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ABSTRACT
We use tools and techniques specific to the field of complex networks analysis for the identification and extraction of key parameters

which define ”good” patterns and practices for designing public transportation networks. Using network motifs we analyze a set of 18
cities using public data sets regarding the topology of network and discuss each of the identified motifs using the concepts and tools of
urban planning.
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1. INTRODUCTION

The public transportation system realizes the connec-
tion of the locality to the internal and international network
and at the same time supports and influences the socio-
economic evolution of one city. Accessibility, defined as
the possibility of access to a desired destination, depends
mainly on the extension and quality of the transport infras-
tructure and on the availability of services, being closely
linked to that of connectivity, which is a usual term in net-
work analysis.

Network analysis has become very popular in the last
decades as it has proved to be immediately applicable in a
large area of science. The Network approach has two bene-
fits. One of them is that it simplifies and visualises the huge
amount of data and the second benefit is that it has become
very effective in picking out the most important elements
and finding their most important interactions. Additionally,
numerous techniques have been developed to discover the
deeper topological structures of a network, such as commu-
nity structure, core-periphery structure or small-world and
scale-free properties [2]. These properties are usually the
most common characteristic features of real-world complex
networks.

Urban road network represents a spatial network as a
result of the geographical features. The nodes and edges
are fixed in space. The analysis and study of the topology
structure could be the origin of the traffic state assessment
and the optimisation of the traffic organization.

Numerous investigations of the transportation systems
have been made in the last 20 years. The development of
small-world networks and the appearance of modern graph
theory lead to numerous studies about the topic of public
transportation systems as complex networks. Many statis-
tical characteristics have been published, for example the
small-world property and scale-free distribution of various
graph measures [5]. The public transportation is a network
where the nodes are represented by the bus stations and
the edges connect successive stations. Beside the above-
mentioned characteristics, in a network there can be found
some small recurrent substructures, so called motifs. The
study of the motifs has become a regular tool of complex

network science, in order to accentuate the design basis of
the structure of empirical networks.

2. NETWORK MOTIFS BACKGROUND

A network motif can be defined as a subgraph, usually
with a small number of nodes, that appears significantly
more frequently in the network than it does in a group of
appropriately-chosen random graphs. The first mention of
the motifs was done by Milo et al. who said that they are
recurring, significant pattern of interconnection [1]. Milo
et al. found them, among many others, in biochemical gene
regulation networks and in the network of hyperlinks from
the World Wide Web. They demonstrated that different sets
of motifs are linked to diverse types of networks. Each mo-
tif could influence explicit functions, such as outlining uni-
versal network classes. Still, the existence and explanation
of motifs in transportation networks has not been in the fo-
cus of researchers. The theoretic research on transportation
system as complex networks characteristically concentrates
on macroscopic structures like network diameter, or micro-
scopic measures such as node centrality [1].

The importance of network motifs could be determined
by the consideration that small subgraphs display special
forms of links among network nodes and consequently they
could have a regulatory or dynamic role. The frequency
distribution of motifs in the network could be defined as a
motif spectrum. This could be viewed as a pattern of the
network structure and it permits to relate diverse networks
and to create groups of networks with comparable signifi-
cance profiles [2]. The analysis of motif spectra is an useful
concept to unveil universal design principles underlying the
structure of complex networks [6]. It is a tool to explain
some properties of complex systems with relatively simple
structures that led to an interest in network motifs in an ex-
panding number of studies and across disciplines.

There are many ways to define a motif. Network mo-
tifs are the building blocks that profile the dynamic perfor-
mance of a network or patterns of interconnections occur-
ring in complex networks at numbers that are significantly
higher than those in randomized networks [4]. This defini-
tion could have been a little confusing mostly the random
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ensemble terms generated the confusion. Additionally, the
terms subgraph and motif have been changed many times
between them [6]. To be more specific, we choose to de-
scribe a motif as a group of topologically equivalent sub-
graphs of a network

3. DATA AND METHODOLOGY

Our investigation is targeting the public transportation
network and consequently we have used one of the most
extensive data-sets consisting of topology layouts and route
traces available to the scientific community. The data-sets
published by Kujala et al. in [8] consists of 25 cities form
around the world for each of them having provided data re-
garding the layering of the network consisting of various
”travel modes” as defined by the GTFS feed and for each
of the layers we have access to a detailed description of it’s
constituents (”bus” stops and routes represented as poly-
lines). This level of details itself allows investigation in the
realm of geo-information systems and urban geography but
we were more geared towards the network properties which
could be extracted form there. The authors used publicly
available data fed trough General Transit Feed Specifica-
tion (GTFS) but done the significant work of curating the
data and preparing them for further study

We have took into account in our investigation cities
of diverse size (Fig. 1, on different continents and with
a variety of local characteristics (separated by a river, on
the seaside, having an old city center). Out of the bulk of
data provided by the repository we have used the networkN-
odes.csv file which consists of public transportation stops
which are going the function as network nodes and also the
network[Mode].csv file which was selected only for bus and
tram as discussed above.

Fig. 1 Distribution of the city sizes seen as number of nodes in
the corresponding network of public transport infrastructure

show a balanced composition of the cities took under scrutiny in
our study.

3.1. Public transportation and complex networks

Data associated with each of the cities usually can be
plotted as seen in Fig. 2 but beyond mere visual obser-
vation which can yield some insight into clustering of the
station and routes there is no much data which can easily
be obtained so we relied on transforming these data into a
graph-like structure.

Fig. 2 Public transportation routes in center of Helsinki, red dots
representing stops. Network is constructed by considering

directed edges between each pair of consecutive stops along a
route.

Before applying the motif finding techniques and ex-
tracting relevant patterns we have first inspected the PT
networks we have selected using the tools of complex net-
works. Having a large enough graph we hypothesise that
there should be emergent properties which stem form the
structure of the network. In Fig. 3 we show a network-
centric representation of the transportation network for city
of Athens in Greece. Each stop is associated to a node in
the network while each directed edges are used to depict the
travel route of the vehicle. The nodes are not placed based
on their geographical positioning but the graph is rendered
in Gephi using the Force Atlas 2 rendering algorithm which
uses an approach stemmed for attraction an repulsion forces
in physics to place the nodes at an equilibrium. Colors and
sizing is going to be explained later on.
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Fig. 3 Network representation of the public transportation in
Athens, Greece. Nodes are representing stops and edges are

directed towards the travel routes of the vehicles. Nodes are sized
by the betweenness metric and colored by the community they

are part of. Rendering layout is Force Atlas 2 as implemented in
Gephi 0.8

On the complex network side we measured classical
metrics and their distributions. In Table 1 we show most
important metrics computed for the cities we took under
scrutiny. Number of nodes and edges provide a sense of the
scale of the city and in Fig. 1 one can perceive the almost
equal melange between small, medium and large cities.

The other important metrics which describe a complex
network from it’s topological point of view are depicted
in Table 1. The average degree is smaller then when we
analyze the road network as a whole because in the case
of transportation networks most nodes are represented by
stops along a route and each node shall have exactly one
directed connection (towards the next stop). The values are
greater than one because in the case of some stops there are
transfer stations or more than one line share the same stop
and consequently there is going to be seen as ”fork” in the
network. Next important metric, which also can be con-
sidered a metric of size when we are dealing with physical
cities is represented by network diameter which is simply
the length (number of edges) of the longest of the shortest
paths computer over each pair of nodes. On can perceive
in this data-set that this is linearly dependant with the num-
ber of nodes, which is to be expected, but there are slight
abnormalities such as the case of Paris where for 10880

transport stops the the network diameter is merely 193, way
lower than Detroit for example, which has 348 edges on it’s
longest path while having only 4361 stops. It’s worth noting
that form a user’s (commuter’s) perspective the seemingly
large numbers for the diameter are obtained from taking
into account also the transit stations and not that a single
line has more than 200 stops for example. The main reason
for such disparities is stemming from the city topology an
the way public transport is organized. Paris public transport
relies heavily on ”on-demand stops” where the commutes
can press a button inside the vehicle the signal the driver
for requesting to stop while other scenarios use fixed stops
where the car actually stops even when there is nobody to
get in or out.

Going further we measured the modularity metric for
each network. As the name says it’s a measure of how
well the network can be separated into smaller ”chunks”
later called communities. Our previous work on this subject
[9]provided significant results related to road networks as a
whole and cities having a good modular structure. Higher
values for modularity signify a better and easier division
while the lower value impose that the network does not have
a clustered structure (such as artificial grid networks). It’s
worth noting that in this case, even if we deal with urban
networks we don’t take into account the geo-location of the
nodes while relying only on the topological properties (net-
work connectivity). Here we can perceive very high values
for the modularity which is a string indication of the com-
munity structure. This is consistent with booth the litera-
ture [10, 11] and the empirical observations. Cities are or-
ganized and evolved around the geographical features and
landmarks while the neighborhood are the micro-societal
way or organizing living. The public transport evolved
around these factors and most of the time communities in
public transportation networks are consistent with neigh-
borhoods while the connections between communities are
represented by metro lines or other forms of ”long-links”.

Clustering coefficient is another metric we have deter-
mined for our data set. This is similar to the previous notion
of modularity, while booth being empirical metrics of mea-
suring clustering i.e. the way nodes are grouped together.
Clustering coefficient uses the number of triangles which
can be found (some simple form of motif in relationship
with the 2-paths (used by the modularity algorithm). So,
in our case low values for clustering coefficient are caused
by the fact our networks have a lot of long 1-D paths along
the travel route of our vehicle, consequently almost no tri-
angles.

Putting all together we run the community detection al-
gorithm, keeping each time the same constant value for
the resolution parameter to 1.0. Due to algorithm’s non-
deterministic nature, for each set we have run the algo-
rithm five times and taken the average value of communities
rounded to the nearest integer. The lowest value of 22 com-
munities is obtained for Venice with it’s very particular geo-
graphical features while cities with high values (Detroit-72,
Paris-60) are either geographically big, or have a qualita-
tively good public transport infrastructure [12, 13], such as
Dublin, Grenoble, Helsinki or Toulouse. For the example
of Athens we have in Fig. 3 each node colored according
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to the community it was identified to be part of. One final
aspect we took under scrutiny is the betweenness metric.
This is a classical one in the realm of complex networks, is
associated with a specific node and loosely is defined as the
number of shortest paths we traverse the node when com-
puting all the shortest paths between all the pairs of nodes in
the network. Usually is perceives a centrality metrics, mea-
suring the importance of the node to the networks, because
empirically a node which is part of numerous paths should
be an ”important one” [14]. In Fig. 3 the nodes are sized
according to their betweenness from largest to smallest.

Fig. 4 Distribution of the frequency of 4 and 5 nodes motifs:
one can observe the heavy tailed, almost power-law distribution,
suggesting there is a small number of frequently occurring motifs

which could represent patterns of good practice in designing
transportation networks.

3.2. Motif discovery and analysis

The main direction of our investigations is represented
by motif analysis. Seen as subgraph or particular regu-
lar structure these represent structural patterns in the trans-
portation network and can provide a static insight into the
good practices of designing such systems. For all the data-
sets we have used FanMod [15] for motif discovery. For
each of these we have searched for motifs of 3 to 5 nodes.
In Fig. 5 we show the most prevalent motifs of 3 to 5 nodes,
directed, among the 18 cities we took under scrutiny. There,
above each snapshot representation of the associated sub-
graph, the number indicates the unique ID associated with
the FanMod database, for further referencing. Since the
three nodes motifs are trivial to observe in numerous maps
of city transportation, in Fig. 4 we have shown the fre-
quency distribution for the 4 and 5 nodes motifs, drawing
attention the to the power-law characteristic of it, which al-
lows us to hypothesise there are a small number of ”popu-
lar” motifs, which need to be investigated in order to extract
patters of good practices. We are also going to present in
section 4 a few avoidable motifs either caused by the inabil-
ity to serve a purpose or they fact they are not appropriate
for public transportation.

3.2.1. 3-node motifs

First we took under consideration all the motifs which
can be made out of three nodes. In this case ranking the
findings among the 18 data sets, the top ones are depicted
in Fig. 5. Even if they might look simplistic and obvious
some considerations can be made based on them. The most
prevalent is motif 12 which is simply any sequence of 3

stops along a route, followed closely by motif 38 which rep-
resent a forking in the transportation network where from a
stop one can chose two close stops of another line. Motifs
with id’s 14 and 164 are representations of a similar situ-
ation in which along a route there is a stop where there is
a merging with another line shared with the first one, but
which run in opposite direction.

3.2.2. 4-node motifs

Increasing the number of nodes we gain access into a
more complex view of the network, allowing us to see inter-
actions between two of more transportation lines. The lead-
ing pattern, with id 204 is simply caused by to line which
share the same two stops (an obvious frequent situation).
Going further we have id 2182 which depicts the scenario
where two lines share two stops, but in-between them there
is another stop, individual to each line. Next are 2076 and
2118 which similarly describe a situation into which along
the route of a specific line, there is a portion where stops are
shared with another ”smaller” route. Finally motif 202 de-
scribe the topology of a hub where three lines share a single
unique stop, without sharing adjacent stops (they are taking
different routes)

3.2.3. 5-node motifs

Going further we examined the structures consisting of
5 nodes, where usually one can find so called hubs. Lead-
ing motifs are those with id’s 2133678 and 8948910 there
the visually central node is the one share among there ma-
jor lines (the edge is bidirectional, so the car goes both
ways along the same path). On third place (id=1084606)
we have an even bigger hub where all the three lines are
converging into the same stop, but this is less prevalent
mostly because of the limited possibilities of finding to-
pographical conditions into various cities. One can find
such structures into two largely distinct cases: big cities
such as Paris and Detroit where there are numerous inter-
modal stations (switching among various means of public
transportation) or in smaller cities (such as Nantes, Rennes,
Luxembourg or Venice) where the same concept of inter-
modality exists, but usually between inner city routes and
outer city ones. The fist most popular structure is the one
with id 13190438, where there is a complete square be-
tween four stations shared among two lines which run their
routes back-and-forth.
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Table 1 Main complex networks metrics computed for the cities under study

City Nodes Edges Avg. Degree Net Dia. Modularity Avg. clustering coef #Comm, r=1
Athens 6658 7870 1,182 206 0,922 0,007 46
Belfast 1917 2181 1,138 146 0,903 0,005 31

Bordeaux 3212 3805 1,185 125 0,9 0,006 31
Detroit 5683 5948 1,047 348 0,953 0,005 72
Dublin 4361 5276 1,21 127 0,913 0,019 38

Grenoble 1383 1514 1,095 123 0,898 0,002 29
Helsinki 6642 8611 1,296 116 0,921 0,01 43
Lisbon 6949 8730 1,256 153 0,933 0,007 41

Luxembourg 1352 3127 2,313 53 0,872 0,073 28
Nantes 2208 2587 1,172 125 0,901 0,009 32

Palermo 2176 2561 1,177 138 0,893 0,004 27
Paris 10880 12604 1,158 193 0,93 0,003 60

Prague 4476 5911 1,321 109 0,906 0,018 37
Rennes 1378 1643 1,192 85 0,881 0,009 22
Rome 7500 9669 1,289 143 0,924 0,013 41

Touluse 3237 3668 1,133 171 0,925 0,003 40
Turku 1850 2341 1,265 92 0,887 0,008 26
Venice 1733 2398 1,384 82 0,885 0,026 22

Fig. 5 Most prevalent directed network motifs of 3 to 5 nodes
among the cities under study.

4. ANTI-MOTIFS IN TRANSPORTATION NET-
WORKS

Inspired by the anti-patterns existent in the realm of
software engineering we coined the term of anti-motifs to
describe the less occurring structures we found-out in the
transportation networks and which are a signature of avoid-
able situations.

In Fig. 6 we present the least occurring motifs of 4 and
5 nodes as identified by FanMod using the data about the
cities from our study. For the three nodes motifs we have no
further insights to provide, being by themselves not many.
Regarding the typical occurrences of interconnections be-
tween 4 nodes we have found out that motif with id 2140
is ranking on the lowest place, the reason from the urban
planning point of view being represented by the fact this
structure does not add any further value for the transporta-
tion network: the two lines already would share a large por-
tion of the route, adding short-cuts only providing a higher
reliability and fault tolerance to the system, but with not
practical gains. Further motif with id 10372 has a really
low probability of occurrence being actually a reiteration
of the three nodes motif with id 12 which was discussed in
section 3.2.1. On the same topic, motifs 396 and 390 are
less encountered in this form from a topological point of
view because they are simply a corner case of the network
structure emphasized by the existence of bidirectional links
as part of the motif. In practice this exists in numerous oc-
casions (where the line uses the same boulevard for both
back and forth movement), but a correct modelling of such
a case would require the decomposition of the network into
distinct paths for each of the directions. Consequently this

scenarios is not applicable.
Regarding the more convoluted structures consisting of 5
nodes we can observe in the upper section of Fig. 6 the
web of interconnections which is less often found in prac-
tical urban planning scenarios. Considering the sheer size
of the search-space when dealing with 5-nodes motifs, the
lower echelon is represented by motifs which have a prob-
ability of occurrence between 0.015751 for motif with id
147850 and 0.018174 for the one with id 527128. For
all practical reasons these do not represent any interest.
From an algorithmic point of view they rely onto the exis-
tence of bidirectional links which, for a correctly modelled
network, can’t represent valid scenarios (excepting under-
ground metro lines or rail-shuttle services where the same
car moves back and forth, but of which we don’t have any
date in this study)
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Fig. 6 Least prevalent directed network motifs of 4 and 5 nodes
among the cities under study.

5. DISCUSSION AND CONCLUSIONS

Public transportation networks provide an alternative to
personal cars and other more polluting and expensive ways
of commuting. Major cities involve a great deal of effort
and budget for finding good solutions to reduce the con-
gestion and transit times. Our investigation was geared
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towards applying methods and techniques form the com-
plex networks to identify key characteristics which link the
topology of public transportation networks among major
cities. We used the concept of motif to describe patterns
of stops and routes at a microscopic level and their distri-
bution among the cities we have investigating. Ranging the
node-size of the subgraph from 3 to 5 we have examined the
distribution of motifs of that size, putting into evidence the
actual connection to urban planning situations and the so-
lutions provided in each case by the specific pattern/motif.
When staying at low sizes (3 nodes) we don’t get much in-
sight beyond the obvious patterns but we can use this case
for validating the method because the simple structures are
much easier to be cross-referenced with city transportation
maps by domain experts.

When we switch to 4 and 5 nodes the structures which
unfold can truly go beyond simple observations on the map
and uncover patterns among routes which share same stops.
We can observe hub-like structure mostly when we exam-
ine the 5-node structures, where the top 5 most frequent
motifs are all variations of the hub topology. Going beyond
5 nodes was at this moment unfeasible because the lim-
ited geo-visualization workflow did not allow us to cross-
reference with the actual terrain situation for further expla-
nations.

Going further we wish to extend this investigation with
a quantitative examination of the influence of the motifs to
the quality of the public transportation. Until now we have
extracted the relevant data, and made empirical correlations
between the prevalence of various motifs and their corre-
sponding situations in the terrain, but being to quantify the
impact of each motif and link it to the overall quality of the
service would allow designing better public transport in-
frastructure, avoiding ”bad” patterns and favouring ”good”
ones.
Regarding the ”bad” patterns we started the investigation by
searching the less occurring patterns in the tail of the dis-
tribution, considering that ”nature” trough urban evolution
and good design practices the field of architecture and ur-
ban planning has distilled the paramount structures which
”do make sense” for practical reasons, but the scarcity of
the less occurring patterns makes us consider relevant the
top-occurring one, requiring other avenues of investigation
for finding avoidable patterns.
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