
Acta Electrotechnica et Informatica, Vol. 20, No. 1, 2020, 39–48, DOI: 10.15546/aeei-2020-0006 39

ALGORITHMS AND DATA STRUCTURE LIBRARIES FOR JAVA

Patrik PERHÁČ, Slavomı́r ŠIMOŇÁK
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of Košice,

Letná 9, 042 00 Košice, E-mail: patrik.perhac@student.tuke.sk, slavomir.simonak@tuke.sk

ABSTRACT
This paper is dedicated to the comparison of different libraries of algorithms and data structures for the Java language. Within

the paper currently available and relevant libraries are analyzed and compared. Selected libraries are compared in terms of provided
implementations of the particular data structures and algorithms, but also based on the performance of these implementations. Then a
summary of the results and recommendations regarding the practical uses of each library are provided. Performance is measured using
the Java Microbenchmark Harness. According to the results of this paper, implementations in Java Collections Framework are suitable
for most use cases, when more complex data structures are not needed. When more specific data structures or algorithms are needed,
that are not covered in Java Collections, GUAVA is a good alternative. For graph-like data structures the use of libraries JUNG and
JGraphT is recommended.

Keywords: data structures, algorithms, libraries, Java

1. INTRODUCTION

Libraries are used frequently by programmers and make
their work easier. These libraries are written by profession-
als, who optimize the solutions to have the best possible
performance. Libraries of algorithms and data structures
provide implementations of common data structures which
are the fundamental building blocks of every program [1].
These implementations often differ from each other in their
internal structure, but also in performance. For a program-
mer to be able to decide which library or implementation to
use in a given project, he must have at least basic knowl-
edge of these libraries and their possible uses. Although
this paper focuses on the Java language, libraries provid-
ing implementations for data structures and algorithms ex-
ist for other languages too. To mention only a few of them:
System.Collections.Generic [2] and C5 Generic Collection
Library for C# and CLI [3] for C#, STL1 for C++ and the
Python Standard Library2 for Python. Libraries for these
languages or others could also be compared in a further
work. The main goal of this paper is to present and sum-
marize the results of our work, which provided a detailed
comparison of the contents and performance of the built-
in Java Collection Framework and several other libraries of
algorithms and data structures. These comparisons should
provide a basis on which programmers can decide which
library is suitable for use in their projects.

2. RELATED WORK

A basic comparison was done, when the Data Structures
Library for Java was written [4]. That paper provides com-
parison of Java Collections, the Generic Library for Java,
the Graph Foundation Classes for Java, and the Data Struc-
tures Library in Java. However, some of these libraries
are outdated or not open source. Also, the performance of
these libraries is not compared. In that paper libraries were
mostly compared based on the implementations they pro-

vide for the data structures which are also mentioned in this
paper. That paper is not actual and does not provide detailed
comparisons and descriptions of the selected libraries.

A study on usage patterns of collections implementa-
tions from six popular alternative collection libraries, and
their evaluation and performance comparisons in different
scenarios can be found in the paper Empirical Study of Us-
age and Performance of Java Collections [5]. 10,986 Java
projects were analyzed in that paper.

Other useful information can be found on the site algo-
rist 3. This site offers basic information about a great num-
ber of libraries for a wide variety of languages. Detailed
comparisons are not provided on this website.

In an article listing useful libraries for Java, among oth-
ers, libraries for collections are also listed, though not com-
pared with each other [6]. An overview of the provided
data structures in the built in Java Collections Framework
is provided by John Zukowski in his book [7].

In contrast to the mentioned articles and collections of
libraries, in our work the selected libraries were compared
in detail based on their contents, the implementations they
provide for the selected data structures and algorithms, and
also the performance of these implementations. The results
of the comparison are also summarized and recommenda-
tions regarding the practical use of each library are provided
in the work related to this paper [8].

3. METHODS

In this paper selected libraries were compared based on
their contents and performance. Their contents were eval-
uated based on how many different implementations they
provide for abstract data types and algorithms, and what
these implementations provide (methods, capabilities and
other attributes) [9].

Their performance was measured using the Java Mi-
crobenchmark Harness (JMH) [10] [11]. Google Caliper
was also considered for this task, but JMH offers more flex-

1Standard Template Library http://www.cplusplus.com/reference/stl/
2Python Standard Library https://docs.python.org/3/library/
3http://algorist.com/algorist.html

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

http://www.cplusplus.com/reference/stl/
https://docs.python.org/3/library/
http://algorist.com/algorist.html


40 Algorithms and Data Structure Libraries for Java

ible and customizable measurements for Java code frag-
ments [12] [13]. Benchmarks were run in average time
mode (measures the average time it takes for the benchmark
method to execute). For the measurements in this paper 10
warm up iterations were used to make sure the results are
not completely random. More warm up iterations make the
measurements more accurate. After warm up, 15 measure-
ment iterations were run [14]. While the benchmarks were
running, the computer it was running on was not used, and
all unnecessary applications were closed to make the results
as clean as possible. The results are also influenced by the
hardware used, but since all benchmarks were running on
the same system under the same circumstances, the values
of the benchmark can be different on different systems or
hardware, while the relationship between the values remain
the same.

Another possibility of measuring performance is the use
of Savina benchmark suite for actor oriented programs [15].
However this possibility was not explored further in the
work related to this paper.

4. LIBRARIES

Libraries, which implement the basic or more advanced
data structures or algorithms can be found for every higher
level language. Most languages even have built in support
for the most frequently used ones. In this work we focus
on open source libraries that are dedicated to the Java lan-
guage.

4.1. Java Collections Framework

Java Collections (JC) is the built in library of basic data
structures of the Java language. It contains implementa-
tions for the ADT List, ADT Set, ADT Priority queue, ADT
Dictionary and also for sorting and searching algorithms.
JC is frequently updated to use the most recent technolo-
gies provided by Java. The Collection interface is on the
top of the class hierarchy in JC, from which all other in-
terfaces and classes are derived, the only exception is the
Map interface. The algorithms that can be used on these
data structures are implemented in the static methods of the
Collections class.

4.2. Data Structures Library for Java

JDSL is an older library, developed at Brown Univer-
sity. Its newest version was released in 2005 [4]. According
to the authors, this library is not supposed to replace Java
Collections, but extend it. JDSL provides implementations
for all the mentioned data structures except ADT Set, and
covers most of the mentioned algorithms as well. The in-
terfaces in JDSL are organised to two categories: one for
positional containers and the second for key-based contain-
ers. Positional containers capture the topological relations
between elements, while key-based containers are used to

store key-value pairs. JDSL can be obtained from GitHub4

or from the Maven Repository5.

4.3. Java Universal Network/Graph Framework

JUNG is an open source library for modeling, ana-
lysis and visualization of graphs [16]. This library focuses
mainly on the ADT Graph, but also provides implementa-
tions for the ADT Tree. According to the authors, the target
audience is Java programmers with interest in graphs, and it
is suited for building applications related to network explo-
ration and data mining [17]. JUNG covers a large portion
of the graph algorithms. All algorithms can be found in
the package edu.uci.ics.jung.algorithms, divided into sub-
packages by category. Tools for graph visualization are pro-
vided in the package edu.uci.ics.jung.visualization, but the
library Vl-jung6 can also be used for this purpose. JUNG
can be downloaded from its official site7, or from the Maven
Repository.

4.4. Google Core Libraries for Java

GUAVA is also an open source set of libraries de-
veloped by Google, which is used in almost all Google
projects written in Java. It provides new types of col-
lections, immutable collections, graph implementations,
hashing and much more. GUAVA contains implemen-
tations or some kind of extension for an existing im-
plementation for every mentioned data structure except
the ADT Tree, but tree-like structures can also be repre-
sented as directed acyclic graphs. It provides tree traver-
sal and graph algorithms. In terms of algorithms and data
structures, the packages com.google.common.collect and
com.google.common.graph are of the most interest to this
work. The latest version of GUAVA can be imported to any
project from the Maven Repository.

4.5. Apache Commons Collections

Commons Collections expands Java Collections with
new interfaces and implementations. CC is an open source
library which is still being developed. It decorates already
existing implementations with new behaviours, such as sup-
port for use in multiple threads, or the ability to access el-
ements of a collection using a key. It also provides its own
implementations for certain data structures like lists, sets or
maps. All classes and interfaces in Commons Collections
are derived from existing ones in Java Collections. Apart
from data structures, CC also provides different implemen-
tations of iterators and comparators. Like all previous li-
braries, CC can also be obtained from the Maven Reposi-
tory.

4.6. JGraphT

Like JUNG, JGraphT is also specialised for the ADT
graph. It covers most types of graphs from graph the-

4JDSL on GitHub https://github.com/lewischeng-ms/jdsl
5JDLS on Maven https://mvnrepository.com/artifact/jdsl/jdsl
6Vl-jung GitGub homepage https://github.com/timboudreau/vl-jung
7Official site of JUNG: http://jung.sourceforge.net/download.html

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

https://github.com/lewischeng-ms/jdsl
https://mvnrepository.com/artifact/jdsl/jdsl
https://github.com/timboudreau/vl-jung
http://jung.sourceforge.net/download.html


Acta Electrotechnica et Informatica, Vol. 20, No. 1, 2020 41

ory, and also most of the graph algorithms. JGraphT
provides adapters to convert graphs from other libraries,
such as GUAVA. All graph implementations in JGraphT
implement the Graph interface and are grouped in the
org.jgrapht.graph package. The algorithms are in the
package org.jgrapht.alg divided into sub-packages by cate-
gory. Traversal algorithms are also provided in the package
org.jgrapht.traverse. JGrapht supports graph visualization,
however an external library must be used. The authors rec-
ommend the JGraphX library for the visualization of graphs
created in JGraphT [18].

4.7. Other libraries

Apart from the previously mentioned libraries, others
are also available. When JDSL was created, it was com-
pared to the libraries that were available at the time. They
were the Generic Library for Java (JGL) and Graph Foun-
dation Classes for Java (GFC). JGL was based on the design
of the STL C++ library. It is not open source so it was not
included in this comparison. GFC is an outdated library,
last updated in 1999. It uses old technologies which is the
reason it’s not included in this comparison.

Other libraries, that are dedicated to a specific data
structure or type of algorithm may also be available and
compared with each other in the future. This work is ded-
icated to the libraries that cover a larger number of data
structures or algorithms.

5. COMPARISON

As previously mentioned, the selected libraries will be
compared based on their contents and their performance.
The data structures and algorithms for which the selected
libraries provide implementations are marked with a black
circle in Table 1. Performance was measured for data struc-
tures and algorithm which had multiple implementations.

5.1. ADT List

The built in Java Collections Framework offers
two implementations for the ADT List. The first is
ArrayList, which internally uses an array, the size of
which dynamically changes. It has an other variant,
CopyOnWriteArrayList, which is thread safe. The other
implementation is the LinkedList, which internally uses
a doubly linked list.

JDSL provides two implementations of the ADT List:
ArraySequence and NodeSequence. They are analogi-
cal to the ArrayList and LinkedList from JC. In JDSL
methods for inserting to the beginning and the end of the
list are also provided.

GUAVA offers a number of static utility methods for
working with lists. These methods include constructing the
cartesian product of multiple lists, partitioning a list to sub-
lists, or reversing the order of elements in a list.

Commons Collections offers some thread safe imple-
mentations for the ADT List, and another implementation:
TreeList. The TreeList is optimized for fast insertions
and deletions based on indexes. Apart from these imple-
mentations, CC also provides multiple classes using the

decorator design pattern to add new properties to existing
implementations (for example GrowthList or LazyList).

Table 1 Data structure and algorithm coverage of the libraries.
JC = Java Collections Framework, DSL = Data Structures
Library for Java, JNG = Java Universal Network/Graph

Framework, GUA = Google Core Libraries for Java, CC =
Apache Commons Collections, JGT = JGraphT, PQ = Priority
queue, Dict = Dictionary, BFS = Breadth First Search, DFS =

Depth First Search, MST = Minimum Spanning Tree

JC DSL JNG GUA CC JGT

List • • • •

Set • • •

PQ • • •

Dict • • • •

Tree • •

Graph • • • •

BFS • •

DFS • • •

MST • • •

Inorder •

Preorder • •

Postorder • •

Merge sort • •

Heap sort •

Quick sort • •

Radix sort •

Bin. search •

From the mentioned implementations ArrayList had
the best performance in each operation except inserting to
the beginning of the list. TreeList was also fast when
idexes were used. Implementations from JDSL achieved
comparable results for most operations. The results of the
benchmark can be seen in Table 2.

5.2. ADT Set

There are multiple implementations for the ADT Set
provided by Java Collections. Thread safe implementa-
tions, like CopyOnWriteArraySet, and specific sets for
storing enumeration types like EnumSet are also pro-
vided. For the performance comparison the implementa-
tions HashSet, LinkedHashSet and TreeSet were se-
lected.

The GUAVA library offers multiple implementations of
the Multiset data type, which is similar to ADT Set, but
allows duplicit elements. There are three main implemen-
tations of this data structures in GUAVA: HashMultiset,

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



42 Algorithms and Data Structure Libraries for Java

LinkedHashMultiset and TreeMultiset which are
structurally similar to the implementations in JC.

In Commons Collections there are also only implemen-
tations of the ADT Multiset. The main implementation of
this data structure is HashMultiSet which internally uses
a HashMap. It also has a method called setCount, by which
the number of occurrences of an element can be set. Other
classes only decorate the base implementation with new

features, like synchronisation or only accepting elements
that match a specified predicate.

The results of the performance tests (as seen in Table 3)
were done separately for the ADT Set and Multiset. The Set
implementations achieved similar results in all operations
except remove and contains, where TreeSet was slower.
The same could be said about the Multiset implementations,
where TreeMultiset had a worse performance.

Table 2 Results of the ADT List Benchmark. Unit of measurement: µs / operation

JC JDSL CC

ArrayList LinkedList ArraySequence NodeSequence TreeList

clear() 0.002 0.003 0.002 0.001 0.002

insert() 0.034 0.122 0.143 0.229 0.299

insert(first) 538.889 0.154 13380.409 0.205 0.357

insert(middle) 115.268 3050.458 7752.18 3122.877 0.372

insert(last) 9.486 28.579 45.001 32.702 0.354

remove(element) 4452.429 9080.809 n/a n/a 23886.322

contains(element) 1488.72 2529.767 0.005 0.005 5157.715

size() 0.003 0.003 0.003 0.003 0.003

isEmpty() 0.004 0.004 0.004 0.004 0.003

insertFirst() n/a n/a 12894.091 0.165 n/a

insertLast() n/a n/a 0.192 0.15 n/a

Table 3 Results of the ADT Set Benchmark. Unit of measurement: µs / operation

JC GUAVA CC

HashSet LinkedHashSet TreeSet HashMultiset LinkedHashMultiset TreeMultiset HashMultiSet

clear() 0.003 0.003 0.002 0.006 0.007 0.005 0.003

insert() 0.011 0.012 0.01 0.005 0.005 0.023 0.005

remove(el.) 0.003 0.003 0.052 0.002 0.002 0.131 0.002

contains(el.) 0.006 0.006 0.047 0.007 0.008 0.055 0.006

size() 0.004 0.004 0.004 0.004 0.004 0.014 0.003

isEmpty() 0.004 0.004 0.004 0.005 0.006 0.013 0.004

5.3. ADT Priority queue

The class PriorityQueue represents the ADT Prior-
ity queue in Java Collections. The elements in the priority
queue are ordered based on their natural ordering, or by a
Comparator provided to the constructor.

In JDSL the ADT Priority queue also has one imple-
mentation: ArrayHeap, implemented using a binary heap.

The library GUAVA provides the class MinMaxPrio-

rityQueue for representing priority queues. It is a double-
ended queue, which provides access for the least and also
the greatest element in the queue.

The performance of these implementations was
comparable in all operations except insert and
poll, where ArrayHeap had the worst perfor-
mance and PriorityQueue was slightly faster than
MinMaxPriorityQueue. The results can be seen in Fig. 1.

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 20, No. 1, 2020 43

Fig. 1 Results of the ADT Priority queue Benchmark. Unit of
measurement: µs / operation

5.4. ADT Dictionary

JC offers multiple implementations for the Dictionary
ADT: HashTable (obsolete since Java 11), HashMap (simi-
lar to HashTable), LinkedHashMap (uses a hash table and
a doubly linked list), TreeMap (based on a Red-Black tree),
WeakHashMap (based on a hash table, but values are auto-
matically removed when the key gets deleted by the garbage
collector).

In JDSL the Dictionary interface has two imple-
mentations: RedBlackTree (built on a restructurable bi-
nary tree) and HashtableDictionary (uses a chaining
hashtable).

In the GUAVA library, bidirectional maps (HashBiMap)
and multimaps can be found. There are multiple ap-
proaches to implement a multimap based on the type
of collection in which the elements are stored. The
following classes were included in the performance
comparison: ArrayListMultimap, TreeMultimap and
HashMultimap.

Commons Collections has implementations for
both the Map (HashedMap, LinkedMap) and Mul-
timap data structures (ArrayListValuedHashMap,
HashSetValuedHashMap). CC also provides implementa-
tions for the bidirectional map data structure, which allows
bidirectional lookup between key and values.

The performance was measured for the mentioned im-
plementations of the ADT Dictionary or Map and Mul-
timap. Due to the number of compared implemen-
tations, the results are displayed via charts in figures
Fig. 2 and Fig. 3. TreeMap and TreeMultimap had the
worst performance, and also HastableDictionary and
RedBlackTree from JDSL. However, the implementations
from JDSL have both find and findAll operations defined,
so they can be used as a map just as well as a multimap.

Fig. 2 Results of the ADT Dictionary Benchmark pt.1. Unit of
measurement: µs / operation

Fig. 3 Results of the ADT Dictionary Benchmark pt.2. Unit of
measurement: µs / operation

5.5. ADT Tree

In JDSL NodeTree represents a node-based multipur-
pose tree, and NodeBinaryTree can be used as a binary
tree.

JUNG also has two implementations: DelegateTree

(delegates to a specified instance of DirectedGraph) and
OrderedKAryTree (a tree where each vertex has ≤ k chil-
dren).

The performance was measured for all mentioned im-
plementations except OrderedKAryTree, due to inconsis-
tencies with the documentation of the class. All three
classes achieved similar results in all operations except par-
ent, children and isRoot, where DelegateTree from JUNG
had far worse performance than the implementations from
JDSL. The results of the benchmark can be seen in Fig. 4.

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



44 Algorithms and Data Structure Libraries for Java

Fig. 4 Results of the ADT Tree Benchmark. Unit of
measurement: µs / operation

5.6. ADT Graph

One implementation of the ADT Graph is provided in
JDSL: IncidenceListGraph. It allows self-loops, paral-
lel edges, mixed directed and undirected edges. It is im-
plemented via a list of vertices and a list of edges. The
neighbouring vertices are stored for each vertex.

JUNG is a library specifically for the ADT Graph. It
contains implementations for almost every kind of graph.

For the performance comparison the classes SparseGraph
and SparseMultigraph were selected, which represent
the base implementations of the graph and multigraph data
structure.

In GUAVA two types of graphs can be found:
Graph (values are only associated with the vertices) and
ValueGraph (vertices and also edges are associated with
values). In GUAVA graphs can be created with the help
of the GraphBuilder and ValueGraphBuilder classes.
Static utility methods are available in the Graphs class for
determining if a graph has cycles, creating a subgraph of a
graph induced by nodes, reversing the edge directions and
a lot more.

JGraphT is also a library specialized for the ADT
Graph. It offers implementations for every kind of graph
and most graph algorithms. For the performance compar-
ison the SimpleGraph and Multigraph classes were se-
lected, which are the base implementations for graphs and
multigraphs.

The performance of these implementations was mea-
sured on graphs with random structure. As seen in
Table 4, performances are similar in most operations.
SparseMultigraph had worse performance in the oper-
ations addEdge and adjacent. The removeEdge operation
was the slowest for the IncidenceListGraph.

Further information about graphs and graph algorithms
in Java can be found in the paper by Marije de Heus [19].

Table 4 Results of the ADT Graph Benchmark. Unit of measurement: µs / operation. v = vertex, w = weight

JDSL JUNG GUAVA JGraphT

IncidenceListGraph SparseGraph SparseMultigraph
Mutable-

ValueGraph
SimpleGraph Multigraph

addVertex(vertex) 0.399 0.793 1.026 0.717 0.736 0.747

addEdge(v1, v2) 0.605 0.407 4.141 0.189 0.128 1.259

addEdge(v1, v2, w) n/a n/a n/a n/a 0.067 0.067

adjacent(v1, v2) 0.209 0.681 448.264 n/a n/a n/a

removeEdge(v1, v2) 74.137 0.048 1.721 0.114 0.033 0.032

getVertices() 0.011 0.008 0.015 0.006 0.004 0.004

5.7. Sorting algorithms

In this paper the following sorting algorithms were
taken into consideration:

Merge sort Sorting algorithm with divide and conquer
approach. Merge sort divides the array or list to halves and
combines them in a sorted manner [20].

Heap sort Heap sort is a comparison based sorting algo-
rithm based on a binary heap structure. It creates a heap
and then sorts the data in reverse by repeatedly placing the
largest unsorted element into its correct place [20].

Quick sort Quick sort is also a divide and conquer algo-
rithm, its approach is to separate bigger and smaller ele-
ments repeatedly. It uses a chosen pivot value that is used
to divide bigger and smaller elements [20].

Radix sort Radix sort sorts strings or numbers by com-
paring their digits or characters. It groups the values by in-
dividual digits or characters that share the same significant
position and value, then joins these groups [20].

From the selected libraries only a few provide imple-
mentations of sorting algorithms. In Java Collections the
method sort in the Collections and Arrays classes uses

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 20, No. 1, 2020 45

Timsort to sort Lists of objects or arrays of objects. An im-
plementation of Dual-Pivot Quicksort can also be found in
JC, however, it’s limited to sorting arrays of primitive types.

JDSL provides implementations for multiple sort-
ing algorithms: ArrayMergeSort (optimised for sort-
ing ArraySequence) and ListMergeSort (optimised for
sorting NodeSequence). JDSL is the only library from the
selected ones, that provides an implementation of the Heap
sort algorithm in the HeapSort class. An implementation
of Quick sort is also provided by the ArrayQuickSort

class.
An implementation of the Radix sort algorithm can be

found in JGraphT in the RadixSort class, which has one
method: sort, for sorting a list of integers. This implemen-
tation is limited to sorting lists of integers. If the number of
elements in the list is less than RadixSort.CUT OFF, then
the standard Java sorting algorithm is used.

In the performance measurement Arrays.sort()

achieved the best results, but it is limited to sorting arrays
of primitive types. The Timsort implementation in both
Collections.sort() and Arrays.sort() also were
fairly fast. The Radix sort implementation from JGraphT

was slower compared to the implementations in JC. The
results of the implementations from JDSL were slower by
multiple orders of magnitude. The results of the benchmark
can be seen in Table 5.

5.8. Searching algorithms

Binary search Binary search searches for a value in an
ordered collection. It operates with a left an right index,
compares the middle value and if the condition is unsatis-
fied, the half not containing the value is eliminated and the
search continues on the remaining half until it finds the tar-
get value [21].

An implementation of searching algorithms, specifically
binary search, was only found in Java Collections. The bi-
narySearch method can be found in both the Collections
and Arrays classes. The method returns the index of
the search key, if it is contained in the list, otherwise,
(-(insertion point) - 1)8. In the Arrays class over-
loaded methods are also provided to search only in a spe-
cific part of an array [22] [23] [24].

Table 5 Sorting algorithms Benchmark results. Unit of measurement: µs / operation

JC JGraphT

Collections.sort(List) Arrays.sort(Object[]) Arrays.sort(int) RadixSort.sort(List)

3.418 3.103 0.41 26.336

JDSL

ArrayMergeSort ListMergeSort ArrayQuickSort HeapSort

385.625 393.144 3103.646 188.939

5.9. Tree traversals

Tree data structure can be traversed in multiple ways.
In this paper Inorder (visits left child first, then the root and
the right child is last), Preorder (root, left child, right child)
and Postorder (left child, right child, root) traversals were
examined.

In JDSL traversing trees can be done using itera-
tors. It offers three iterators: PreOrderIterator (can
be used with binary trees and multi purpose trees),
PostOrderIterator (also works with both types of trees)
and InOrderIterator (only works with binary trees). In
addition, JDSL also offers an implementation of the Euler
tour algorithm [25] in the EulerTour class.

Although GUAVA does not have its own implementa-
tion of the ADT Tree, trees can be represented in GUAVA
using directed acyclic graphs. A Traverser object can be
obtained using the Traverser.forTree() method. After ob-
taining the Traverser object for a specific tree, Postorder
traversal can be achieved by using the depthFirstPostOrder
method and Preorder traversal by using the depthFirstPre-
Order method on the Traverser object. Both methods re-

turn an iterator with the specified order of elements.
The performance was measured on trees with the same

structure. As seen in Table 6, implementations from JDSL
achieved better results, that could be caused by the fact that
GUAVA does not have a specific tree implementation, but it
uses directed acyclic graphs.

Table 6 Tree traversal algorithms Benchmark results. Unit of
measurement: µs / operation

JDSL GUAVA

Tree BinaryTree MutableGraph

PreOrder 2.186 1.936 7.513

PostOrder 2.19 1.981 8.392

InOrder n/a 2.188 n/a

5.10. Graph algorithms

This work focuses on three graph algorithms:
8Collections class documentation https://docs.oracle.com/javase/7/docs/api/java/util/Collections.html

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

https://docs.oracle.com/javase/7/docs/api/java/util/Collections.html


46 Algorithms and Data Structure Libraries for Java

Breadth-first search Starts at the root node, and explores
all of the neighbour nodes at the present depth, before mov-
ing on to the nodes at the next level [26].

Depth-first search Starts at the root node, and explores
as far as possible along each branch before backtracking
[27].

Minimum-spanning-tree MST is a subset of the edges
of a graph that connects all vertices without any cycles and
with the minimum possible total edge weight [28].

JDSL provides implementation for DFS in the DFS class.
Other variants of this algorithm are also available for di-
rected graphs and for finding cycles in graphs. An im-
plementation of minimum-spanning-tree is also provided in
the IntegerPrimTemplate abstract class. When extend-
ing this class, the method weight must be overridden. JDSL
offers other graph algorithms as well, for example topolog-
ical sorting, an implementation of Dijkstra’s algorithm or
pathfinding algorithms.

Although JUNG is a library specifically for the ADT
Graph, it does not contain implementations of the DFS and
BFS algorithms. It does contain a minimum-spanning-tree
implementation in the PrimMinimumSpanningTree class. It
also provides a number of different algorithms related to
clustering, filtering, graph flows, scoring, shortest path and

graph transformation.
GUAVA provides an implementation for both DFS and

BFS algorithms, but it doesn’t contain any minimum-
spanning-tree implementations. Traversing graphs is sim-
ilar to traversing trees in GUAVA. First, an instance of
the Traverser object must be obtained using the Tra-
verser.forGraph() method. After this, the breadthFirst,
depthFirstPreOrder and depthFirstPostOrder methods can
be called, each of which returns an Itarable object with the
specified order of vertices.

JGraphT is also a library specifically for the ADT
Graph. It contains implementations for all three previously
mentioned algorithms. It also provides implementations for
a large number of algorithms from graph theory. Depth-
first and Breadth-first traversals can be achieved by us-
ing the DepthFirstIterator and BreadthFirstIterator classes.
JGraphT contains implementations of multiple minimum-
spanning-tree algorithms, such as BoruvkaMinimumSpan-
ningTree, KruskalMinimumSpanningTree and PrimMini-
mumSpanningTree.

Performance was measured on graphs with the same
structure. The results for the BFS and DFS algo-
rithms were similar. From the implementations of the
minimum-spanning-tree algorithm, KruskalMinimumSpan-
ningTree was the fastest, and PrimMinimumSpanningTree
the slowest (three times slower than the implementation of
Kruskal’s algorithm). The benchmark results can be seen in
Table 7.

Table 7 Graph algorithms Benchmark results. Unit of measurement: µs/operation

JDSL GUAVA JUNG
JGraphT

Boruvka Kruskal Prim

BFS n/a 4.631 n/a 6.471 n/a n/a n/a

DFS 7.388 6.259 n/a 7.53 n/a n/a n/a

SpanningTree 18.48 n/a 34.696 n/a 22.675 10.047 12.751

6. CONCLUSIONS AND RECOMMENDATIONS

In this section the results of the comparison of the li-
braries will be summarized. Also recommendations on the
possible cases in which the individual libraries can be used
will be provided for each library.

6.1. Java Collections Framework

One advantage of using JC is, that it is built into Java,
no additional library is needed. It provides implementa-
tions for the basic data structures, such as lists, sets, pri-
ority queues and dictionaries. These implementations are
frequently updated to use the newest technologies. JC has
multiple search algorithms included and is the only library
from the selected libraries, that has an implementation of a
search algorithm. It lacks the more complicated data struc-
tures like the ADT Tree or Graph.

Java Collection can be used when there is no need for
more complex data structures and the basic implementa-

tions provided satisfy the requirements. Implementations
from JC are easy to use and offer a decent performance in
comparison to the other libraries.

6.2. Data Structures Library for Java

JDSL is the oldest from the selected libraries. Due to
its age, it does not support generic programming which
may cause issues in the form of type incompatibility. The
method names often differ from the ones in other libraries.
It covers all mentioned data structures except the ADT Set
and supports a wider variety of operations for some data
structures. It also has a built in support for converting data
structures between JDSL and JC.

The use of JDSL should be only considered if an im-
plementation is needed which is not provided by any other,
more up to date library. Despite its age, JDSL has a lot of
interesting implementations for most data structures.

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 20, No. 1, 2020 47

6.3. Java Universal Network/Graph Framework

JUNG contains only implementations of the ADT
Graph and Tree, but it covers a relatively large vari-
ety of graphs. It also contains tree implementations,
but no tree traversal algorithms. A big advantage of
JUNG is its built-in support of graph visualization in the
edu.uci.ics.jung.visualization package.

This library can be used for modeling, analysis and vi-
sualization of graphs and networks. All implementations
can be modified to meet the needs of the user. It can also be
used for visualization (either using the built in tools or an
external library like Vl-jung)

6.4. Google Core Libraries for Java

GUAVA is an up to date library, which provides imple-
mentations or new features for every mentioned data struc-
ture, except the ADT Tree, but trees can also be represented
in GUAVA by directed acyclic graphs. It also provides tree
traversal algorithms and graph algorithms. Static utility
methods can be found in the Lists, Sets, Queues, Maps
and Graphs classes, that can make the programmer’s work
easier.

GUAVA is the most frequently used from the mentioned
libraries according to the Maven Repository. It can be used
for a wide variety of projects because of its flexibility. It’s
a great extension for JC.

6.5. Apache Commons Collections

Commons Collections provides a number of implemen-
tations for the basic data structures but their performance

is not overwhelmingly good. Some implementations can
be useful in specific cases, for example TreeList when a
lot of insertions and deletions with indexes are executed, or
when a specific behaviour provided by CC is needed. In
other cases the use of more universal, flexible library like
GUAVA is recommended.

6.6. JGraphT

JGraphT is also a library dedicated specifically for the
ADT Graph. It covers most types of graphs and graph algo-
rithms. From the selected libraries only JGraphT provides
an implementation of the Radix sort algorithm, although
it is limited to sorting lists of integers. JGraphT also pro-
vides adapters for converting graphs from the GUAVA li-
brary. Graphs can also be visualized, but an external library
must be used. The authors recommend using the JGraphX
library for visualization.

6.7. Future work

This work can be further extended for example by
widening the selection of Java libraries. Libraries for other
languages and platforms could also be considered (libraries
for C#, C++, Python and others) in comparison. The scope
of data structures could be extended to include data struc-
tures that are not covered in this paper. Furthermore a com-
parison between the individual implementations could also
be done based on their internal structure.

REFERENCES

[1] SHAFFER, C.A.: Data Structures and Algorithm
Analysis. Edition 3.2 (Java Version). Dover Publi-
cations. Mar. 2013. url: http://people.cs.vt.edu/

~shaffer/Book/JAVA3elatest.pdf

[2] Microsoft: Microsoft Docs, .NET Framework API Refer-
ence, System.Collections.Generic Namespace. url: https:
//docs.microsoft.com/en-us/dotnet/api/system.

collections.generic?view=netframework-4.7.2.

[3] KOKHOLM, N. – SESTOFT, P.: The C5 Generic Collec-
tion Library for C# and CLI, IT University of Copenhagen.
Nov. 2016. url: https://www.itu.dk/research/c5/.

[4] TAMASSIA, R. et al.: An Overview of JDSL 2.0,
the Data Structures Library in Java. Aug. 2005. url:
https://cs.brown.edu/cgc/jdsl/other_modules/

overview/overview.pdf.

[5] COSTA, D. – ANDRZEJAK, A. – SEBOEK, J. – LO, D.:
Empirical Study of Usage and Performance of Java Col-
lections. ICPE ’17: Proceedings of the 8th ACM/SPEC
International Conference on Performance Engineering.
April 2017. url: https://dl.acm.org/doi/10.1145/

3030207.3030221.

[6] JAVIN, P.: Top 20 Libraries and APIs Java Developer should
know. Javarevisited blog, September 2019. url: https:

//javarevisited.blogspot.com/2018/01/top-20-

libraries-and-apis-for-java-programmers.html.

[7] ZUKOWSKI, J.: Java Collections. Apress. Jan. 2008. 420p.
isbn: 1430208546, 9781430208549.

[8] PERHÁČ, P.: Algorithms and Data Structures Libraries for
Java, Bachelor’s thesis, May 2019.

[9] GOODRICH, M.T. – TAMASSIA, R. – GOLDWASSER,
M.H.: Data Structures and Algorithms in Java, 6th Edition.
Wiley, 2014. ISBN: 978-1-118-77133-4.

[10] EGOROV, D.: JMH - Great Java Benchmarking.
dzone.com, Performance Zone, Tutorial. Okt. 2017.
url: https://dzone.com/articles/jmh-great-

java-benchmarking.

[11] COSTA, D.: Benchmark-driven Software Perfor-
mance Optimization. PhD. Thesis. July 2019, url:
https://www.researchgate.net/publication/

335014121_Benchmark-driven_Software_

Performance_Optimization.

[12] SESTOFT, P.: Microbenchmarks in Java and C#.
IT University of Copenhagen, Denmark. Sep. 2015.
url: https://www.itu.dk/people/sestoft/papers/

benchmarking.pdf.

[13] SHIPILEV, A.: (The Art of) (Java) Benchmarking.
Talk given by Aleksey Shipilev for JavaOne SF 2011.
Okt. 2011. url: https://shipilev.net/talks/j1-

Oct2011-21682-benchmarking.pdf

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

http://people.cs.vt.edu/~shaffer/Book/JAVA3elatest.pdf
http://people.cs.vt.edu/~shaffer/Book/JAVA3elatest.pdf
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic?view=netframework-4.7.2
https://www.itu.dk/research/c5/
https://cs.brown.edu/cgc/jdsl/other_modules/overview/overview.pdf
https://cs.brown.edu/cgc/jdsl/other_modules/overview/overview.pdf
https://dl.acm.org/doi/10.1145/3030207.3030221
https://dl.acm.org/doi/10.1145/3030207.3030221
https://javarevisited.blogspot.com/2018/01/top-20-libraries-and-apis-for-java-programmers.html
https://javarevisited.blogspot.com/2018/01/top-20-libraries-and-apis-for-java-programmers.html
https://javarevisited.blogspot.com/2018/01/top-20-libraries-and-apis-for-java-programmers.html
https://dzone.com/articles/jmh-great-java-benchmarking
https://dzone.com/articles/jmh-great-java-benchmarking
https://www.researchgate.net/publication/335014121_Benchmark-driven_Software_Performance_Optimization
https://www.researchgate.net/publication/335014121_Benchmark-driven_Software_Performance_Optimization
https://www.researchgate.net/publication/335014121_Benchmark-driven_Software_Performance_Optimization
https://www.itu.dk/people/sestoft/papers/benchmarking.pdf
https://www.itu.dk/people/sestoft/papers/benchmarking.pdf
https://shipilev.net/talks/j1-Oct2011-21682-benchmarking.pdf
https://shipilev.net/talks/j1-Oct2011-21682-benchmarking.pdf


48 Algorithms and Data Structure Libraries for Java

[14] COSTA, D.– BEZEMER, C.P. – LEITNER, P. – AN-
DRZEJAK, A.: What’s Wrong With My Benchmark
Results? Studying Bad Practices in JMH Bench-
marks, IEEE Transactions on Software Engineering. doi:
10.1109/TSE.2019.2925345. June 2019. url: https://

ieeexplore.ieee.org/document/8747433.

[15] IMAM, S.M. – SARKAR, V.: Savina - An Actor Bench-
mark Suite: Enabling Empirical Evaluation of Actor Li-
braries. Proceedings of the 4th International Workshop on
Programming based on Actors Agents & Decentralized
Control (AGERE! ’14). ACM, New York, USA, pp. 67-80,
October 2014. url: http://soft.vub.ac.be/AGERE14/

papers/ageresplash2014_submission_19.pdf.

[16] O’MADADHAIN, J. – FISHER, D. – NELSON, T.: JUNG
Java Universal Network/Graph Framework, JUNG Fre-
quently Asked Questions. Jan. 2010. url: http://jung.

sourceforge.net/faq.html.

[17] FISHER, D.: The Java Universal Network/Graph Frame-
work (JUNG): A Brief Tour. A talk given by Danyel Fisher
for the UC Irvine KDD Project Apr. 2004.

[18] MICHAIL, D. – KINABLE, J. – NAVEH, B. –
SICHI, J.V.: JGraphT - A Java library for graph
data structures and algorithms. Apr. 2019. url:
https://www.researchgate.net/publication/

332494171_JGraphT_--_A_Java_library_for_

graph_data_structures_and_algorithms.

[19] DE HEUS, M.: Towards a Library of Parallel Graph Algo-
rithms in Java. 14th Twente Student Conference on IT, En-
schede, The Netherlands, 2011. url: https://fmt.ewi.

utwente.nl/media/49.pdf

[20] MANOOCHEHR, A.: Abstract Data Types and Algorithms.
Macmillan Computer Science Series. Palgrave Macmillan
UK, 1990. ISBN: 978-0-333-51210-4, 978-1-349-21151-7.

[21] ZAVERI, M.: An intro to Algorithms: Searching
and Sorting algorithms. codeburst.io. Mar. 2018. url:
https://codeburst.io/algorithms-i-searching-

and-sorting-algorithms-56497dbaef20

[22] SEDGEWICK, R.: Algorithms in C, Parts 1-4: Fundamen-
tals, Data Structures, Sorting, Searching, 3rd Edition. Addi-
son Wesley, 1998. ISBN 9780201350883, 0201350882.

[23] SULTANA, N. et al.: A Brief Study and Analysis of
Different Searching Algorithms. 2017 IEEE International
Conference on Electrical, Computer and Communication
Technologies, IEEE ICECCT 2017, COIMBATORE,
Volume: 4. url: https://www.researchgate.net/

publication/314175061_A_Brief_Study_and_

Analysis_of_Different_Searching_Algorithms.

[24] SINGH, CH.: Search Algorithms in Java. StackAbuse.com.
Mar. 2019. url: https://stackabuse.com/search-

algorithms-in-java/

[25] FOURNIER, J.C.: Graph Theory and Applications: With
Exercises and Problems, Chapter 9. ISTE Ltd., Jan. 2009.
ISBN: 9781848210707, 9780470611548.

[26] CORMEN, T.H. et al.: Introduction to Algorithms, Third
Edition. The MIT Press. July 2009. ISBN: 9780262033848.

[27] THULASIRAMAN, K.: Handbook of Graph Theory, Com-
binatorial Optimization, and Algorithms. Chapman and
Hall/CRC. Dec. 2015. ISBN: 9781584885955.

[28] ANTOŠ, K.: Minimum spanning tree problem. 14th Con-
ference on Applied Mathematics, APLIMAT 2015. Slovak
University of Technology in Bratislava, 2015.

Received July 29, 2019, accepted April 6, 2020

BIOGRAPHIES

Patrik Perháč was born on 9. 7. 1997. In 2019 he gradu-
ated (B.Sc.) at the department of Computers and Informat-
ics of the Faculty of Electrical Engineering and Informatics
at Technical University in Košice. His thesis was titled Al-
gorithms and data structures libraries for Java.

Slavomı́r Šimoňák received his M.Sc. degree in computer
science in 1998 and his Ph. D. degree in computer tools
and systems in 2004, both from the Technical University of
Košice, Slovakia. He is currently Associate Professor at the
Department of Computers and Informatics of the Faculty
of Electrical Engineering and Informatics at the Technical
University of Košice, Slovakia. His research interests in-
clude formal methods integration and application, commu-
nication protocols, algorithms, and data structures.

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

https://ieeexplore.ieee.org/document/8747433
https://ieeexplore.ieee.org/document/8747433
http://soft.vub.ac.be/AGERE14/papers/ageresplash2014_submission_19.pdf
http://soft.vub.ac.be/AGERE14/papers/ageresplash2014_submission_19.pdf
http://jung.sourceforge.net/faq.html
http://jung.sourceforge.net/faq.html
https://www.researchgate.net/publication/332494171_JGraphT_--_A_Java_library_for_graph_data_structures_and_algorithms
https://www.researchgate.net/publication/332494171_JGraphT_--_A_Java_library_for_graph_data_structures_and_algorithms
https://www.researchgate.net/publication/332494171_JGraphT_--_A_Java_library_for_graph_data_structures_and_algorithms
https://fmt.ewi.utwente.nl/media/49.pdf
https://fmt.ewi.utwente.nl/media/49.pdf
https://codeburst.io/algorithms-i-searching-and-sorting-algorithms-56497dbaef20
https://codeburst.io/algorithms-i-searching-and-sorting-algorithms-56497dbaef20
https://www.researchgate.net/publication/314175061_A_Brief_Study_and_Analysis_of_Different_Searching_Algorithms
https://www.researchgate.net/publication/314175061_A_Brief_Study_and_Analysis_of_Different_Searching_Algorithms
https://www.researchgate.net/publication/314175061_A_Brief_Study_and_Analysis_of_Different_Searching_Algorithms
https://stackabuse.com/search-algorithms-in-java/
https://stackabuse.com/search-algorithms-in-java/

