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ABSTRACT
Object lifetimes are a common source of bugs in C++ that can cause crashes, unexpected behavior, or even security vulnerabilities.

Herb Sutter, the chair of the C++ standard committee proposed a flow-sensitive analysis to catch lifetime errors statically. Sadly, this
analysis is prone to false positives unless the author follows some specific guidelines. We developed mitigations to eliminate some
classes of false positives to make it easier to write conforming code. The first mitigation fixes a common false positive from a frequently
used coding pattern by introducing local path-sensitivity. The second one is a filter based on reaching definitions and dominance
algorithms to remove reports that might be the result of analyzing infeasible paths. We tested the effectiveness of the methods on the
open source Google Fuchsia project.
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1. INTRODUCTION

Object lifetime, in general, is the time between the con-
struction of an object and the destruction of the same object.
The object lifetime rules can vary greatly between the lan-
guages. C++ is infamous for lifetime problems as the lan-
guage gives a lot of control and responsibility to the users.
These lifetime problems can cause unexpected results or
even security vulnerabilities. Lifetime errors include use
after free, double free, and memory leak errors [24].

Microsoft reports that 70% of the security vulnerabili-
ties they fix are memory errors [17]. Interestingly, Google
shows a very similar figure about Chromium [30]. Their re-
port states that these vulnerabilities are evenly spread across
the code, making it harder to find them. Non-security sta-
bility problems have similar root causes. Chromium tried
to use sandboxing to mitigate potential errors, but it also
has its limitations. Processes are not cheap, and they still
share some memory for efficient communication. Mozilla
paints a very similar picture of the distribution of the error
types [12]. They evaluated how many vulnerabilities could
have been prevented using a safer solution like the Rust pro-
gramming language [3]. According to their findings, it is
worth exploring how to write safer C++.

Due to the vast number of lifetime-related issues in
software, it is no surprise the C++ Standards Committee
is looking for a solution. Herb Sutter, the chairman of
the committee, suggested a flow-based analysis to catch
lifetime-related errors [27, 28]. His analysis is part of the
C++ Core Guidelines [26]. We implemented the analysis
based on his proposal and extended it with mitigations to
overcome some of the false positives from the analysis.

A typical lifetime error can be seen below in Listing 1.
int f() {

int *p = 0;
{

int x = 5;
p = &x;

} // Lifetime of ’x’ ends here.
return *p;

}

Listing 1: The dereferenced pointer points to al-
ready released memory.

In order to catch lifetime errors, it is crucial to know

where pointers might point. Without any knowledge about
the pointee of p we have no chance to find the problem in
the code above. Pointer analysis [23] and lifetime analy-
sis are related problems. Unfortunately, as every non-trivial
static analysis problem, they are undecidable in the general
case. Note that having a sufficiently sophisticated points-
to analysis can help us solving the lifetime problems as we
can check if all the pointees are alive at the point of a deref-
erence. Pointers that no longer point to valid memory are
called dangling pointers. Dereferencing a dangling pointer
is a memory error.

int g() {
int *p = 0;
{

unique_ptr<int> x = make_unique<int>(5);
p = x.get();

} // Lifetime of ’x’ ends here.
return *p;

}

Listing 2: The dereferenced pointer points to al-
ready released memory.

In Listing 2, we have a slightly modified version of
the previous code from Listing 1. We are creating a
unique ptr that will point to a heap-allocated memory.
The unique ptr owns this memory: when its lifetime
ends, the heap-allocated memory will be freed. In order to
be able to detect the lifetime error in this code snippet, we
need to know this ownership relationship. Unfortunately,
C++ has no language rules to determine which objects own
which memory. The user is free to implement any owner-
ship model making static analysis harder. We cannot ob-
serve an allocation directly in Listing 2, but we can assume
one due to the presence of the unique ptr, which is con-
sidered an Owner.

This paper is organized as follows. Section 2 summa-
rizes the flow-sensitive lifetime analysis that was cham-
pioned by Herb Sutter. While we contributed significant
amount of feedback, this analysis is not the main result of
this paper. As that analysis is defined it was not attractive
for the industry enough to gain adoption. We suspect that
the lack of adoption is the result of the number of false
positive findings emitted by the analysis. Next, Section 3
introduces two methods to mitigate some classes of false
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positives. These mitigations are not part of the original pro-
posal yet and constitute our contributions described in this
paper. Section 4 discusses alternative approaches to find
object lifetime errors. Section 5 summarizes our approach
how to proceed improving the analysis. Finally, Section 6
concludes the paper recapping our contributions.

2. LIFETIME ANALYSIS

In this section, we introduce the flow-sensitive analy-
sis [27] we built upon that helps finding lifetime errors.
This analysis is very similar to a points-to analysis and is
based on the lifetime annotations and type categories we
discussed earlier. This analysis is an abstract interpreta-
tion method [6]. We implement the analysis in the Clang
compiler [1] that is based on the LLVM compiler infras-
tructure [15].

2.1. Type categories

Herb Sutter defined four type categories in his analysis.
To automatically categorize a type, we inspect its public
interface. The public interface of a class written in mod-
ern C++ carries rich information about the class’ behav-
ior. In fact, we would prefer to utilize the concept feature
of C++20, but it has not been widespread at the time of
writing this paper [25]. We mainly use these categories to
reason about the ownership relationships between objects.
Misclassifications can result in false positive or false nega-
tive findings, but the alternative to automatic classification
would be to require the user to annotate every class. That
requirement would hinder the adoption of the analysis.

There are a few main observations behind the idea of the
four type categories. Owners own the memory they refer
to. They will do all the necessary allocations, deallocations,
and copies. Thus, properly implemented Owners will never
dangle. Whenever an Owner goes out of scope, the owned
memory will be released. Note that none of the proposed
analyses tries to validate the safety of the owners’ imple-
mentation. Other state of the art solutions like Rust also
tend to use unchecked implementations for owners. Model-
ing the implementation of owners requires a sophisticated
analysis of the heap, which an open problem with a large
number of potential solutions [13, 20], none of which are
sufficient for our use case. Pointers do not own the memory
they refer to. In order to distinguish between the type cate-
gory Pointer and the primitive pointer type, we will start the
former with a capital letter. Raw pointers, references, and
some user-defined types like iterators belong to this cate-
gory. Aggregates are plain old data types that are handled
member-wise. Values are the types that did not fit into any
of the former categories. For more details on categories see
our paper about a statement-local analysis variant [11].

2.2. Annotation language

To model function calls, the lifetime analysis defines an
annotation language to describe lifetime related contracts.
These contracts are summaries. Note that the user does not

need to specify the lifetime contracts for each functions as 
we have inference rules that can infer a sensible summary 
for most functions based on their declarations.

  The annotations describe some aspects of the function 
and they are independent of the actual analysis. There are 
multiple analyses capable of consuming these annotations. 
Our statement-local analysis [11] based on this work was 
able to find bugs in many open source projects including
Chromium, LLVM, and OpenCV.

1  We use gsl::pre and gsl::post annotations to de- 
scribe lifetime contracts. Both annotations expect an ex- 
pression of form lifetime(source, {targets}). This
makes it clear that these contracts describe lifetime require- 
ments. This contract describes that the pointee of source

has the same lifetime as the smallest lifetime among the 
pointees in the targets set. The EBNF grammar of the
annotation language is shown in Fig. 1.

〈annotation〉 ::= ‘[[’ 〈pre〉 ‘]]’
| ‘[[’ 〈post〉 ‘]]’

〈pre〉 ::= ‘gsl’ ‘::’ ‘pre’ ‘(’ 〈contract〉 ‘)’

〈post〉 ::= ‘gsl’ ‘::’ ‘pre’ ‘(’ 〈contract〉 ‘)’

〈contract〉 ::= [‘gsl’ ‘::’] ‘lifetime’ ‘(’ 〈contract expr〉
‘ ’,
‘{’ { 〈ext contract expr〉 ‘,’ } 〈ext contract expr〉
‘}’ ‘)’

〈ext contract expr〉 ::= [‘gsl’ ‘::’] ‘null’
| [‘gsl’ ‘::’] ‘global’
| [‘gsl’ ‘::’] ‘invalid’
| 〈contract expr〉

〈contract expr〉 ::= ‘this’
| ‘Return’
| ? ident ?
| [‘gsl’ ‘::’] ‘deref’ ‘(’ 〈contract expr〉 ‘)’
| 〈contract expr〉 ‘.’ ? ident ?
| 〈contract expr〉 ‘->’ ? ident ?

Fig. 1. The grammar of the lifetime contract annotation 
language

void basic(int *a, int *b)
[[gsl::pre(lifetime(b, {a}))]];

void f() {
int c, d;
basic(&c, &d);

}

void g() {
int array[20];
basic(array, array+20);

}

Listing 3: Simple annotation example.

  In Listing 3, the function basic has a precondition that 
both arguments’ pointees should have the same lifetime. In 
our model the same lifetime means that they either need to 
be the same object or belong to the same Owner or Ag- 
gregate (like container or parent array/struct). The function

1gsl is the namespace used by the C++ Core Guidelines Support Library
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call to basic in f does not fulfill this precondition. With-
out knowing this precondition, it is not possible to detect
the problem. However, the function call in g is safe, as both
pointers point to something with the same lifetime. One
could argue that the individual elements of the array have
different lifetime as the array members are created/destruc-
ted in a sequential order. However, for our analyses, each
aggregate is considered one atomic entity lifetime-wise.
Our contracts are following a provenance-based model,
meaning that the lifetime of an aggregate member or the
pointee of an owner is considered the same as their parents.
On the other hand, the variables c and d in function f are
considered separate entities in the provenance-based model.
They do not belong to the same Owner or Aggregate. This
choice might seem arbitrary at this point, but it proved to be
a powerful tool to detect iterator misuses where the iterators
originated from different containers (see Listing 4), and we
have yet to experience any downside to the approach [27].

Note that array+20 will point past the last element of
the array in Listing 3. This is a common pattern in C family
languages. Range of elements are represented as follows,
the beginning of the range is included but the end of the
range is not. Thus, the pointer or iterator referring to the
end of the range is never dereferenced. This representation
makes it easy to check for empty ranges, we just need to
equality compare the beginning and the end of the range.
While this specific example is correct, our analysis would
not be able to detect out of bounds errors. We do not reason
about the indices.

template <typename It, typename T>
It find(It begin, It end, const T &val)

[[gsl::pre(lifetime(end, {begin}))]]
[[gsl::post(lifetime(Return, {begin}))]];

struct [[gsl::Owner(int)]] MyOwner {
int *begin()

[[gsl::post(lifetime(Return, {this}))]];
int *end()

[[gsl::post(lifetime(Return, {this}))]];
};

void f() {
int *res = find(MyOwner{}.begin(),

MyOwner{}.end(), 5);
}

Listing 4: A real-world example of using lifetime
contracts.

Let us look at a more real-world example. The code in
Listing 4 has multiple object lifetime problems. First of all,
the find function expects two iterators that belong to the
same container, so they should have the same lifetime. The
returned iterator will also have this lifetime. While this con-
tract is quite natural to a seasoned developer, it can be hard
to derive this automatically using static analysis. Making
all these contracts explicit in the source code opens up new
possibilities. Now that the tools can be aware of the lifetime
contracts, they can detect that the iterators passed to find

in function f have pointees with separate lifetime. There-
fore, we can diagnose the problem. Moreover, the tools can
detect that the returned Pointer’s pointee has the same life-
time as the first argument’s pointee, which is a temporary
object in this case, it will be destroyed at the end of the full
expression. As a result, the Pointer returned by find will
dangle.

2.3. Abstract Interpretation

The analysis implementation works on the control flow
graph (CFG) provided by Clang. The nodes of this graph
are basic blocks, which are sequences of instructions al-
ways executed sequentially, while edges are the possible
jumps between basic blocks. Note that this representation
usually does not encode concurrency related information.
An example CFG can be seen below in Fig. 2.

Analysis domain The analysis is similar to a points-to
analysis. We have a set of abstract memory locations. For
each variable with a type from the Pointer category, we
maintain a points-to set that is a subset of all the possible
memory locations for a given function. These sets are over-
estimating the possible destinations. For Owners, we will
not maintain a points-to set as they will always point to the
same abstract memory location in our system.

Abstract memory locations Our model defines one ab-
stract memory location for each variable and allocation site.
Allocation sites (e.g., new expressions) are not always visi-
ble inside the function we analyze. Thus, we have assumed
allocation sites for the pointees of owners and the pointees
of the function arguments. Each of these abstract allocation
sites can correspond to multiple objects at run time. We
also have special memory locations to represent uninitial-
ized values, null Pointers, and Pointers we do not reason
about. The number of memory locations is finite. We also
track the relationship between these memory locations, i.e.,
we know that what are the parents of a field. Our method
is field-sensitive. Each structure consists of the memory
locations of its fields and each field can have its separate
points-to information during the analysis.

We set the pointee to global to represent Pointers we
do not reason about. We can think of global as a special
top element in the lattice. The name of this abstract location
can be misleading as we use this symbol both to represent
that the pointee has provably longer lifetime as the Pointer
and that we do not want to reason about the lifetime of the
pointee. The main reason for having such a symbol is to re-
duce the number of false positives for certain code patterns
that are really challenging to support.

Monotonicity We have a powerset lattice at the heart of
the analysis domain, and the join operator is based on the
set union. Each set contains abstract memory locations that
represents the possible pointees for a pointer. All of our
transfer functions can only grow the size of the sets. Since
the number of abstract memory locations is finite for each
function, and the transfer functions are monotonic since we
use the set union as the join operator, the analysis will al-
ways terminate. Moreover, since the size of the sets will
never decrease, whenever we see a problematic element in
the powerset, we can report the error immediately without
requiring an extra pass to traverse the CFG and the analysis
state to collect the warnings.

Context-sensitivity The analysis is not context-sensitive.
This is a direct consequence of the annotation language we
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int collatz(int x) {
int num = 0;
while(x > 1) {

if (x % 2)
x = 3 * x + 1;

else
x = x / 2;

++num;
}
return num;

}

ENTRY

num = 0;

while(x > 1)

if(x % 2)

x = 3 * x + 1; x = x / 2;

++num;

return num;

Fig. 2.  A C function and its simplified control flow graph

have as (just like in Rust) context-dependent lifetime con-
tracts cannot be expressed with them. The primary purpose
of the analysis is to find lifetime contract violations; thus, it
is not possible to make it meaningfully context-dependent
without extending the annotation language. To achieve in-
terprocedural analysis, we check whether the preconditions
hold at the call site, and assume the postconditions after the
call to model the effect of the call. In the callee, we assume
the preconditions and check whether the postconditions are
met before returning from the function. See Fig. 3 for de-
tails. We do not enforce the postconditions on exceptional
paths from throw expressions and assertion failures.

pile time. Thus, static analysis tools often over-approximate
or under-approximate the behavior of a program. Conse-
quently, such tools may report false errors (called false pos-
itives), or they might miss some real problems (called false
negatives). While verification tools aim to catch all errors
at the cost of having a large number of false positives, in-
dustrial bug-finding tools aim to have a low false positive
rate at the cost of missing some true errors [8]. The rea-
son is economincs, the developer time is valuable, the time
spent on evaluating false positives could be spent on fixing
known bugs or developing new features.

Traditionally, researchers tend to focus on the formal
verification end of the spectrum. Godefroid argues [9] that
bug-finding aspect of static analysis is just as important. Pe-
ter O’Hearn devised a formal method to argue about the
soundness of bug-finding tools [18]. Some authors claim
that excess number of false positive findings renders cer-
tain checks useless [14]. Ranking static analysis results is
an active research area that employs statistics and machine
learning [10, 14].

In this paper, we introduce two methods that help fine-
tuning an analysis match the rigor that is justified by the
requirements of the analyzed project.

3.1. Local path-sensitivity

Whenever the analysis evaluates a condition it will up-
date the state of the Pointers. On the branch where the
Pointer is evaluated to true we assume that the Pointer
is non-null while in the other branch we assume that the
Pointer is null. This helps preventing some false positives
like in the code below.

void f(int *p) {
if (!p)

return;
*p = 5; // no warning

}

Listing 5: Dereference guarded by early return.

Initially, the analysis assumes that the value of p can be
null. After the if statement on the then branch we know
that the value of the pointer must be null. Similarly, on the
implicit fallthrough branch we know that the value of the
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Fig. 3.  Interprocedural analysis with lifetime contracts

Performance The goal of the analysis is to keep the per- 
formance good enough so users can turn it on for each 
compilation. According to our measurements the analysis 
has about 5% overhead over a full compilation and 10% 
overhead on a syntax- and typecheck (no code generation). 
While we did not have time yet to fine-tune the performance 
we did use some clever tricks to avoid redundant work and 
improve cache locality. For example, we skip checking 
of the C++ Standard Template Library (STL) implemen- 
tation [16]. There still is some room for improvement, for 
example, we do not use immutable data structures yet to 
represent the state.

3. ELIMINATING FALSE POSITIVES

Unfortunately, paraphrasing Rice’s theorem [21]: all
non-trivial properties of a program are undecidable at com-
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pointer cannot be null. Hence, the analysis will not warn on
the dereference, it is safe.

This method also happens to work for compound con-
ditions like in the code below:

void f(int *p, int *q) {
if (p && q) {

*p = 5; // no warning
*q = 3; // no warning

}
}

Listing 6: Dereference guarded by compound con-
ditional.

We only take the true branch of the conditional statement
when both pointers are evaluated to true, so none of them
can be null.

It was quite counter intuitive when we discovered that a
slightly rewritten version of the code above will not work
as expected:

void f(int *p, int *q) {
assert (p && q);
*p = 5; // warning: possible null dereference
*q = 3;

}

Listing 7: Dereference guarded by compound as-
sertion.

The assert above is a macro that is expanded in Fig. 4.
Where the false branch of the ternary operator is a

noreturn function stopping the analysis on that path. The
source of the problem is the explicit cast to boolean. The
main reason for this cast is to make sure that types with
explicit conversion operators work in assert contexts. This
conversion operator creates an unnamed temporary. This
temporary is at a join point in the CFG which results in
merging the analysis states corresponding to the true and
false branches. Later on, we branch on this temporary. At
this point the states were already merged and the analysis
can no longer figure out the correct nullness of the pointers.

This pattern of assertive programming is widely used.
It is not an option to not support this pattern as it would
hinder the adoption of the analysis. A programmer would
know that the explicit conversion there has the only role to
make the type system contented but it does not change the
semantics of the program. Path-sensitive analyses have no
problem modeling this as they keep multiple program states
for each CFG node, one for each paths from the ENTRY to
the node. The cost of this precision is exponential memory
and runtime complexity.

To avoid the cost of the path explosion while reaping
some of the benefits we introduced local path-sensitivity
to the analysis. Whenever the tool encounters this pattern,
it will not merge the states for the temporary result of the
explicit conversion. It will keep two separate states, one
for the true condition and one for the false. Later on, it
will propagate the true states to the successors on the then
branch and the false states to the successors on the else
branch. Using this method, we were able to make asser-
tions work as expected with the analysis.

This local path-sensitivity does not cause an exponen-
tial explosion of paths as path constraints have at most one
temporary at a time. The fact that we could improve the pre-
cision of the analysis with this method is a proof of the lack

of distributivity, i.e., the transfer functions do not distribute
over the join operation. See the equation NON-DISTR,
where FB,truth stands for the transfer function of the basic
block B for the output edge truth, t is the join operation
and s is the initial analysis state. The formula is based on
the CFG in Fig. 4.

As a result, the meet-over-all-paths solution is more pre-
cise than the maximal-fixed-point algorithm for this analy-
sis.

An alternative would be to prune the explicit conversion
from the CFG. This was not an option as the Clang CFG
is very closely coupled to the abstract syntax tree by de-
sign. Moreover, it could change the result of other analyses
as Clang attempts to reuse the CFG as much as possible to
keep the run time low.

After implementing this method we tested the analysis
on some open-source projects and this pattern of false pos-
itive findings disappeared. Unfortunately, we are not aware
of any open-source projects that adopted this analysis (with
consistent use of gsl::not null to mark non-null point-
ers and following some other guidelines). This makes it
meaningless to evaluate the change in the false positive ra-
tio as the original analysis was not designed to work with
arbitrary C++ code.

3.2. Dominance- and reaching-definitions-based filter-
ing

Different projects have different safety requirements.
For some projects, the authors are willing to evaluate large
number of false positive results to find a few true positives.
Sometimes, they are even willing to rewrite correct code to
suppress a false positive result. Most projects, however, are
not safety critical. Authors of those projects do not want to
be bothered with false positive findings. They are interested
in bug-finding tools as a productivity boost. A tool can save
time if it can discover hard-to find or debug problems with-
out wasting too much time with false positives.

According to our experience, bugs on infeasible paths
are the most common sources of false positives for our flow-
sensitive lifetime analysis. To mitigate this problem and
make it useful for a wider audience, we introduced a filtered
version of the analysis. This filtered analysis will only re-
port bugs that are guaranteed to be on a feasible path at the
cost of additional false negatives, i.e., missed bugs. This fil-
tered analysis can transform a tool that is closer to verifica-
tion and useful for safety critical software into a bug-finding
tool that is useful for most industrial projects.

This section introduces this filtered analysis that is
based on dominance relationships and reaching definition
analysis. We first introduce these definitions and showcase
some examples how can they prevent false positive find-
ings. Note that this is only a filter on the top of the existing
flow-sensitive lifetime analysis and it could be reused for
other analyses as well.

Firstly let us define dominance, which will help us rea-
son about some code examples.

Definition 3.1. (Dominance) Node v ∈ CFG dominates
node n ∈ CFG iff all paths from the entrance node to n go
through v.
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void f(int *p, int *q)
{

(bool)(p && q) ?
0 :
__assert(...);

*p = 5; // warning
*q = 3;

}

ENTRY

p

q

(bool)(...)

*p; *q; assert(...);

Fig. 4.  Expansion of the assert macro and its control flow graph

(NON-DISTR)
Fcast,true((Fq,true(Fp,true(s)) t Fq, f alse(Fp,true(s))) t Fp, f alse(s)) =6

Fcast,true(Fq,true(Fp,true(s))) t Fcast,true(Fq, f alse(Fp,true(s))) t Fcast,true(Fp, f alse(s))

Fig. 5.  Counter example to prove that the lifetime analysis is not distributive

Definition 3.2. (Post-dominance) Node v ∈ CFG post-
dominates node n ∈ CFG iff all paths from n to the exit
node go through v.

Definition 3.3. ((Post-)dominators) For node v ∈ CFG,
v’s (post-)dominator set contains all nodes n ∈ CFG that
(post-)dominate v.

void f(...) {
p = getNonNullPtr();
if (cond())

p = 0;
if (cond2())

*p = 5;
}

Listing 8: Possible null pointer dereference with-
out dominance relationship.

Listing 8 has a possible null pointer dereference error.
We assume that all the branches can be taken. As a result,
pointer p can be null. The dereference of the pointer is not
guarded by a null check. Hence, the analysis will report a
warning. Note that this might be a false positive. In case the
two conditions cond and cond2 are not independent, the er-
ror might be on an infeasible path. I.e., the program might
never take both of the branches. In that case, the finding is
a false positive.

void f(...) {
p = 0;
if (cond2())

*p = 5;
}

Listing 9: Possible null pointer dereference with
dominance relationship.

void f(...) {
p = getNonNullPtr();
if (cond())

p = 0;
*p = 5;

}

Listing 10: Possible null pointer dereference with
post-dominance relationship.

Listing 9 has a similar code snippet. Here, however, we
only have one branch. The assignment that sets the pointer
p dominates the dereference. Thus, every path that reaches
the dereference has to set the value of the pointer to null.
Such code either has a null pointer dereference or it has
dead code. Either way, it is always worth report this to the
user. Similarly, Listing 10 is also a true positive finding be-
cause the dereference post-dominates the null assignment.

void f(...) {
p = 0;
if (cond())

p = getNonNullPtr();
if (cond2())

*p = 5;
}

Listing 11: Possible null pointer dereference with
multiple reaching definitions.

Sadly, checking domination relationship only is not suf-
ficient to exclude all the false positives from infeasible
paths. Listing 11 has a snippet where the null assignment
dominates the dereference. This report would not be filtered
by a dominator based filtering algorithm. However, it still
can be a false positive, in case we always update the pointer
before dereferencing it. The gist of this example is the fact
that there are multiple values that can flow to the derefer-
ence. Fortunately, there is a well known way to formalize
this phenomenon.

Definition 3.4. (Definition) The definition of a value is the
instruction where the value was created/assigned.

Definition 3.5. (Reaching definitions) For a given in-
struction, the set of reaching definitions contains definitions
that can reach this instruction without being overwritten.

To exclude the code from Listing 11, we will only report
warnings that have the following properties:
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• The source dominates the dereference, or the derefer-
ence post-dominates the source. Note that the source
is not always an assignment, it can be other events
like a variable going out of scope, being deleted, or
the memory of a container is being reallocated.

• The value of the pointer is not changed on any paths
between the source and the dereference. I.e., there
are no reaching definitions of the dereference that is
reachable from the source.

Calculating the dominator and reaching definition sets
are classical dataflow problems that are discussed in detail
in textbooks. In this paper, we used the algorithms from the
book Engineering a compiler [5]. See the algorithm to cal-
culate dominator sets below. We denote the predecessors of
a basic block n with preds(n).

Init : Dom(n0) = {n0}
Dom(n) = {n0,n1, ...,nm},∀n 6= n0

Iter : Dom(n) = {n}∪

 ⋂
m∈preds(n)

Dom(m)

 (1)

Note that post-dominator sets are equivalent with the
dominator sets on a reversed CFG if there is a single dedi-
cated exit node.

Definition 3.6. (Downward-exposed definitions)
Downward-exposed definitions for a node n ∈ CFG
(DEDef (n)) are the set of definitions that are not redefined
in the same basic block.

Definition 3.7. (Definition kill) The DefKill(n) set con-
tains all the definitions from any CFG nodes that are re-
defined by a definition in n.

Using these definitions, we can formulate the algorithm
to calculate reaching definition sets. It is shown below.

Init : Reaches(n) = /0,∀n ∈ CFG

Iter : Reaches(n) =
⋃

m∈preds(n)

(
DEDef (m)∪

(Reaches(m)∩De f Kill(m))
) (2)

Unfortunately, Clang does not have a reaching defini-
tion algorithm and it is quite an effort to develop one. As a
workaround, we implemented an algorithm to check if the
analysis state of the pointer changes on any of the paths
between the source and the dereference.

This filtering also provides the users with a good migra-
tion path to introduce the full flow-sensitive lifetime anal-
ysis. Users can start fixing filtered problems first, and turn
the filtering off gradually for each translation unit to move
towards a warning free code base.

At the time of writing the paper, we were not aware of
any open-source project that is following the relevant parts
of the C++ Core Guidelines making the evaluation of this
filtering harder. Running the flow-sensitive analysis on a

project that does not follow the assumptions of the analysis
does not provide a meaningful measure about the useful-
ness of the analysis. These assumptions are the following:

• Non-null Pointers in formal parameters are marked
with the appropriate annotation or type

• Output only and input/output formal parameters can
be distinguished (using annotation or a convention,
e.g. references are always input/output).

• For the rare case when the user defined Owners and
Pointers are not recognized correctly, they are anno-
tated accordingly.

• For the rare case when the default inferred function
contract triggers false positives, the function is anno-
tated.

For the reason mentioned above it is not meaningful to
calculate the false positive ratio before and after applying
this filter. We run the filtered version of the analysis on
Fuchsia [31] including all of its dependencies. Fuchsia is
an open-source capability-based operating system with a
strong focus on security mainly developed by Google. After
reviewing manually the filtered results, there were no false
positive results due to the infeasible path problem. This
method successfully filtered a whole class of false positives.
Despite the aggressive filtering, the analysis were able to
find useful results.

Alternatively, this filter is also suitable to rank certain
results higher that are less likely to be false positives. This
helps the developers to first focus on fixing warnings that
are more likely to uncover true errors.

4. RELATED WORK

Rust is referenced in this paper a lot. It is a systems pro-
gramming language with great safety features. Safe Rust
enforces a strict property: there is only one mutable ref-
erence to an object at a time. This helps Rust analysis to
utilize distributive frameworks in the form of Gen/Kill sets
which circumvents some of the problems we solved in this
paper. It is not realistic to expect industrial users of the life-
time analysis to rewrite their code in a style that enforces
this property. Moreover, Rust is not a silver bullet. A study
about the use of unsafe in Rust [19] argues that unsafe is
often inevitable and its usage can introduce bugs into Rust
code. The study recommends developing and using addi-
tional tooling to catch bugs in Rust code.

Cclyzer [2] is a points-to analysis on the LLVM bitcode.
While the application of this tool differs from our lifetime
analysis, this work promotes field- and type-sensitivity in
the points-to analysis for C++. These properties are also
present in Herb Sutter’s analysis.

Encoding ownership information in the type system ex-
plicitly (or inferring them implicitly) is an active area of
research [4]. While it would be possible to extend the type
system of C++ with type category information, we did not
see any advantages over our current solution. Our main
reason is that type categories are derived from empirical ob-
servations. Thus, we do not plan to formalize the category
inference.
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ARC++ [29] also works by abstract interpretation;
hence it has similar trade-offs compared to the lifetime
analysis described in this paper. It is, however, using a
slightly different approach. The authors introduced an ab-
stract representation of the C++ source code that makes ob-
ject creation, uses, and destruction explicit. They also de-
fined lifetime dependency in order to link objects that have
related lifetime semantics.

Ironclad C++ is a project that aims at type and memory
safety in C++ [7]. This solution proposes a C++ template
library as an essential type system that enforces the safety
rules. Dangling pointers are considered, but the approach
does not deal with dangling pointers to former temporary
objects. Also, this solution does not distinguish between
user-defined classes based on their category.

A common alternative to static analysis is dynamic anal-
ysis. The most popular C++ compilers support sanitiz-
ers [22] that can help us catch lifetime-related problems
with no false positives. Unfortunately, these methods can
also have false negatives. More importantly, not all of the
code is checked; only the parts that were executed during
testing.

5. FUTURE WORK

We plan to continue investigating what are the major
obstacles preventing the adoption of Herb Sutter’s flow-
sensitive lifetime analyis. For each obstacle, we want to
introduce mitigations to give users a migration path from
non-conforming code that produces high volume of warn-
ings to conforming code. This migration path should help
users to fix warnings incrementally starting with the most
severe ones that are the most likely to be true positives.

Moreover, we believe that the local path-sensitivity can
be generalized to every CFG node that does not change the
analysis state. We call such nodes transparent. Unfortu-
nately, it is analysis dependent to decide which nodes are
transparent. We believe this approach can increase the pre-
cision of the analysis significantly without exploding the
run time and memory usage. It can also provide the users
with a knob that can be used to fine tune the balance be-
tween performance and precision.

6. CONCLUSION

Object lifetime related errors are a significant problem
for C family languages. While we have some tools to pre-
vent some of these errors, their adoption can be hindered by
false positive findings. Bug reports need to be reviewed by
developers one-by-one in order to be corrected. If the tool
presents an overwhelming amount of false warnings to the
developer, it becomes cumbersome to use, and developers
eventually lose their trust and interest in the tool.

In this paper, we introduced two methods to get rid of
some false positive findings. The first method helps elim-
inate some false findings that are specific to some coding
patterns in C and C++. This method is adding local path-
sensitivity in some cases. This does not result in path ex-
plosion and does not introduce additional false negatives.

The second method, on the other hand, eliminates ev-

ery warning that can be prone to the infeasible path prob-
lem. While this approach eliminates a large class of errors it
comes at the cost of introducing significant amount of false
negatives. The applicability of this dominance-based filter-
ing depends on the requirements of the analyzed project.

While we did not eliminate the need to follow some
guidelines to use this analysis, we made it easier to conform
to those guidelines. Reducing the amount of work needed
to be done by the user is key to make the analysis more pop-
ular. Note that one of the main reasons for the lack of users
is the fact that the implementations of the original analysis
is not finished yet, some language features such as move
semantics are not yet supported. Nevertheless, it is worth
exploring how to make the analysis more user-friendly even
before it reaches maturity.

We believe that these results will help the adoption of
the analysis as a statement-local variant of this analysis al-
ready proved to be successful [11] and is available in Clang
10 and on by default.
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he graduated (MSc) from Eötvös Loránd University in Bu-
dapest. He finished writing his PhD dissertation about static
analysis of C++ software recently and awaiting the defense.
During his studies he interned at several software compa-
nies that helped him focusing on research questions with
immediate applicability. His research is focusing on sym-
bolic execution and abstract interpretation methods for real-
world use cases.

Norbert Pataki was born on 26. 2. 1982. He defended his
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