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ABSTRACT
One of the main tasks of a course is that it should motivate students to work continuously during the semester. Using the same

course curriculum for students with different cultural backgrounds can have different impacts on student behavior and motivation. In
this paper is conducted a case study at Technical University of Košice and University of Ljubljana, where both universities used the
same course curriculum, automated testing environment (ATE) and assignment to observe student behavior in a programming course.
It was found that by shortening the period of testing days in ATE students will not significantly affect the amount of its continuous work.
On the other hand, shortening this period has negatively impacted student score which can be frustrating for the student. Another
finding was that on average 58% of submissions ends with failed build. Based on the manual testing it can be stated that in the course
with the ATE students understand the topics of Android development better and devote the course 1.7 times more time than in the course
without the ATE.

Keywords: Automated testing environment, student motivation, Android programming course, eduscrum, commit frequency, university
comparison.

1. INTRODUCTION

The challenge of learning programming is as old as pro-
gramming itself. Many teaching researchers are looking for
appropriate approaches for more effective student involve-
ment [1] and ways to motivate students. Jenkins [2] already
in 2001 talks about student motivation arguing that motiva-
tion is an instructor’s key role. Although the personality of
the instructor may motivate students, especially at lectures
and labs, the instructor does not have sufficient influence on
the students outside the university.

The business and technology development also influ-
ence course and students’ enthusiasm to the course. Nowa-
days, when technology development grows very fast it is
difficult to meet students’ ideas about a particular language
or platform. If the student’s motivation in the course is
based only on the technology that is currently popular, it
may happen that the technology will not exist after his/her
graduation. Although technology itself has a high impor-
tance to the student, especially when choosing a course,
but it is preferable to motivate him or her by modern soft-
ware development methods (SCRUM, Extreme Program-
ming, etc.), similarly as to motivate employees in practice.

Many teachers share the opinion that games have a pos-
itive impact on student’s activity but this approach is bet-
ter suited for introductory programming courses [3]. In
general, teaching programming using only games is too
domain-specific because students do not learn solving real
problems in classic projects. Mohorovii and Stri [4] de-
scribe in more detail how other strategies can positively in-
fluence the teaching of programming. Authors of this paper

think that the syllabus of the course has the greatest impact
on student motivation and students can also motivate each
other, e.g. using challenges and competitions.

As we have found out in our previous research on moti-
vation continuous delivery [3] with the support of automatic
testing environment [5] really positively influence the mo-
tivation (not only in education). Most of the experiments
carried out in this research area were conducted only within
one university or company and often with a limited num-
ber of participants. This paper focuses on using a similar
course syllabus with the same semestral project and test-
ing platform at two different universities placed in different
regions. The following hypotheses are answered:

H1: The average difference of the automated test results of
a particular sprint varies by less than 10% between
universities.

H2: The average commit rate per user is much higher if
students have fewer terms to submit their solutions.

H3: More than 30% of student submissions end with
BUILD FAILD error.

H4: The students’ opinions on automated testing are nega-
tive.

H5: The number of hours worked in the course with an au-
tomated testing environment (ATE) is higher than in
the course without an ATE.

In the following section the universities, courses, par-
ticipants, semestral project and used methodology are de-
scribed. In the Section 3 used methods for data acquisition

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



40 Observation of Students Behaviour in Programming Courses with an Automated Testing Platform: A Case Study

and their analysis are discussed and in the Section 4 results
are presented. Threats to validity are pointed out in the Sec-
tion 5, related work in the Section 6, and conclusions and
future work are presented in the Section 7.

2. BACKGROUND

2.1. Universities, courses and participants

In the case study two universities are included: Techni-
cal university of Kosice (TUKE) and University of Ljubl-
jana (UNI-LJ). They are about 750 km away and thus rep-
resent a different sample of people involved in the experi-
ment.

The course Application development for smart devices
in fall 2018 was used at TUKE. The course focuses ex-
clusively on the development of applications for smart de-
vices on Android, iOS and Windows phone platforms. ATE
was used only for 161 native Android projects. Participants
were 3rd year undergraduate students and the course had
object-oriented programming (OOP) and Java courses pre-
requisites. The results from ATE represented a major part
of the final evaluation of students, supplemented by the re-
sults of manual testing. Hackathon participation was also a
condition for passing the course.

The spring 2019 run of the course Platform Based Pro-
gramming was used at UNI-LJ which initially focused on
Adruino platform development, but in the global viewpoint
focused primarily on native Android application develop-
ment. The course was attended by 93 undergraduate stu-
dents. The evaluation consisted of the following:

• 50% Coursework, out of which:

– 10% Homework assignments (multiple smaller
tasks)

– 90% Class project (main assignment), out of
which:
∗ 15% Project proposal
∗ 35% Mid-semester presentation
∗ 50% Final presentation and report

• 50% Final exam

The class project/assignment is the part of the course
that is analyzed. For a partial comparison we used fall 2019
Application development for smart devices course but with
a bigger change of the curriculum. The focus in 2019 was
to develop hybrid applications in the Cordova javascript
framework and without use of automated tests.

Detailed information about the courses can be found on
UNI-LJ course web page1 or TUKE course web page2.

2.2. Real project as assignment

The main assignment of courses in fall 2018 and spring
2019 was the sports monitoring and tracking application
called Makacs. The application was chosen because of the
necessary functionality of this type of applications, includ-
ing:

• Sensors - GPS, accelerometer, gyroscope.

• Services - stopwatch as background task, widgets.

• Third party services - firebase, back4app.

• Intents - optimalisation of data sending between ac-
tivities.

• Design and UX - own design proposal and testing.

Only the most interesting areas within the app was
listed. As can be seen, it was possible to cover most top-
ics of Android development within one application, so the
application is suitable for use in such course. Requested
minimal API level was 23+ and there were no other imple-
mentation restrictions (except for needed testing environ-
ment ones). A more app description can be found in [5] and
full specification is published on the official TUKE course
web page2, archive section (slovak language).

2.3. Course development methodology

The agile SCRUM method was used in the course to
lead students’ projects and the development team consisted
of only one student. In this way every student has to work
on all topics of the assignment. In the real team often hap-
pens that only a few students actually work on the assign-
ment and the others are parasites.

We divided the semester project into 4 sprints:

• Sprint 1 – application design.

• Sprint 2 – minimum viable product (MVP) version.

• Sprint 3 – big change in the project specification, fi-
nal requirements.

• Sprint 4 – enriching application by own functionality.

ATE was used for all sprints except the 4th sprint which
was tested only manually as students were supposed to im-
plement their own original functionality. In the 3rd sprint
we made a major change in the functionality of the project
to simulate customer’s unexpected product changes. In this
way we try to lead students to increase code sustainability
where they also tried refactoring on a real product (assign-
ment). At both universities, a 2-hour dedicated consulta-
tion lab was held at the beginning of each sprint where the
sprint specification was presented to the students and also
the trickier requirements were discussed more precisely.
During the sprint students could request individual consul-
tations but most of the issues were consulted online via
Slack3. More information about this modified version of
SCRUM can be found in [3].

1http://lrss.fri.uni-lj.si/Veljko/pbd2019.html
2https://kurzy.kpi.fei.tuke.sk/smart/
3https://slack.com/
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3. METHODS

To draw the most accurate conclusions about specific 
course runs we drew information from various sources. The 
motivation of the student depends not only on the type of as- 
signment and the syllabus, therefore it is necessary to con- 
sider his/her opinions about the course. Observations in this 
paper depend on ATE data, manual testing and question-
naires.

3.1. Different sprint and testing duration

The sprints at each university were of varying length 
in order to observe the impact of the sprint length and the 
number of testing days on student activity. In the Table 1
general statistics about the sprints can be seen. In the 1st

sprint tests were performed only once because it was only 
a UI elements check. TUKE also evaluated the quality of 
the design by manual evaluation in the first sprint. Since 
only the existence of screenshots was verified at UNI-LJ we
will only consider the existence of screenshots for equitable

thcomparison of results. The 4 sprint was fully manually 
tested so some data are not listed.

Table 1 General statistics about sprints’ duration in the par- 
ticular course

#
in daysnDuratio Number

of evaluationsSprint Testing
TUKE UNI-LJ TUKE UNI-LJ TUKE UNI-LJ

1 1414 11 11
2 2114 216 637
3 2821 2115 4916
4 1921 -- --

# - Sprint number.

As can be seen in the Table 1 the number of testing
days was always less than the length of the sprint. In this
way students were motivated not to use the trial-and-error
method to achieve a good result but they had to look more
closely at the specification. At UNI-LJ the number of days
with testing was less stringent. By combining this data it is
possible to compare whether students are performing better
if the testing environment is available for longer time.

3.2. Automated testing environment

Students submitted their solutions via version control
system (VCS) git4. At TUKE a private department’s GitLab
and at UNI-LJ Bitbucket5 were used. This method of code
submitting not only facilitates the management of project
changes for the student but also provides valuable informa-
tion for the teacher - it is possible to analyze exactly when
the student commits his/her changes, it is possible to test
different versions of the project/branches and we can ob-
serve how the student manages his/her changes (detection
of trial-and-error method, cheating, etc.). In our case only
the master branch was used for testing. The project was
only tested if there was a change in the source code since the
previous test run. From the mentioned git platforms we also

collected exact commit times with the number of changed 
files, insertions and deletions. The detailed structure and 
the whole process of the testing process are described in 
more detail in [5].

Automated tests were run at predefined intervals. For 
TUKE there were planned times shown in the Table 2. In 
fact, some of the tests were performed a few hours later
(max. 6 hours delay) due to test errors or other discrepan-

ndcies found. However, during 2 sprint most of the prob-
rdlems were solved so in 3 sprint testing times were accu- 

rate. Although test results and test runs may have been de- 
layed by several hours the student code was always tested
from the time of scheduled testing.

Table 2 Testing times at TUKE for the particular sprint

# Automated testing times
1 2018-11-04 00:00

2

everyday at 12:00 from 2018-11-19 to 2018-11-24
additional testing times:
- 2018-11-23 00:00:00
- 2018-11-24 06:00:00 (extended deadline by 6 hours)

3

everyday at 06:00 from 2018-12-15 to 2018-12-29
additional testing times:
- 2018-12-15 19:45
- 2018-12-16 18:00

# - Sprint number.

At UNI-LJ were tests also run at predefined intervals 
but in most cases they were performed 3 times a day. The 
Table 3 shows the timetable of the planned test execution. 
The results were available to students mostly up to 2 hours,
during a higher ATE load (mosty at 23:30) of up to 8 hours.

Table 3 Testing times at UNI-LJ for the particular sprint

# Rule
1 2019-04-01 0:00

2
everyday at 12:00, 20:00 and 23:30

from 2019-04-01 to 2019-04-21

3
everyday at 23:30 from 2018-04-29 to 2019-05-05;
everyday at 12:00, 20:00 and 23:30

from 2019-05-06 to 2019-05-19

# - Sprint number.

3.3. Manual testing

Because there are ways to write a program that satis-
fies the specification it is necessary to perform a manual
check that the application actually meets the requirements.
It is therefore not appropriate to rely solely on the ATE
in this case. The tests should look for errors in the code
from which some functionality is expected and want to pre-
vent errors. When using such an environment in university
courses often leads the student only to pass the tests, so in
some cases he or she is able to write such a code to get more
points.

4https://git-scm.com/
5https://bitbucket.org/
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thManual testing was performed only in the 4 sprint 
as students programmed their own original functionality. 
At TUKE and UNI-LJ the overall usability of the appli- 
cation was evaluated and the functionalities from previous 
sprints were checked. With manual testing the teacher can 
see how a student responds to questions, what he/she has 
problems with, how he/she know the source code and, fi- 
nally, whether the program presented the student is created 
by himself/herself. The overall score was calculated by a 
combination of automated and manual testing where man- 
ual testing was a kind of ”confirmation” that ATE tested a
real functionality.

3.4. Questionnaire

At the end of semester a questionnaire was used to col- 
lect opinions about the course which consisted of the fol-
lowing items:

1. Write at least 3 positive aspects of the course.

2. Write at least 3 negative aspects of the course.

3. How many hours did you spend on the course? (incl.
lectures, labs, assignment programming, testing and
any individual work)

4. Some additional notes to the course.

There were only open answers because we did not want 
to limit the student’s answers (e.g. to rate course quality us- 
ing a scale of 1-5 points). Processing results of a question- 
naire is often much easier to evaluate if a scale was used, 
but such questionnaires often fail to capture the student’s
overall view.

4. RESULTS

In this case study we analyzed 9845 of commits and 
64327 test results. General statistics of included courses 
are shown in the Table 4. As can be seen, the average ATE 
result differs by 18.8%. If we only rely on ATE results, 
TUKE students would fail the course (under 50% of overal 
score). Only the best students’ result in the particular sprint 
was always included into the final score. All results can be

6downloaded from Github .

Table 4  General stats about courses

University Course run Students Avg. ATE score

TUKE
fall 2018 161 45.53 %
fall 2019* 166 -

UNI-LJ spring 2019 93 64.33 %

* - Course run without ATE.

4.1. Automated testing environment

The first hypothesis H1 asserts that the difference be-
tween the results of different universities using the same
ATE, tests and assignment will be less than 10%. To answer

the H1 a comparison of the average results of each sprint for 
a particular university was created (see the Table 5). It can 
be seen from the table that only the first sprint had a differ- 
ence in average rating of less than 10%, therefore, H1 was
rejected.

Table 5  Avg. sprint score of universities

University Avg. result Diff

Sprint 1 TUKE 89.31 %
9.21 %UNI-LJ 98.90 %

Sprint 2 TUKE 61.45 %
18.74 %UNI-LJ 70.58 %

Sprint 3 TUKE 33.24 %
29.83 %UNI-LJ 49.94 %

Because a large number of 0 point students were ob- 
served in the data the Table 6 was created, showing the 
number of 0 point students in each sprint and the average 
result without these students. From the data is clear that
this large difference in average ranking between universi- 
ties was due to the fact that most students submitted the 1st

ndsprint, but a large number of students did not submit 2 and
rd3 sprint. Therefore, we have temporarily removed these 

students and the difference between the average result of 
universities has narrowed slightly (see the Table 6). Thus,
the average result of TUKE was negatively influenced by

rdstudents who did not continue the course or just skipped 3 
sprint because they had enough points to pass the course 
from previous ones.

As can be seen, both universities had the largest number
rdof students with 0 points in the 3 sprint and at TUKE the 

growth of these students was rapid. The situation probably 
arises because of the need to develop assignments for other 
courses. On the other hand, the particular sprints tended to 
increase in difficulty so it could also deter students from de-
veloping. In the Figure 1 a detailed evolution of the average

rdscore over the testing days is shown. Deflection of the 3 
sprint at TUKE predominantly affected the results. Despite
more testing days at UNI-LJ students did not improve their

nd rdresults (beginning of the 2 and 3 sprint, see Figure 1b). 
If we do not consider mentioned terms then results improv-
ment at both universities has a similar upward trend.

Table 6  Avg. sprint results without 0 point students

University No. of 0p students Avg. result*

Sprint 1 TUKE 7 89.31 %
UNI-LJ 4 98.9 %

Sprint 2 TUKE 53 61.45 %
UNI-LJ 14 70.58 %

Sprint 3 TUKE 113 33.24 %
UNI-LJ 19 49.94 %

Final result without
0p students
in sprint 2 and 3

TUKE 53.66 %

UNI-LJ 69.90 %

* - Without 0 point students.
6https://github.com/madeja/programming-courses-observation
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(a) TUKE

(b) UNI-LJ

Fig. 1.  Evolution of the average score over each testing day

The H2 hypothesis assumes that if a student has fewer
submission deadlines more work will be done between test-
ing rounds. This work can be tracked by the number of
commits that the student performs between each submis-
sion. It is assumed that the fewer options a student has to
submit his/her solution the more commits will be done be-
cause he/she will try to pass more fixes in one submission.

In the Figure 2 a comparison of the number of com-
mits per particular day and student can be seen. The closer
the deadline is the more motivated the student is to sub-
mit the best possible solution to reach as many points as
possible. The university graphs were aligned just with re-
spect to the deadline to make them easier to compare. It
can be seen that TUKE students have always made fewer
commits. However, this data is also influenced by the fact
that UNI-LJ tested solutions normally 3 times a day while
TUKE mostly once a day. Finally, TUKE students have
used a greater number of available testing terms.

On the other hand, when considering the number of av-
erage changes made in each commit (see Table 7), it can
be seen, that TUKE students were more cautious about the
changes. This was probably due to the fact that if students
had fewer opportunities to submit their assignments they
were afraid to make major changes because of the greater
risk of compilation failure. From these results it can be

argued that fewer testing terms motivate the students to 
make smaller and more thoughtful changes to get rather 
less points but with less risk of compilation failure. The
hypothesis H2 was rejected.

Table 7  Average changes in commits

Parameter University Mean

changed files
TUKE 146
UNI-LJ 227

insersions
TUKE 4982
UNI-LJ 8663

deletions
TUKE 460
UNI-LJ 322

During the consultations at both universities a frequent
problem with the compilation of the students’ solutions
were observed. For the testing process the necessary identi-
fiers, test method names, etc. have been defined and stu-
dents had to fulfil them for successful compilation pro-
cess. If a student did not fulfil any of the requirements
it often resulted in a failed build. Thus, the H3 hypothe-
sis assumes that the total number of compilation failures is
greater than 30%.

The compilation for unit and UI tests was executed sep-
arately because only the necessary tests were always pack-
aged in the compilation. Therefore, it was possible that unit
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(a) Sprint 2 (b) Sprint 3

Fig. 2.  Average commit frequency per day and user

tests were compiled but UI tests did not and vice versa (e.g. 
unit tests did not use the identifier that was needed for UI 
tests compilation). In the Table 8 can be seen that the num- 
ber of failures is greater than 40%. The average number of 
failures for TUKE was 68% and for UNI-LJ 48 % which 
represents nearly 20% difference between universities. It 
should be noted that only solutions with changes were sent 
for testing (not all projects were always tested). The hy- 
pothesis H3 was proven.

Table 8  The amount of build failures for particular univer- 
sity

# University unit UI No. of submissions
per student

2 TUKE 49.71 % 67.13 % 5.25
UNI-LJ 42.99 % 54.28 % 11.43

3 TUKE 76.67 % 80.1 % 3.76
UNI-LJ 46.14 % 48.96 % 12.96

# - Sprint number.

4.2. Manual testing

Application Development for Smart Devices has been
taught at TUKE since 2015 and only in 2019 the ATE was
used as the main source of student assessment. Despite
the much worse results compared to UNI-LJ, we can say
from the observations during manual testing that students
understood topics and their relationship in Android devel-
opment in more detail. Students were able to respond better
to questions about their code and understood all the issues
much better than without use of the ATE. Although students
may had a negative ATE experience (e.g. rigorous tests,
high number of builds failures) they worked much more to
solve issues than when they created the application in their
own way without detailed guidance (compared with previ-
ous course runs).

At UNI-LJ the assignment and teaching of Android de-
velopment was included for the first time, so it is not possi-
ble to compare the impact on students to such an extent.
Nevertheless, the ATE experience has proven successful
and tests have led students to a more stable solution.

4.3. Questionnaire

  At the end of each course a questionnaire for the courses 
was sent to all students. At TUKE we also included the 
2019 answers where the ATE testing was not performed. A 
total of 168 responses were collected.

To answer the H4 hypothesis we manually read all 
the students’ answers because the questionnaire contained 
opened questions to get the best feedback. The hypothesis 
assumes that students’ opinion about the course is negative 
when ATE tests are performed in the course. We catego- 
rized each answer into groups and observed only the fol-
lowing 2 attributes:

1. Negative feelings about the ATE.

2. Nagative feelings about assignment workload (too
much work opinion).

As can be seen in the Table 9 negative feelings about 
ATE are higher at TUKE and conversely, negative feelings 
about assignment workload is higher at UNI-LS. Both of 
the feelings are above 40% in average for both universities 
so the overall impression of the course is mostly positive, 
but the negative aspects are close to half. However, H4 was
rejected.

Table 9  Avg. sprint results without 0 point students

Property
University

TUKE UNI-LJ
fall 2018 fall 2019* spring 2019

Answers 62 81 25
NFa* ATE 53 % - 32 %
NFa* workload 26 % 0 % 56 %
Spent hours** 96.42 57.75 103.95

* - NFa = Negative feeling about; ** - during whole course

On the other hand, to confirm or reject the H5 hypoth-
esis the Table 9 can be also helpful. It can be seen that the
number of students working in an ATE course is approxi-
mately 1.7 times higher than in a non-ATE course. Students
consider the testing platform as one of the biggest negatives
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but at the same time it motivates them to work on the assign-
ment more continuously and they better understand the ba-
sics of Android (compare with the Section 4.2). Their con-
tinuous results are worse because the tests are much more
strict than the manual evaluation, on the other hand, they
are fairer. The H5 has been confirmed.

During the questionnaire responses evaluation we en-
countered a common problem of identifying errors from
logs. Students should already have debugging experience
from previous courses but they probably don’t have enough
experience yet, so more time should be devoted to this topic
in previous courses.

In addition to negative responses there were also posi-
tive responses to the application that had to be implemented
as an assignment. The greatest benefits were attributed to
students by its usability and the amount of topics they met.
On the other hand, in the course at TUKE in 2019 we en-
countered a negative feedback on the freedom to choose
the application the student will implement. They consider
manually evaluation of various assignments as unfair.

5. THREATS TO VALIDITY

The case study was carried out at 2 European universi-
ties. In order to generalize the results, it would be necessary
to use the same course in other countries and also outside of
Europe. The experiment was also conducted at universities
that are free of charge for native full-time students. In the
future it would be appropriate to compare the motivation of
students of paid programs.

The course was taught in slovak lenguage at TUKE
while only a few groups of foreign students were taught
in English. The course scenarios and Slack communication
were in Slovak but the entire definition of the assignment
was in English. At UNI-LJ the whole course was conducted
in English. The use of a foreign language in the course may
have influenced the results because a language barrier could
have arisen. Also the diversity of students (native vs. for-
eign) could influence the results because the majority of the
students were native.

To make the results even more accurate it would be ad-
visable to monitor the overall work of the students in the
project. Using the questionnaire we obtained information
on the time required for the given respondent but this as-
sessment may be quite inaccurate. It would be appropriate
to monitor the respondents’ activity, e.g. using a suitable
IDE plugin. Using the plugin it should be possible to obtain
more detail information about the functionality the student
has a problem with and could be adapted to the syllabus.

The testing terms at universities were not the same. E.g.
UNI-LJ testing was performed 1-3 times a day, at TUKE
mostly once a day with a few additional testing times (max.
2 times per day). To make the results more comparable
it would be appropriate to set the same testing frequency
for all universities. The comparison of the questionnaires
at TUKE between 2018 and 2019 was carried out at the
same rate but in 2019 the hybrid development has been used
instead of native one. The difference in the development
framework used could undesirably influence feedback.

In the analyzes information from specific commits was

used but the fact that the code did not have to be immedi-
ately pushed to the server was not taken into account. The
real push of the code to GitLab could be executed later, so it
would be appropriate to consider this attribute in the future.

6. RELATED WORK

Similar experiment as described in this paper was con-
ducted by Johnson [6] in 2015. Author analyzed 185 uni-
versity students by questionnaire of those who reported
studying on-campus with those who reported studying
fully-online. Students who studied fully-online were older,
more likely to be native English speakers and had lower
expectations of academic achievement. On-campus stu-
dents had higher levels of extrinsic achievement motiva-
tion and expressed greater need for peer and teacher sup-
port for learning. This paper is more focused on real stu-
dents’ behaviour in the course and his/her activity. We are
also not limited to one university but we compare the use
of the same method/syllabus at universities with different
geographical locations.

Interactive e-learning environments are increasingly
used and Navrat and Tvarozek [7] proposed the way how
students can be assessed for grades by such environments.
Using data from three different university courses they cal-
ibrated the two parameter logistic regression model, ranked
students according to their ability of solving problems, and
matched them to final grades. Results indicate it is possible
to predict grades within 0.57 to 1.02 level of accuracy. In
our case, we do not try to predict the results or assessment
but we analyze submissions and try to find the differences
between students of different universities using the same
teaching method. The results could support further modifi-
cation of the proposed method and syllabus.

Devadiga [8] observed gaps in converging software en-
gineering education with the startup industry. He monitored
the practices used in startups and how they affect the in-
volved student. According to him, in the education of soft-
ware engineering, the student focuses mainly on functional-
ity and forgets about proper planning, does not think about
architecture design, underestimate code reviews and so on.
In the analyzed courses we tried to minimize these gaps by
using the testing environment and continuous delivery of
submissions. In addition, we analyze the behavior of stu-
dents and partially compare the time demand with the same
course without the ATE.

Vahldick et al. [9] analyzed list of 40 games in univer-
sity education, classified them by type and highlighted the
skills and topics supported by them. As we have mentioned
before, games bring a high motivation level for students
and, according to authors, students engage in that work and
do not get frustrated with the natural errors they will make
in this process. Because this paper observed students moti-
vation in more general assignment and it focused more on
methodology of the course, it analyze and provides a gen-
erally applicable solution in software engineering education
courses.
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7. CONCLUSIONS AND FUTURE WORK

This paper analyzes the students’ behavior and motiva-
tion at 2 different universities in Slovakia and Slovenia. The
same automated testing environment (ATE) was used in the
courses to test student solutions of a sport tracking applica-
tion. Collected data from ATE were subjected to analysis
which included data from VCS git, build and testing re-
sults from every testing round and student. By changing the
length of time the solution could be submitted for testing,
the difference in student results and activity was monitored.
At the same time, the paper takes into account the results
of observations during manual testing and the opinions of
students obtained through a questionnaire.

It has been found that shortening the deadline for sub-
mitting the assignment to ATE has a negative impact on the
student, which may discourage him from working in subse-
quent sprints. Student score for the 1st sprint varied by ap-
proximately 9%, in the 2nd sprint 19% and in the 3rd sprint
30%. The final average score was 19% worse at TUKE and
this result was mainly due to the large number of 0 point
students in the 3rd sprint, which was the most challenging
and complex.

Student activity due to higher number of testing rounds
during a day was higher at UNI-LJ. Nevertheless, the
growth of average number of commits was similar to the
approaching deadline (the graph had a similar rise). How-
ever, the duration of testing did not affect the improvement
of students’ results as the results began to improve as the
deadline approached. In terms of results there is no need to
allow a longer run of the testing platform. Finally, it was
found that at UNI-LJ 48% and at TUKE even 68% of sub-
missions end with build failure.

From the manual testing experience in courses with and
without the ATE, it can be stated that students understand
better the topics of Android development in the course with
the ATE. This is due to the longer time needed for debug-
ging and motivation to pass the tests. Although nearly half
of students have a negative experience with the ATE, they
spend 1.7 times more time than in a non-ATE course, so
they also have more experience with possible issues during
the development of native application for Android platform.

As the Android mobile app development course has
been shown to be too challenging because Android de-
velopment is changing incredibly every year, we tried to
change course design and apply hybrid development. In
the future we would like to use a similar testing method for
a hybrid development course using the created platform at
various universities around the world or in MOOC courses.
Gaining results from different geological parts can lead us
to better curricullum management according to the individ-
ual needs of the students in the course.
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