the
programming process from requirements to results (
in this short presentation only from requirements to
program) is intellectually a non-trivial process. This
process is highly rationalistic and strictly
philosophically founded scientific process.

REFERENCES

[1] Sochor, A.: Klasicki matematicki logika,

Karolinum, Praha 2001
[2] Wirth, N: Data Structures + Algorithms =

Programs, Prentice-Hall, 1975
[3] Pierce, B. C: Types and Programming

Languages, MIT Press, Cambridge, 2002
[4] Adimek, J. et al.: Abstract and Concrete

Categories, Wiley & Sons, New York, 1990
[5] Jacobs, B: Categorical Logic and Type Theory,

Elsevier, Amsterdam, 1999
[6] Grothendieck, A.: Catpgories, fibrpes et

descente, Revptement Etales Groupe Fonda-
mental, No 224, Springer, 1970, pp.145-194

[7] Novitzki, V.: 2 teyrii korektnpho programo-
vania, Academic Press Elfa, Koãice, 2003

BIOGRAPHY

9aleUie NoYit]Ni defended her PhD. Thesis ³2n
formal semantics of Anna´ in 19�9 in Budapest at
Hungarian Academy of Sciences. She is working as
lecturer at the Department of Computers and
Informatics. Her scientific research is focusing on
the theoretical foundations of programming and
questions relating with specifications, type theory,
program correctness and semantics.

