
Acta Electrotechnica et Informatica, Vol. 10, No. 4, 2010, 89–93 89

DEFINING ANNOTATION CONSTRAINTS IN ATTRIBUTE ORIENTED
PROGRAMMING

Štefan RUSKA, Jaroslav PORUBÄN
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of Košice,

Letná 9, 042 00 Košice, Slovak Republic, tel.: +421 55 602 2565,
e-mail: stefan.ruska@gmail.com,jaroslav.poruban@tuke.sk

ABSTRACT
Attribute oriented programming allows programmers to extend source code elements semantics by adding decorative comments

called annotations. Annotations can be then processed by tools and frameworks during compile or run time. With wide usage of such
tools and frameworks, annotation creators define many constraints on how these should be used. Constraints are usually expressed
informally in source code comments or external documentation. Correct annotation usage is validated lately during deploy or run time.
This paper presents a tool that checks annotation constraints at compile time using a Prolog like constraint language. The tool uses
an embedded database to store program elements and a simple constraint to SQL compiler. Query results are then asserted against
existing annotations to check their validity. The tool can be seamlessly integrated with existing IDEs.

Keywords: annotations, annotation constraint, attribute oriented programming

1. INTRODUCTION

Attribute oriented programming allows programmers to
extend source code elements semantics by adding custom
decorative comments called annotations [1]. With recent
support of annotation types in popular programming lan-
guages like Java and C# many specialized tools and frame-
works have adopted them and are using them during deploy
or run time. Annotations allow programmers to express lan-
guage element semantics explicitly in a declarative fashion.
Annotations have gained much popularity in field of source
code validation, unit testing, software artifacts generation
or object-relational mapping.

1.1. Motivation

Let us first consider following example of a class anno-
tated with Java Persistence API annotations [12].

@Entity

@Table(name="vehicle")

public class Car implements Serializable {

@Id

@Column(name="carID",nullable=false)

Long id;

}

With @Entity annotation class Car is marked as per-
sistable entity. @Table annotation specifies the Car class
will be mapped to a table named vehicle. @Id annotation
tells the framework that the id field is going to be tables pri-
mary key. @Tables column annotation value signalizes that
the ID field is going to be mapped to a column called carID.

As far as above annotations are modeling relational
database structures it is obvious they cannot be placed
freely. @Column annotation represents a database column
which must be present in some table, therefore field’s class
must be annotated with @Table annotation. Unless we de-
fine a compound primary key there must be at most one
field having annotation @Id. What is even more, table pri-
mary keys cannot have null values what could be violated
by setting @Columns nullable parameter to true value.

This is only one of many examples where annotations
do require several restrictions to be met to be used correctly.
If we take a look at the Java’s standard @Target metaanota-
tion, that restricts annotation only to be used on particular
element, we see this kind of apparatus is insufficient for
defining even simple constraints. Annotations are far away
from being standalone entities and there is a real need for a
flexible formal apparatus for specifying annotation restric-
tions. One would argue that these constraints are after all
validated by the framework itself but this kind of validation
takes place during deploy or even run time. This means
incorrect annotation usage is propagated to later software
development phases.

Annotation constraints can and should be validated dur-
ing compile time. These constraints are well known during
creation of new annotation types and their authors are able
to describe them semi-formally in source code comments
or external documentation. Constraints however can be ex-
pressed formally and later checked by some tool. Such a
generic constraint checking tool would be beneficial for:

• framework creators as they would not need to repeat-
edly hardcode annotation validation functionality,

• annotation users as the tool would check and recom-
mend correct annotation usage.

This paper presents a flexible, modular and scalable
tool for checking correct annotation usage at compile time.
Constraints are expressed using a custom domain specific
language with Prolog like syntax. The tool uses a sim-
ple compiler that transforms custom rules into SQL queries
which results are then asserted against existing source code.
The tool can be seamlessly integrated with current IDEs.

2. ANNOTATION CONSTRAINT PATTERNS

We empirically noticed several recurring constraint pat-
terns among common annotations. These were also dis-
cussed in [3] and can be categorized as follows:

ISSN 1335-8243 c© 2010 FEI TUKE

90 Defining Annotation Constraints in Attribute Oriented Programming

• Parent-child relation defines a constraint where an-
notation can be placed on language element only in
a scope of language element annotated with another
particular annotation. This constraint is common
when annotations represent hierarchical structures.

• Mutual exclusivity specifies that two different anno-
tations cannot be present on the same element si-
multaneously. This constraint is common on anno-
tations having opposite semantics such as @Null and
@NotNull or @Stateless and @Stateful annotations.
A special kind of mutual exclusivity is JAXB’s [13]
@Transient annotation that cannot be simultaneously
present on one element with any other annotation
from package javax.xml.bind.

• Unique annotation occurrence represents annota-
tions that can be present at most once in a scope of
some language element. This pattern is typical for
annotations defining unique attributes or for annota-
tions where presence of multiple annotations would
cause ambiguity.

• Occurrence of multiple annotations requires multiple
annotations are present on one element or in a scope
of another element. This type of pattern is rare.

• Annotation values referencing other elements. These
constraints are especially vulnerable to misuse as ref-
erences are usually expressed using simple string lit-
erals. Therefore if the referenced element’s signature
changes developer must change all referencing string
literals manually (current IDEs do not mange such
functionality automatically) what might be time con-
suming and error prone operation.

Once we can specify annotation constraints we should
also think of where an annotation constraint should be
placed. For parent-child relation it is sufficient to define
constraint on child annotation. Mutual exclusivity is reflex-
ive so it is sufficient to define constraint only on one of the
two annotations. Occurrence of multiple annotations con-
straint might not be symmetric so one need to think about
the suitable constraint placement.

All previously observed patterns define structural prop-
erties on source code and there are multiple source code
structure inspection tools already implemented.

2.1. Source code querying approaches

Source code structure querying tools are usually used
for supporting source code comprehension, source code
knowledge mining or code metrics measurements. These
tools are also well suited for checking source code compli-
ance with company’s or general coding standards.

We have recognized three different approaches for
source code structure querying.

• Source codes are transformed into XML documents
and a XML query mechanism (XPath, XQuery) is
used to retrieve structural relations. This approach
has been implemented in [4, 5], and it provides great

means for representing hierarchical structures. How-
ever it is quite memory hungry and repetitive XML
parsing is required for every run.

• Source code is persisted into logic program fact base
and logic programming language like Prolog is used
to retrieve source code structural properties. This has
been implemented in [6]. This approach does not
scale well as all the facts need to be present in main
memory during evaluation.

• Source code is persisted in a relational database and
SQL is used to query it [7]. This is memory friendly
solution but SQL is very verbose and one needs to be
aware of underlying database schema. When defin-
ing complex rules SQL queries get unreadable and
hard to maintain.

For us the most feasible and interesting approach com-
bines the latter two of mentioned approaches. Similar ap-
proach was implemented in [8]. Databases do scale well
so the tool should work well even with large projects and
prolog syntax is simple but expressive enough to be able to
cover majority of known constraints. This approach means
a dedicated prolog to SQL compiler needs to be created.
We also need to create our own prolog like language.

3. DESIGN OF THE TOOL

3.1. Basic concept

As it was suggested in previous section tool is going to
combine a relational database with prolog like constraint
language. The tool does following:

1. it persists source code elements into relational
database,

2. obtains annotation constraints,

3. compiles rules into SQL queries,

4. runs SQL queries,

5. based on the queries results it checks annotations va-
lidity.

Fig. 1 Rule evaluation process

The evaluation process is showed in Fig. 1. Since rela-
tional databases represent rather flat data structures, to map
a hierarchical structures like type hierarchy we are using a

ISSN 1335-8243 c© 2010 FEI TUKE

Acta Electrotechnica et Informatica, Vol. 10, No. 4, 2010 91

simple ad-hoc linearization technique where every parent-
child relationship is presented as a separate record. Some
database systems allow to specify recursive queries using a
dedicated language structures but these are not standardized
and are therefore not portable.

The tool can be run in two modes. A full mode cre-
ates database schema and persists all elements reachable
from current project’s elements. An incremental mode up-
dates only elements that changed since last compilation
and is recommended for a day-to-day use. If the under-
lying database system is chosen wisely developers would
not even recognize there is some validation being done in
the background.

Tool uses an expansive algorithm for visiting all reach-
able elements within source code and is implemented in a
standard Visitor pattern fashion. In short this means that
e.g. from a sample method element, the algorithm visits
methods return type, parameter types, thrown types and an-
notation types. Since one element can be reached from mul-
tiple places, the tool keeps track of already visited elements
and assures every relevant element is visited at most once.

3.2. Views

Database views present a virtual tables that are not phys-
ically keeping records and they are only declaring a fine
grained perspective over underlying data. This allows views
to provide higher level of abstraction. Annotation valida-
tion tool relies on database views as every rule is mapped
to a corresponding database view.

Database views can be effectively used for predicate
evaluation. Every view represents a predicate as it defines
some condition its records must meet. Let us suppose we
have three views on a person table. These are male (selects
persons that are male sex), young (selects persons that are
under 20) and student (selects persons that are students).
If we now want to check if John Smith is a male young
student we can craft a query as follows SELECT 1 FROM
male v1,young v2,student v3 WHERE v1.name=v2.name
AND v2.name=v3.name AND v1.name=’John Smith’. If
the query returns zero rows we can say claim about ”John
Smith” was false.

The same principle is being used while evaluating if an-
notation presence on a particular element is valid. We have
multiple rules, and therefore multiple views, that declare
several predicates about source code elements. Once these
are translated into SQL query it is extended with equality
condition on element’s unique identifier.

As there are unique indexes over the id fields in the
database schema such queries use fast unique scans and are
evaluated immediately. If the query returns no rows the an-
notation is not being used correctly. Such approach results
in a very short tool run times.

3.3. Constraint language

The tool uses a lightweight version of Prolog like lan-
guage that does not support recursion and lists. This custom
domain specific language was created using YAJCo parser
generator [2]. YAJCo uses annotated classes and interfaces

to express abstract syntax of the language. Annotations are
used for defining concrete syntax of each language concept.
A parser is created directly from the model and during pars-
ing it recreates the model back into memory. With this
parser generator, language creator does not need to be fa-
miliar with compiler creation concepts despite still being
very productive.

The language defines two basic types of rules. One is
a compound rule known from prolog having form rule-
Name(arg1,,argN) -> expression . An expression can be
a conjunct, disjunct or negation. Another rule is also con-
sidered as an expression so it can be present on the right
side of the compound rule. Second type of rule is target
rule in form bindVar <- expression that specifies which el-
ement an annotation can be placed on. The constraint lan-
guage defines also different kinds of arguments like inte-
ger argument, string argument, binded argument (in form
$<name>) or free argument (in form).

Constraint language sentences are compiled into SQL
queries using following rules (mentioned also in [9, 10]):

1. Rule is transformed into SELECT clause on particu-
lar view.

2. Logical AND operation between rules generates a ta-
ble join (tool automatically manages views aliases).

3. Binded variables with same name generate equi-join
conditions.

4. Negation is transformed into NOT EXISTS clause.

5. Logical OR operation generates UNION clause.

6. Constants are transformed into corresponding SQL
literals.

The tool automatically generates an ”any” clause (a re-
lation over all elements) when there is only a negation on
the right side of the compound rule. This makes sure com-
piler generates a valid SQL query as the query must contain
at least one select clause.

3.4. Defining rules

Annotation constraints can be placed using one of the
following forms:

• Constraint is defined in a @TargetRule metaanno-
tation directly placed on required annotation type.
This form is recommended for our custom annotation
types where constraints have been well tested.

• When using @AppliesTo metaannotation one can de-
fine a rule for already existing annotation type he can-
not infer. During evaluation tool applies rules from
our custom annotation types to specified out-of-the-
box annotation types.

• Specifying annotation constraint in an external prop-
erty file. This is beneficial during debugging when
rule can be changed without need for explicit compi-
lation.

ISSN 1335-8243 c© 2010 FEI TUKE

92 Defining Annotation Constraints in Attribute Oriented Programming

Table 1 Tool Runtimes

Full mode/Project incremental/Class incremental
in seconds

Project Name HSQL H2 Firebird
JakartaRegexp 24/1.2/0.6 167/2/2 715/1.5/0.7
JEdit 40/2.7/0.9 387/7.4/2 2040/24/2.1
AspectJ 153/194/4 1760/174/3.2 5412/170/3.4

3.5. Extending rules

The tools provides multiple ways of extending annota-
tion rules to define virtually any kind of constraint.

Defining a new compound rule. This is the preferred
way of creating new rules providing the highest level of
abstraction. One can use logical operations to compose ex-
isting rules into another rules that are once declared again
available for further composition. The tool provides a sim-
ple polymorphism mechanism where multiple rules having
the same name but different number of arguments can be
used to specify the same concept at different level of detail.

Defining custom database view. If requested constraint
cannot be expressed as a compound rule we can define our
own database view in views XML file. These allow us to
use the power of SQL language such as outer joins, aggre-

gate functions or even stored procedures. Once a new view
is specified it becomes automatically available as a new rule
for further composition.

Defining custom element generator can be used if both
of above approaches are insufficient. With custom element
generator we use a Java language to infer element insertion
into database. Full power of general programming language
provides unlimited variation of rules. Current version of the
tool contains a basic ”element flag” table where one can in-
sert element ids with custom string flags. One can later
define a custom rule over the existing element flag rule to
specify a predicate for the particular custom rule.

The tool manages compound rule and XML view files
automatically so every change to these files is automati-
cally reflected to underlying database system during next
tool run.

4. EXAMPLES AND EXPERIMENTS

This section proves soundness and usability of the tool
by providing multiple examples and time measurements.
Let us first define constraint for parent-child relation of
@Table and @Column annotation types. Before the final
rule is defined we define several intermediate rules. Rules
like type, method, package etc. are standard.
annotation($Id,$Name) ->

type($Id,$Name,’ANNOTATION_TYPE’,_,_,_);

parent($This,$Parent) ->

field($This,_,_,_,_,$Parent)

|| method($This,_,_,_,_,_,_,$Parent)

|| type($This,_,_,_,_,$Parent)

|| package($This,_,_,$Parent)

|| param($This,_,_,$Parent);

hasAnnotation($Element,$AnnotationName) ->

annotatedElement($Element,$Annotation,_,_)

&& annotation($Annotation,$AnnotationName);

parentHasAnnotation($Elem,$ParAnnotQualName)->

parent($Elem,$Parent) &&

hasAnnotation($Parent,$ParAnnotQualName);

For a unique annotation occurrence we can define fol-
lowing rule.

sibling($This,$Sibling) ->

parent($This,$Parent)

&& parent($Sibling,$Parent)

&& $This != $Sibling;

hasUniqueAnnotation($Element,$AnnotName)

-> hasAnnotation($Element,$AnnotName)

&&

!(sibling($Element,$Sibling)

&&

hasAnnotation($Sibling,$AnnotName));

Annotation @PostConstruct must be according to docu-
mentation [11] used as follows. ”Annotation PostConstruct
must be placed on a method that has no parameters except
of parameter of type InvocationContext. The return type
of the method must be void and method must not throw a
checked exception. The method must not be static.” This
relatively complex rule can be easily expressed as below

$PostConst <-

methodSig($PostConst,

[’* void *(’+$Param+’)’])

&& ($Param = ’’

|| isOfQualType($Param,

’*.InvocationContext’))

&& !static($PostConst)

To demonstrate the tool’s usability in terms of perfor-
mance the tool has been tested on three different sized open
source projects namely JakartaRegexp, JEdit and AspectJ
in three different modes:

• Full mode when all elements reachable from current
project get persisted into database. This mode is very
insert intensive.

• Incremental mode of whole project. This mode is
much faster as full mode as it persists only elements
that changes since last compilation.

ISSN 1335-8243 c© 2010 FEI TUKE

Acta Electrotechnica et Informatica, Vol. 10, No. 4, 2010 93

• Incremental mode on a single class is the fastest
mode. Only necessary changes of single class get
persisted.

Results of these runs are presented in Table 1. From
the results we can see that tool scales well even for larger
projects and that single class incremental mode can be used
on regular basis.

5. CONCLUSION

This paper presented a flexible and extensible tool for
defining annotation constraints in a declarative way. These
are automatically validated during compile time in order to
restrict propagation of incorrect annotation usage to later
project phases. Constraint language can be easily used to
define even complex rules. Tool provides means for spec-
ifying virtually any kind of complex rule. It can be seam-
lessly integrated with IDEs like NetBeans and Eclipse and
its execution is completely transparent for end-developer.

ACKNOWLEDGEMENT

This work is the result of the project implementa-
tion: Center of Information and Communication Tech-
nologies for Knowledge Systems (ITMS project code:
26220120020) supported by the Research & Development
Operational Program funded by the ERDF.

REFERENCES

[1] WADA, H. – SUZUKI, J.: Modeling Turnpike Fron-
tend System: a Model-Driven Development Frame-
work Leveraging UML Metamodeling and Attribute-
Oriented Programming, In Proc. of the 8th ACM/IEEE
MoDELS, October 2005.

[2] PORUBÄN, J. – FORGÁČ, M. – SABO, M. –
BĚHÁLEK, M.: Annotation Based Parser Generator,
In Computer Science and Information Systems, Vol. 7,
No. 2, 2010, pp. 291–307, ISSN 1820–0214.

[3] NOGUERA, C. – PAWLAK, R.: AVal: an Extensi-
ble Attribute-Oriented Programming Validator for Java,
scam, pp.175-183, Sixth IEEE International Work-
shop on Source Code Analysis and Manipulation
(SCAM’06), 2006.

[4] EICHBERG, M. – SCHFER, T. – MEZINI, M.: Using
Annotations to Check Structural Properties of Classes,
In 8th International Conference on Fundamental Ap-
proaches to Software Engineering (FASE 2005), Vol.
3442, pp. 237-252, Springer, 2005.

[5] NODLER, J. M.: An XML-based Approach for Soft-
ware Analysis, Masters Thesis, Gttingen: University of
Gttingen, Institute for Computer Science, 2007.

[6] MARKLE, L.: JQuery - A Tool for Combining Query
Results and a Framework for Building Code Perspec-

tives, Master Thesis, Ontario: The University of West-
ern Ontario, 2006.

[7] OSENKOV, K.: Static Analysis and Source Code
Querying, on Internet: http://kirillosenkov.blogspot.
com/2007/09/static-analysis-and-sourcecode.html

[8] HAJIYEV, E. – VERBAERE, M. – DE MOOR, O.:
CodeQuest: Querying Source Code with Datalog, In
Companion to the 20th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems,
Languages, and Applications (San Diego, CA, USA,
October 16-20, 2005).

[9] DRAXLER, Ch.: A Powerful PROLOG to SQL Com-
piler, Technical report, CIS Centre for Information and
Speech Processing, Ludwig-Maximilians-University,
Munich, 1993.

[10] MOGENSEN, L.: Manipulation of Logic Programs
and Translation to SQL, In Advanced Topics in
Databases, April 2004.

[11] Sun Microsystems, Inc.: Java Platform - An-
notation Type PostConstruct, 2008, on Internet:
http://java.sun.com/javase/6/docs/api/javax/annotation/
PostConstruct.html

[12] Java Persistence API as part of JSR-000220 Enterprise
JavaBeans 3.0, on Internet: http://jcp.org/aboutJava/
communityprocess/final/jsr220/index.html

[13] Sun Microsystems, Inc., Java Architecture for XML
Binding (JAXB), on Internet: http://java.sun.com/
javase/6/docs/technotes/guides/xml/jaxb/index.html

Received August 12, 2010, accepted November 22, 2010

BIOGRAPHIES

Štefan Ruska received his MSc. in 2010 at the Depart-
ment of Computers and Informatics, Technical University
of Košice, Slovakia. He defended his master thesis in the
field of attribute oriented programming. His interests in-
clude design and implementation of domain specific lan-
guages and database programming. He currently holds con-
sultant position at Ariba, Inc.

Jaroslav Porubän is Associate professor at Department of
Computers and Informatics, Technical university of Košice,
Slovakia. He received his MSc. in Computer Science in
2000 and his PhD. in Computer Science in 2004. Since
2003 he is the member of the Department of Computers
and Informatics at Technical University of Košice. He was
involved in the research of profiling tools for process func-
tional programming language. Currently the main sub-
ject of his research is the computer language engineering
concentrating on design and implementation of domain-
specific languages and computer language composition and
evolution.

ISSN 1335-8243 c© 2010 FEI TUKE

http://kirillosenkov.blogspot.com/2007/09/static-analysis-and-sourcecode.html
http://kirillosenkov.blogspot.com/2007/09/static-analysis-and-sourcecode.html
http://java.sun.com/javase/6/docs/api/javax/annotation/PostConstruct.html
http://java.sun.com/javase/6/docs/api/javax/annotation/PostConstruct.html
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
http://java.sun.com/javase/6/docs/technotes/guides/xml/jaxb/index.html
http://java.sun.com/javase/6/docs/technotes/guides/xml/jaxb/index.html

