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ZERO POINTS OF THE SOLUTIONS OF A DIFFERENTIAL EQUATION
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SUMMARY
Our aim in this paper is to count the zero points of the solutions of the second order differential equation

(r(t)u′(t))′+ p(t)u(t) = 0. (E+)

The sufficient conditions for the equation (E+) to be oscillatory are also presented.
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1. INTRODUCTION

We consider the second order delay differential
equation of the form

(r(t)u′(t))′+ p(t)u(t) = 0. (1)

We always assume that r and p : [t0,∞)→ (0,∞)
are continuous.

In the sequel we shall restrict our attention to non-
trivial solutions of the equations considered. Such a
solution is called oscillatory if the set of its zeros is
unbounded. Otherwise, it is said to be nonoscillatory.
An equation itself is said to be oscillatory if all its so-
lutions are oscillatory. On the other hand, we say that
(1) is nonoscillatory if all its solutions are nonoscilla-
tory.

We say that equation (1) is in canonical form if∫
∞ ds

r(s)
= ∞. (2)

On the other hand, if∫
∞ ds

r(s)
< ∞ (3)

then equation (1) is said to be in noncanonical form.
There are two questions we try to solve in the pa-

per. Our interest here is the oscillatory nature of so-
lutions of (1). It si well known that, if one solution
of (1) is oscillatory than all solutions share this prop-
erty. It is thus possible to classify equation (1) as to
be oscillatory or nonoscillatory. There are numerous
papers devoted to oscillation of (1). See e.g. [5–13].

More precisely than question of whether or not so-
lutions of (1) have infinity zeros in [T,∞) is the ques-
tion of how many zeros can a solution have in the pre-
scribed interval I1 = [α,β ]⊂ [t0,∞]. Efforts in this di-
rection have been undertaken by several authors, see
for example Harris [2], Ohriska [3], Swanson [4]. We
make use the following functions in the remainder of
this paper:

R(t) =
∫ t0

t

ds
r(t)

, t ≥ t0 ρ(t) =
∫ t0

t

ds
r(t)

, t ≥ t0,

for canonical and noncanonical case of (1), respec-
tively.

2. MAIN RESULTS

The technique we use in the paper is based on the
following classical comparison theorem which is due
to Sturm [1] and in which equation (1) is compared
with the equation

(r1(t)y′(t))′+ p1(t)y(t) = 0. (4)

Theorem 2.1. Assume that

r(t)≤ r1(t), t ∈ I1, (5)

p(t)≥ p1(t), t ∈ I1. (6)

If y is a nontrivial solution of (4) with the property
y(t1) = y1(t) = 0, t1 < t2, where t1, t2 ∈ I1 are the cou-
ple of its adjoining zeros, then every solution u of (1)
has at least one zero in (t1, t2) or equations (1) and
(4) are equivalent in [t1, t2] and y and u are linearly
depend.

Corollary 2.1. Assume that (5) and (6) hold. Let u
and y be arbitrary nontrivial solutions of (1) and (4),
respectively.

(i) If y has at least m zero points in I1 then u has at
least m−1 zero points in I1.

(ii) If u has at most k zero points in I1 then y has at
most k +1 zero points in I1.

Now we are prepared to provide the lower estimate
of zero points of any solution of (1).

Theorem 2.2. Assume that there exist a real a > 1
4

such that

R2(t)r(t)p(t)≥ a, f or t ∈ [α,β ] and α > t0.

Then the number of the zero points of each solution of
(1) on the interval [α,β ] equals at least⌊√

4a−1
2π

ln
R(β )
R(α)

⌋
.
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Proof. Let us consider the following auxiliary
equation

(r(t)y′(t))′+
a

r(t)R2(t)
y(t) = 0, t ∈ I1. (7)

It is easy to see that the couple of the functions

y1(t) =
√

R(t)cos
(√

4a−1
2

lnR(t)
)

,

y2(t) =
√

R(t)sin
(√

4a−1
2

lnR(t)
)

are linearly independent solutions of (7). Con-
sider such nontrivial solution y3(t) of (7) satisfy-
ing y3(α) = 0. Then there are constants c1 and
c2 such that y3(t) = c1y1(t) + c2y2(t). Taking
into account properties of sin

(√
4a−1
2 lnR(t)

)
and

cos
(√

4a−1
2 lnR(t)

)
it is easy to see that y3(t) has⌊√

4a−1
2π

ln R(β )
R(α)

⌋
+1 zero points on the interval [α,β ].

Noting that p(t) ≥ a
r(t)R2(t) for t ∈ I1 and applying

Corollary 2.1 (i) to (1) and (7) we immediately get
our assertion.

�

Remark 2.1. Theorem 1 is a complement of the
Ohriska’s result [2, Theorem 2.1] providing an esti-
mate of the zero points of the solutions of (1) under
more stronger condition imposed on the function p.

Having the lower estimate of zero points of solu-
tions of equation (1) on the prescribed interval, we can
immediately get oscillatory criterion for (1).

Corollary 2.2. Let β = ∞ and (1) be in canonical
form. Further suppose that all assumptions of Theo-
rem (1) are satisfied. Then equation (1) is oscillatory.

Remark 2.2. Note that if the condition (2) is not sat-
isfied we cannot use the estimate of the zero points of
the solutions of (1) presented in Theorem 1 to deduce
oscillatory nature of equation (1).

We provide another lower estimate of zero points
of solutions of (1).

Theorem 2.3. Assume that

r(t)p(t)≥ a≥ 0, f or t ∈ [α,β ].

Then the number of the zero points of each solution of
(1) on the interval [α,β ] equals at least⌊√

a
π

(R(β )−R(α))
⌋

.

Proof. Note that the couple of the functions

y1(t) = cos
(√

aR(t)
)
,

y2(t) = sin
(√

aR(t)
)
,

are solutions of the following auxiliary equation

(r(t)y′(t))′+
a

r(t)R2(t)
y(t) = 0, t ∈ I1.

Next we can follow all steps of the proof of Theorem
2.2 so details are left for reader.

�

In the following result we deduce the upper esti-
mate of zero points of any solution of (1).

Theorem 2.4. Assume that there exist a real b > 1
4

such that

R2(t)r(t)p(t)≤ b, for t ∈ [α,β ].

Then the number of the zero points of each solution of
(1) on the interval [α,β ] equals at most⌊√

4b−1
2π

ln
R(β )
R(α)

⌋
+1.

Proof. Note that the functions

u1(t) =
√

R(t)cos
(√

4b−1
2

ln R(t)
)

,

u2(t) =
√

R(t)sin
(√

4b−1
2

ln R(t)
)

are linearly independent solutions of the equation

(r(t)u′(t))′+
b

r(t)R2(t)
u(t) = 0, t ∈ [α,β ]. (8)

We shall proceed similarly as in the proof of The-
orem 1. We consider a solution u3(t) of (8)
with property u3(α) = 1. Again u3(t) = c1u1(t) +
c2u2(t), employing properties of sin

(√
4a−1
2 lnR(t)

)
and cos

(√
4a−1
2 lnR(t)

)
we are sure that u3(t) has⌊√

4a−1
2π

ln R(β )
R(α)

⌋
zero points on the interval [α,β ].

Since p(t) ≤ b
r(t)R2(t) for t ∈ [α,β ] our assertion fol-

lows from Corollary 2.1 (ii) applied to to (8) and (1).
�

As a simple consequence of the previous result we
get the following nonoscillatory criterion for (1).

Corollary 2.3. Let β = ∞ and (3) hold. Further sup-
pose that all assumptions of Theorem (2.4) are satis-
fied. Then equation (1) is nonoscillatory.

Corollary 2.4. Let (2) hold. Assume that

R2(t)r(t)p(t)≤ 1
4

for t ∈ [α,∞).

Then equation (1) is nonoscillatory.

Proof. It is easy to see that u1(t) =
√

R(t) is a
nonoscillatory solution of the auxiliary equation

(r(t)u′(t))′+
1

4r(t)R2(t)
u(t) = 0, t ∈ [α,∞). (9)

Taking into account that p(t)≤ 1
4r(t)R2(t) for t ∈ [α,∞)

and applying Corollary 2.1 (ii) to (9) and (1) we see
that any solution of (1) has at most 1 zero point in
[α,∞) that is it is nonoscillatory.

�

Now we turn our attention to lower estimate of
zero points of any solution of noncanonical case of
(1).
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Theorem 2.5. Let (3) hold. Assume that there exist a
real a > 1

4 such that

ρ
2(t)r(t)p(t)≥ a, for t ∈ [α,β ].

Then the number of the zero points of each solution of
(1) on the interval [α,β ] equals at least⌊√

4a−1
2π

ln
ρ(α)
ρ(β )

⌋
.

Proof. Let us consider the equation

(r(t)y′(t))′+
a

r(t)ρ2(t)
y(t) = 0, t ∈ I1. (10)

One can see that the functions

y1(t) =
√

ρ(t)cos
(√

4a−1
2

ln
1

ρ(t)

)
,

y2(t) =
√

ρ(t)sin
(√

4a−1
2

ln
1

ρ(t)

)
are linearly independent solutions of (10). Con-
sider such nontrivial solution y3(t) of (10) satisfying
y3(α) = 0. Then y3(t) has

⌊√
4a−1
2π

ln ρ(α)
ρ(β )

⌋
+ 1 zero

points on I1. Since p(t)≥ a
r(t)ρ2(t) for t ∈ I1, Corollary

2.1 (i) implies our assertion.
�

Note that the estimate of the zero points of the so-
lutions of (1) presented in Theorem (2.6) can be used
to deduce the oscillation of the equation (1) as the fol-
lowing corollary shows:

Corollary 2.5. Let β = ∞ and (1) be in noncanonical
form. Further suppose that all assumptions of Theo-
rem (4) are satisfied. Then equation (1) is oscillatory.

We complete our considerations with providing
the upper estimate of zero points of any solution of
noncanonical (1).

Theorem 2.6. Let (3) hold. Assume that there exist a
real b > 1

4 such that

ρ
2(t)r(t)p(t)≤ b, for t ∈ [α,β ].

Then the number of the zero points of each solution of
(1) on the interval [α,β ] equals at most⌊√

4b−1
2π

ln
ρ(α)
ρ(β )

⌋
+1.

Proof. Since the functions

u1(t) =
√

ρ(t)cos
(√

4b−1
2

ln
1

ρ(t)

)
and

u2(t) =
√

ρ(t)sin
(√

4b−1
2

ln
1

ρ(t)

)
are linearly independent solutions of the equation

(r(t)u′(t))′+
b

r(t)ρ2(t)
u(t) = 0, t ∈ [α,β ].

and p(t) ≤ b
r(t)ρ2(t) for t ∈ I1, the conclusion of the

theorem follows from Corollary 2.1.
�

Corollary 2.6. Let (3) hold. Assume that

ρ
2(t)r(t)p(t)≤ 1

4
for t ∈ [α,∞).

Then equation (1) is nonoscillatory.

In the following example applying Theorems 2.2
and 2.6 we provide upper and lower estimate for zero
points of solutions of considered equation.

Example 2.1. Let us consider the second order differ-
ential equation

(tu′)′+
5 ln t

2t +2t ln 3t
u(t) = 0, t ≥ 1. (11)

It is easy to see that

R2(t)r(t)p(t) =
5 ln3 t

2+2 ln3 t
≤ 5

2
for t ≥ 1

and
R2(t)r(t)p(t)≥ 5

4
for t ≥ e.

Then the number of the zero points of each solution of
(11) on the interval [e,ek], k > 1 equals by the Theo-
rem 2.2 at least ⌊

ln k
π

⌋
and by the Theorem 2.4 at most

1+
⌊

3ln k
2π

⌋
.

Our results here can be compared with a result of
Harris [1, Crollary 8] in which an estimate od the zero
points of the solutions of (1) is provided but the con-
dition rp ∈C2([α,β ]) is required.

Remark 2.3. If we are interested only in counting the
zero-points of the solutions of (1), we can use as com-
parative equation any equation whose solutions can
be found explicitly. For details see next two examples.

Example 2.2. We consider the second order auxiliary
differential equation

(r(t)y′(t))′+
1

r(t)

(
e2R(t)− 1

4

)
y(t) = 0, (12)

where t ∈ [α,β ]. We can directly verify that

y1(t) =
1√
eR(t)

sineR(t) and

y2(t) =
1√
eR(t)

coseR(t)

are the couple of the linearly independent solu-
tions of (12). Thus Eq. (12) has a solution with⌊

eR(β )−eR(α)

π

⌋
+ 1 zero points. Therefore, if (2) holds

and r(t)p(t) ≥ e2R(t) − 1
4 then by Corollary 2.1 the

number of the zero points of each solution of (1) on
the interval [α,β ] equals at least⌊

eR(β )− eR(α)

π

⌋
.
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Example 2.3. Consider the second order auxiliary
differential equation

(r(t)y′(t))′+
e

2
ρ(t) − 1

4
ρ4(t)r(t)

y(t) = 0, t ∈ [α,β ]. (13)

If (3) holds then

y1(t) = e
−1

2ρ(t) ρ(t) sine
1

ρ(t) and

y2(t) = e
−1

2ρ(t) ρ(t) cose
1

ρ(t)

are couple of the linearly independent solutions of

(13). And so, if ρ4(t)r(t)p(t) ≥ e
2

ρ(t) − 1
4 then by

Corollary 2.1 the number of the zero points of each
solutions of (1) on the interval [α,β ] equals at leaste

1
ρ(β ) − e

1
ρ(α)

π

 .

3. CONCLUSION

In this paper we have provided upper and lower es-
timates of zero points of all nontrivial solutions of the
second order linear equations in both canonical and
noncanonical cases. As a consequences of these es-
timates we get oscillation and nonoscillation criteria
for equations considered. More over using theory pre-
sented here we can easily get estimates of zero points
of (1) provided that we can solve explicitely various
auxiliary equations of the form (1).

We leave an open problem how to extend our re-
sults here to even order higher differential equations
and to provide estimates of zero points of their solu-
tions.

ACKNOWLEDGEMENT

The authors thanks Dr. Ján Buša and Dr. Ladislav
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♦ 1990 - CSc. - Faculty of Mathematics and
Physics, Comenius University, Bratislava.

♥ 1995 - Ass. prof. - Faculty of Mathematics and
Physics, Comenius University, Bratislava.

♠ 2004 - Professor - Faculty of Management
Science and Informatics, University of Žilina,
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