
44 Acta Electrotechnica et Informatica, Vol. 20, No. 2, 2020, 44–50, DOI: 10.15546/aeei-2020-0012

RASPBERRY PI AND WINDOWS 10 POWERED INTELLIGENT MODULAR GATEWAY
FOR DECENTRALIZED IOT ENVIRONMENTS

Matej KVETKO, Jozef MOCNEJ, Ladislav POMŠÁR, Iveta ZOLOTOVÁ
Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Slovak Republic,
E-mails: kvetkom@gmail.com, jozef.mocnej@outlook.com, ladislav.pomsar@tuke.sk, iveta.zolotova@tuke.sk

ABSTRACT
With an ever-increasing number of connected devices, parts of the decision process necessary for IoT environments are shifted from

the cloud back to the local network. The onset of so-called Edge computing increases the demand for intelligent modular gateways.
These gateways should be able to support a large number of different sensors, actuators, protocols, and applications. In this work, such
a modular intelligent gateway for decentralized IoT environments is designed. The implementation of the gateway is based on Windows
10 IoT Core and Raspberry Pi 3. This gateway allows to plug-in sensors, protocols, and data processing applications in real-time,
without the need for gateway restart.

Keywords: Internet of Things, Intelligent modular gateway, Windows 10 IoT Core, Edge computing, Raspberry Pi

1. INTRODUCTION

Over the last few years, the Internet of Things (IoT) has
become part of our lives. For years, IoT has been closely
tied to cloud computing. First, the sensors did measure val-
ues the user was interested in, send them over different pro-
tocols to the gateway that propagated the information into
the cloud. Therefore, the gateway is acting as a bridge be-
tween the sensing domain (sensors and actuators) and cloud
[1]. However, with the ever-increasing number of sensors,
the networks have become increasingly stressed. Concur-
rently, due to the increasing number of sensors, the IoT in-
frastructure planning has become increasingly problematic
as the infrastructure needs to be flexible. The networks are,
therefore, becoming the weak points of the entire IoT sys-
tem [2]. Also, the demands of the users have increased,
resulting in new challenges in data processing. Aside from
these problems, problems with security, privacy, access, la-
tency, reliability, remoteness etc. arose.

Edge computing is aiming to address some of the men-
tioned problems. It is providing the computations and de-
cision making closer to the source - on the edge of the net-
work, while some of the logic still resides in the cloud. We
call this kind of architecture a decentralized architecture.
Edge computing may take on some of the functionality that
was firstly addressed by the cloud or just preprocess/filter
the data for the cloud. This way, edge computing can reduce
the amount of transferred data. While decentralized archi-
tectures scale easier with an increasing number of sensors,
they increase the complexity of the decision process [2].

To address this problem, in this article, we propose an
intelligent modular gateway for a decentralized IoT envi-
ronment to address the management complexity. The rest
of the paper is structured as follows - section 2 outlines
the background and related work. The architecture design
proposal is analyzed in section 3 and section 4 describes the
implementation process of developing a modular gateway
on Raspberry Pi 3 with Windows 10 IoT Core.

2. RELATED WORK

There are several academic and industrial works con-
cerned with IoT gateways. Zhu et al. [3] have designed a
gateway architecture that was the center of wireless sensory
network (WSN) in the smart-home application. The gate-
way itself was merely a connection between sensors and
actuators that did not have an IP address and applications
that required data from the sensors. The gateway itself was
not scalable and could only serve certain applications.

In work presented by Datta et al. [4], a wireless gateway,
that allows user equiped with mobile phone to display sen-
sory data and control actuators, was divided into a north-
ern and southern interface. The northern interface acted-
was utilized to communicate and discover mobile clients,
while the southern interface acted as an interface to man-
age, interact and store configuration of M2M devices in a
database. The gateway itself is an M2M communications
agent between smart devices and sensors. Such commu-
nication takes place only via the REST-API. This means
that devices that do not support the HTTP protocol must
be linked through additional gateway to provide the proto-
col. Metadata must be sent as soon as the device is first
connected.

In the work of Guoqiang et al. [5], they presented a
smart gateway that enabled a modular solution for connec-
tion interfaces. The interfaces themselves were handled
with user cards. These cards were replaceable in slots so
that the user could configure the gateway to their require-
ments. This results in only a limited number of connectable
interfaces.

The work of Lin Wu et al. [6] is quite similar to ours.
They have created a service-oriented gateway with plug
and play configuration. It focused on a fast system that
allows them to plug-in sensors easily. The gateway packs
data, sensor capabilities, and sensor information into a ho-
mogeneous form. It provides external applications with an
interface that is simple and understandable. However, the
whole gateway works on the PC platform, so it is not ideal
for the usage in the IoT environment.

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 20, No. 2, 2020 45

Morabito et al. [7] designed so-called LEGIoT - a
Lightweight Edge Gateway for the IoT. Their solution
utilizes virtualization technology via containers and mi-
croservices to create an edge gateway. The gateway itself
consists of 2 modules - Northbound, which is responsible
for the communication with the Internet and Southbound
that communicates with sensors. All parts of their architec-
ture are virtualized via Docker containers. LEGIoT aims to
provide interoperability, energy efficiency, flexibility com-
bined with the benefits of virtualization technologies. They
also provide concrete implementation on several single-
board computers.

Kesevan and Kalambettu [8] introduced universal plug
and play gateway for smart health. The core of their archi-
tecture consists of device service that is responsible for the
management and gathering of the data from BLE/Wifi de-
vices. The Data Manager is responsible for receiving and
storing the data. The Network Manager, on the other hand,
handles the data sending to the cloud and offline data sync.
The work is only the proposal without a concrete imple-
mentation.

To the best of our knowledge, this work is one of the first
works proposing service-oriented, plug and play Windows
10 IoT Core powered smart modular gateway with concrete
implementation on hardware.

3. ARCHITECTURE DESIGN

The most significant benefit of a modular gateway is
that it allows to aggregate data according to a user-selected
scheme. Input data should serve as a basis for calculat-
ing new data that will then be sent to the cloud, visualized
by the user, or sent directly from another device on the net-
work. The user should be able to define what data they want
to see. The system should be able to aggregate schemes cre-
ated by the user. In this section, we will provide an insight
into the process of architecture design.

3.1. Requirements

When creating the architecture, we had several require-
ments in mind:

1. The architecture is designed so that it is possible
to create a modular system with dynamically inter-
changeable components for communication with sen-
sors, actuators, and the cloud.

2. It should be possible to dynamically connect and dis-
connect applications from the pipeline while keeping
the pipeline fully functional. The same requirement
should be met for different communication protocols.

3. Architecture should be usable on different types of
devices

4. Gateway should be able to filter and direct the incom-
ing data

To meet the first two design requirements, we decided to
design applications for the communication of sensors and
actuators as services. These can be connected or discon-
nected if necessary, without affecting different parts of the

system. Therefore, it is also easy to add a new protocol
or interface to the gateway without the whole gateway be-
ing turned off just by creating new microservice utilizing
this protocol. The third was met via the utilization of the
Windows 10 IoT platform. To filter the data, it was also
necessary to evaluate the fitness of input data.

3.2. Evaluation of data fitness

As the primary function of the modular gate is to ag-
gregate data based on a user-defined schema, input data are
further processed. To understand whether data are worth
processing, we had to define data fitness criteria. There are
two phases of assessing data fitness. The first phase takes
place in sensors - the damaged/wrongly measured data are
filtered out and aren’t send to process in the gateway. The
second phase takes place in the gateway itself. In this pa-
per, we will work with two quantities that describe the data
fitness - Quality of Information (QoI) and Value of Informa-
tion (VoI) as defined by [9]. We will also assume that net-
work is stable, with zero latency and constant access time
for any of the sensors.

3.2.1. Quality of information

To make it easier to decide which data is suitable for
further use, it is advisable to assign certain properties in the
form of metadata to individual values. These metadata are
different for every sensor. Most of the metadata assigned
to the sensor are immutable - they are defined by the man-
ufacturer in the datasheet and aren’t expected to change.
Subsequently, we can select the data with the best QoI, ex-
clude data that does not meet certain qualities, or manage
the collection of data by sensors according to the metrics we
choose. [9] In general, metadata can be stored and sent di-
rectly from the sensor or assigned to the virtual sensor later
in the gateway. We have resorted to the second option due
to three reasons. Firstly, some of the sensors have barely
enough memory for their operation and storage of complex
metadata would constraint their usage. Secondly, some of
the protocols have constrained message size - for example,
BLE allows for 20 bytes of attribute data. Thirdly, send-
ing metadata periodically in every message would drasti-
cally increase the volume of data processed by the gate-
way. With simple values, like temperature readings, meta-
data may also be several times larger than the value itself. In
the ideal case, the gateway would use an external database
that stores all metadata for all potential sensors. However,
this is not yet possible, and therefore data were statically
stored in the gateway. Metadata used in our work were:

1. The cost of measurement - Evaluates the financial
cost of measurement

2. Accuracy - Supplied by the manufacturer. The value
itself consists of accuracy, range, where the accuracy
applies, and the flag indicating whether accuracy is
absolute or relative value

3. Resolution - Supplied by the manufacturer. De-
scribes the smallest change of quantity sensor can
measure

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



46 Raspberry Pi and Windows 10 Powered Intelligent Modular Gateway for Decentralized IoT Environments

4. Range - Supplied by the manufacturer. Describes the
maximum and minimum values of the quantity sen-
sor can measure

3.2.2. Value of information

For this paper, we decided to follow the definition of VoI
defined by Beskidian et al. [9]: ”Value of information (VoI)
is an assessment of the utility of an information product
when used in a specific usage context.” Value of informa-
tion is a quality value that differs for each information and
for each application that processes the data. It is, therefore,
necessary to evaluate it separately case by case.

Most of the time, several parameters are selected to
asses the VoI. In this work, we utilized the range for all the
sensors and combined range and accuracy for some of the
sensors. In general, if the value is outside the range stated
by the manufacturer, the whole measurement is deemed as
wrong. If there were several sensors with the same mea-
sured quantity and range couldn’t select the best one, we
did use accuracy. Some of the sensors have relative accu-
racy, while others have absolute accuracy. Depending on
the current values, some may measure more accurate val-
ues than others. The more accurate sensor has higher VoI
and its reading is visualized to the user. There is no need
for the user to know what sensor did measure the value as
we are always displaying only the fittest one.

4. IMPLEMENTATION

The architecture is designed so that it is possible to
create a modular system with dynamically interchange-
able components for communication with sensors, actua-
tors, and the cloud. It should also be possible to dynami-
cally and at the full functionality, add and remove applica-
tions that are connected to the pipeline, and which will take
care of the data aggregation.

Sensor and actuator applications for communication are
designed as stand-alone applications. These can be con-
nected or disconnected if necessary, without affecting a sep-
arate system. Therefore, it is also easy to add a new proto-
col or interface to the gateway without the whole gateway
being turned off. Everything can be done during the full
operation of the gate. Applications connected to pipelines
work in a similar way. They receive pipeline information
and re-insert new information into the system as new input
data.

4.1. Software

As one of the requirements was to support different
types of devices, we had to evaluate software possibilities.
As we had good experiences with Microsoft technologies,
we resorted to Windows 10 IoT Core as an operating sys-
tem. Windows 10 IoT Core [10] is a version of Windows
10 optimized for smaller x86/x64 and ARM devices. These
devices may or may not feature display. In general, there
are several differences between Windows 10 and Windows
10 IoT Core:

1. Since version 1809, IoT Core does lack Cortana

2. Windows 10 IoT Core does allow to boot into prede-
fined application

3. Some APIs and drivers aren’t supported

4. Some registry entries and shell commands behaves
differently.

4.2. Hardware

As Windows 10 IoT Core was selected for the operating
system, we had to evaluate different types of single board
computers usable with this operating system. The overview
is visible in Table 1.

Aside from displayed single board computers, Rasp-
berry PI 3B+ (RPi 3B+) was also available at the time of the
architecture implementation. However, Windows 10 IoT
Core support for RPi 3B+ was only experimental, did lack
some of the drivers, and had other problems. Due to these
problems, RPi 3B+ was excluded.

Due to availability, price, community support, and capa-
bilities, we selected the Raspberry Pi 3B (RPi 3B) [18]. RPi
3B is a successor of popular RPi 2. It features quad-core 64
bit ARM CPU, 1 GB of RAM, and SD Card slot within 85
x 65 mm form factor. As of connectivity, it features eth-
ernet port, 4x USB 2.0 port, Wi-Fi 802.11b/g/n, Bluetooth
4.0/LE, 40 GPIO pins, 3.5 mm jack, and HDMI port.

For testing purposes, we utilized a set of 5 sensors -
DHT11, BMP180, DS1820, YL-96, and LM-396.

4.3. Architecture overview

In our work, we have been inspired by the work of Moc-
nej et al. [2], which highlights the universal architecture
of modular gateway. While the highlighted architecture is
operation system agnostic, in our work, we were oriented
on Windows-specific implementation of highlighted princi-
ples. The architecture is visible on the image Figure 1. A
brief overview of different parts:

1. Data input and cleaner - Application responsible
for standardization of input data. In case some of
the input values aren’t available/valid, the input is la-
beled as invalid and thrown away. The only exception
is the date and time of measurement, as some of the
protocols don’t support the provision of these values.

2. Metadata Manager - Responsible for associating of
right metadata with incoming data. Every incom-
ing data should have property stating who did gener-
ate the measurement and therefore metadata manager
can match it with its database

3. Data Querry - As two former applications are run-
ning in several parallel processes, some of the oper-
ations in parallel can cause the system to fail (e.g.,
several concurrent threads loading the same file).
To avoid this, a single instance of a first-in-first-out
buffer application data query is created. Data Query
feeds data to destination selector

4. Destination Selector - This application is respon-
sible for forwarding information to the selected re-
ceiver. Every single data coming to the pipeline

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 20, No. 2, 2020 47

Table 1 Overview of single board computers supported by Windows 10 IoT Core

Series Model Wi-Fi Bluetooth Ethernet Video output

AAEON Up Squared [11] No No 2x HDMI/DP

Dragon Board 410c [12] 802.11b/g/n 4.1/BLE No HDMI

MinnowBoard Turbot [13] No No 1x HDMI

NXP
i.MX6 [14] No No 1x Paralel

i.MX7 [15] No No 1x No

i.MX8M/Mini [16] No No 1x HDMI

Raspberry Pi
2 [17] No No 1x HDMI

3B [18] 802.11b/g/n 4.0/BLE 1x HDMI

Fig. 1 Implemented architecture of the gateway

should have a defined receiver. In the current imple-
mentation, if this isn’t true, every single application
decides whether it can use data. QoI and VoI based
filtering are also implemented here.

5. Pipeline - Consists of services. Responsible for
bringing the data to connected applications.

6. End Device Manager - Responsible for sending data
through the different protocols back to connected de-
vices, if needed.

Data input and cleaner roughly equals the Connectivity
and Connectivity abstraction layers of the reference archi-

tecture. Metadata manager, Data Query, and Destination
Selector together create our Gateway services layer. Gate-
way services layer is also partially supported by pipeline,
which also takes on the responsibilities of the Service man-
agement layer.

4.4. Pipeline and application services

To receive and distribute data from/to data processing
applications in our architecture, we use the pipeline. The
pipeline works on the basis of application services in Win-
dows 10 IoT Core. The services were added to Windows 10
in version 1607. Since version 1703, it is also possible for
a single application to utilize multiple services. In general,

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



48 Raspberry Pi and Windows 10 Powered Intelligent Modular Gateway for Decentralized IoT Environments

service is a special type of application that run in their own
Windows session and do not show any user interface.

There is a single problem with the pipeline-based ap-
proach. The background service and tasks are the same
type of application. The same deferral is used to manage
and terminate them. In practice, this means that the data
processing application creates a service instance, discards
it by deferral after it is used. Since the entire background
application uses the same deferral, it will also discard the
entire application. Although the application will restart, it
will lose the information stored in the local memory. This is
an extremely unwanted behavior. Therefore, it is necessary
to divide each application into two separate units. One takes
care of receiving information, and the other part called the
main application takes care of sending the data. Even un-
successful sending of information does not cause instability
or closure of the application.

First, applications must log in to the pipeline
at the start. This happens at the start when
the application writes its unique name (i.e., the
string that is in the static class of Package Win-
dows.ApplicationModel.Package.Current.Id.FamilyName)
to the shared file. Windows 10 IoT Core allows sharing
files only in specific system files. For internal reasons, it is
not possible to use the Documents folder or the system disc
C://. All unique application names that want to be attached
to the pipeline are stored in this folder. In this case, the
pipeline / pipeline.txt file.

In case of a connection error with the application, the
pipeline itself ensures that the application is deleted from
the file and vice versa, if the application is registered to the
file, the pipeline tries to connect to it automatically without
the user’s intervention. In the current settings, the file is
being checked before each arrival of data into the pipeline.
Obviously, this is not necessary, and in the future, it is ad-
visable to check the connected applications every few sec-
onds and to connect them regardless of whether data come.
The connection itself lasts several tens of milliseconds and
doesn’t cause any performance overhead. However, if a
slow SD card is used, the total time of processing a single
message in the pipeline can increase to several hundred mil-
liseconds. The amount of apps connected does not greatly
affect the time it takes to send information - it is more or
less constant.

4.5. Receiving and sending the information inside gate-
way

Every single data application is split into two appli-
cations - background service that can receive and process
messages and main application.

The background service picks information in the form
of key-value pairs and provides an answer to the sender. In
case the data are not picked up, the TimeOut exception is

returned. The received value is stored in the service appli-
cation, and it needs to be sent to the main app. This is done
using static ApplicationData storage. LocalSettings is used
to share data between individual components of one appli-
cation. The service then notifies the main application via
an event that the new data are available in ApplicationData
and should be picked up. Further processing in the main
application depends on the logic of the application.

Sending is more straightforward than receiving because
the main application itself can do it. For sending, it is neces-
sary to know the unique name of the application for which
the data are intended. Since there are often multiple appli-
cations, we had to create a system that automatically ob-
tains and uses those applications’ names. As mentioned be-
fore, we will use a text file to load the applications’ names
and then try to connect to them.

Subsequently, we need to save the service reference so
that we do not have to connect to it every time gateway
sends information, but just call it and send data. In case of
successful sending of data, a confirmation will be returned.
After the time-out has elapsed or an error has occurred, an
error is returned. This means that the service responsible
for receiving messages has a problem, so it is not appropri-
ate to send it additional data. We, therefore, delete it from
the database. If it ever regains full functionality, it will log
into pipeline again.

5. CONCLUSION AND SUMMARY

In this paper, we designed a modular intelligent gate-
way. This gateway aims to provide a link between sensors
and actuators on one side and both local and cloud applica-
tions on the other. The gateway aims to reduce the amount
of data it sends to applications based on the quality and
value of the information. The entire gateway was imple-
mented on windows 10 IoT Core powered RPi 3 via the us-
age of application services. Services were utilized to ensure
the modularity of applications attached to the pipeline and
helped to apply the proposed architecture. Thanks to the
application service, individual components can be switched
on and off without any altering the pipeline runtime. There
are several possible directions to continue our work. Firstly,
it is necessary to validate our work in a real-life environ-
ment with many different sensors connected and design
stress testing methodology to asses the abilities of the gate-
way. Secondly, our current setup does not feature any edge
AI accelerator or other computing platforms.

ACKNOWLEDGEMENT

This work was part of the Matej Kvetkos master thesis.
This paper was supported by the grant KEGA 1/0663/17 -
AICybS - Smart Industry/Architectures of Intelligent Infor-
mation and Cybernetic Systems.

REFERENCES

[1] H. CHEN, X. JIA, and H. LI, “A brief introduction
to IoT gateway,” in IET International Conference on

Communication Technology and Application (ICCTA
2011). IET, 2011, pp. 610–613.

[2] J. MOCNEJ, W. K. SEAH, A. PEKAR, and I. ZOLO-
TOVA, “Decentralised iot architecture for efficient
resources utilisation,” IFAC-PapersOnLine, vol. 51,

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 20, No. 2, 2020 49

no. 6, pp. 168–173, 2018.

[3] Q. ZHU, R. WANG, Q. CHEN, Y. LIU, and W. QIN,
“IOT Gateway: BridgingWireless Sensor Networks
into Internet of Things,” in 2010 IEEE/IFIP Interna-
tional Conference on Embedded and Ubiquitous Com-
puting, 2010, pp. 347–352.

[4] S. K. DATTA, C. BONNET, and N. NIKAEIN, “An
IoT gateway centric architecture to provide novel
M2M services,” in 2014 IEEE World Forum on In-
ternet of Things (WF-IoT), 2014, pp. 514–519.

[5] S. GUOQIANG, C. YANMING, Z. CHAO, and
Z. YANXU, “Design and Implementation of a Smart
IoT Gateway,” in 2013 IEEE International Confer-
ence on Green Computing and Communications and
IEEE Internet of Things and IEEE Cyber, Physical
and Social Computing, 2013, pp. 720–723.

[6] L. WU, Y. XU, C. XU, and F. WANG, “Plug-
configure-play service-oriented gateway-for fast and
easy sensor network application development,” in In-
ternational Conference on Sensor Networks, vol. 2.
Scitepress, 2013, pp. 53–58.

[7] R. MORABITO, R. PETROLO, V. LOSCRI, and
N. MITTON, “LEGIoT: A lightweight edge gateway
for the Internet of Things,” Future Generation Com-
puter Systems, vol. 81, pp. 1–15, 2018.

[8] S. KESAVAN and G. K. KALAMBETTU, “IOT en-
abled comprehensive, plug and play gateway frame-
work for smart health,” in 2018 Second International
Conference on Advances in Electronics, Computers
and Communications (ICAECC). IEEE, 2018, pp.
1–5.

[9] C. BISDIKIAN, L. M. KAPLAN, and M. B. SRIVAS-
TAVA, “On the quality and value of information in
sensor networks,” ACM Transactions on Sensor Net-
works (TOSN), vol. 9, no. 4, pp. 1–26, 2013.

[10] TerryWarwick, “Overview of Windows 10 IoT Core -
Windows IoT,” May 2020, [Online; accessed 11. May
2020]. [Online]. Available: https://docs.microsoft.
com/en-us/windows/iot-core/windows-iot-core

[11] “World’s Fastest Maker Board UP Squared,”
May 2020, [Online; accessed 12. May 2020].
[Online]. Available: https://www.aaeon.com/en/p/
iot-gateway-maker-boards-up-squared

[12] “DragonBoardTM 410c,” May 2020, [Online;
accessed 12. May 2020]. [Online]. Available:
https://www.96boards.org/product/dragonboard410c

[13] “MinnowBoard Turbot - MinnowBoard Wiki,”
Jan 2020, [Online; accessed 12. May 2020].
[Online]. Available: http://minnowboard.outof.biz/
MinnowBoard Turbot.html

[14] “i.MX 6 Series Applications Processors | Mul-
ticore Arm Cortex-A7/A9/M4 | NXP,” May
2020, [Online; accessed 12. May 2020]. [On-
line]. Available: https://www.nxp.com/products/
processors-and-microcontrollers/arm-processors/
i-mx-applications-processors/i-mx-6-processors:
IMX6X SERIES

[15] “i.MX 7 Series Applications Processors |
Arm R© Cortex R©-A7, Cortex-M4 | NXP,” May
2020, [Online; accessed 12. May 2020]. [On-
line]. Available: https://www.nxp.com/products/
processors-and-microcontrollers/arm-processors/
i-mx-applications-processors/i-mx-7-processors:
IMX7-SERIES

[16] “i.MX 8 Series Applications Processors | Arm R©
Cortex R©-A72/A53/A35/M4 cores | NXP,” May
2020, [Online; accessed 12. May 2020]. [On-
line]. Available: https://www.nxp.com/products/
processors-and-microcontrollers/arm-processors/
i-mx-applications-processors/i-mx-8-processors:
IMX8-SERIES

[17] “Buy a Raspberry Pi 2 Model B – Raspberry
Pi,” May 2020, [Online; accessed 12. May 2020].
[Online]. Available: https://www.raspberrypi.org/
products/raspberry-pi-2-model-b

[18] “Raspberry Pi 3 Model B+,” May 2020,
[Online; accessed 11. May 2020]. [Online].
Available: https://www.raspberrypi.org/products/
raspberry-pi-3-model-b-plus

Received June 2, 2020, accepted June 15, 2020

BIOGRAPHIES

Matej Kvetko graduated (MsC) in Intelligent systems
from the Department of Cybernetics and Artificial Intelli-
gence, Faculty of Electrical Engineering and Informatics,
the Technical University in Koice in 2019. Since then to
4/2020, he was working as Software developer in Siemens
Healthineers and now he is Developer in Tieto Evry. His
main focus is on Cloud technologies, Internet of Things
(IoT) and Web developement.

Jozef Mocnej was born on 28.08.1992. He graduated
(MSc) from the Department of Cybernetics and Artificial
Intelligence, Faculty of Electrical Engineering and Infor-
matics, the Technical University in Košice. Since 2015, he
has been pursuing a Ph.D. at the same university. His re-
search is related to the Internet of Things (IoT), Wireless
Sensor Networks (WSN), and IoT architectures.

Ladislav Pomšár graduated (MsC) in Intelligent systems
from the Department of Cybernetics and Artificial Intelli-
gence, Faculty of Electrical Engineering and Informatics,
the Technical University in Košice in 2019. Since the same
year, he has been pursuing a Ph.D. at TUKE in collabora-
tion with Siemens Healthineers. His main ressearch areas
are AI in health diagnostics and AI in Edge.

Iveta Zolotová graduated from the Department of Tech-
nical Cybernetics of the Faculty of Electrical Engineering,
Technical University of Košice, Slovakia in 1983. She de-
fended her CSc. in the field of hierarchical representation
of digital image in 1987. Since 2010 she has been working
as a Professor at the Department of Cybernetics and Ar-

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

https://docs.microsoft.com/en-us/windows/iot-core/windows-iot-core
https://docs.microsoft.com/en-us/windows/iot-core/windows-iot-core
https://www.aaeon.com/en/p/iot-gateway-maker-boards-up-squared
https://www.aaeon.com/en/p/iot-gateway-maker-boards-up-squared
https://www.96boards.org/product/dragonboard410c
http://minnowboard.outof.biz/MinnowBoard_Turbot.html
http://minnowboard.outof.biz/MinnowBoard_Turbot.html
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-6-processors:IMX6X_SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-6-processors:IMX6X_SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-6-processors:IMX6X_SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-6-processors:IMX6X_SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-7-processors:IMX7-SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-7-processors:IMX7-SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-7-processors:IMX7-SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-7-processors:IMX7-SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-processors:IMX8-SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-processors:IMX8-SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-processors:IMX8-SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-processors:IMX8-SERIES
https://www.raspberrypi.org/products/raspberry-pi-2-model-b
https://www.raspberrypi.org/products/raspberry-pi-2-model-b
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus


50 Raspberry Pi and Windows 10 Powered Intelligent Modular Gateway for Decentralized IoT Environments

tificial Intelligence, Faculty of Electrical Engineering and
Informatics, Technical University of Košice, Slovakia. At
the department, she is also the head of the Intelligent Cy-
bernetic Systems research group . Her scientific research is
focused on Smart Industry/Industry 4.0, Internet of Things,

intelligent systems, networked control and information sys-
tems, supervisory control, data acquisition, human machine
interface and remote labs. She also investigates issues re-
lated to vision and robotics.

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

http://isr.fei.tuke.sk
http://isr.fei.tuke.sk

