
32 Acta Electrotechnica et Informatica, Vol. 20, No. 1, 2020, 32–38, DOI: 10.15546/aeei-2020-0005

EXTENDING LEAN CELLULAR AUTOMATA FRAMEWORK – BOUNDARY
CONDITIONS AND PROPERTIES OF CANONICAL FORMS

František SILVÁŠI, Martin TOMÁŠEK
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of Košice,

Letná 9, 042 00 Košice, E-mail: frantisek.silvasi@tuke.sk, martin.tomasek@tuke.sk

ABSTRACT
We present several extensions to our Lean–based formal mechanized framework for computing with cellular automata (CA). First

we extend the definition of CAs to allow for specification of arbitrary boundary conditions. We use this addition to represent constant
and periodic boundaries. We then formulate and prove numerous missing properties pertaining to canonical forms of cellular automata,
culminating in a theorem stating that canonical forms preserve counts of nonempty cell states.

Keywords: Cellular Automata, Formalization, Lean, Mechanization

1. INTRODUCTION

Our original work [1] represents the first step towards
building a formalized environment for reasoning about cel-
lular automata. This study is a direct continuation of the ef-
fort, focused both on extending it in ways that are common
in non–mechanical theories of this kind, e.g. allowing rep-
resentation of boundary conditions, as well as formulating
and proving various important properties about canonical
forms that we utilise to simplify the way users interact with
the system.

The paper is structured as follows. The first section pro-
vides context of the study as well as articulates our goals
in a more explicit manner. Section 2 explains the way how
the framework is extended to allow for specification of cus-
tom boundary conditions. In the third section, we first out-
line basic definitions from the original work about which
we then formulate and prove various theorems. The last
section is a summary of the study as well as an outline of
possible future work.

We shall now provide a short overview of the state of
the art of the area. However, we would like to kindly direct
the interested reader to the introductory part of our original
paper for more complete context.

To the best of our knowledge, no other CA mechaniza-
tion exists. It is therefore difficult to evaluate our approach
in the context of existing solutions. Nevertheless, we find
it important to mention that automata in general have been
investigated in mechanical frameworks. For example, finite
state automata have been formalized in Coq by Fillitre [2]
and their connection with regular languages has been fur-
ther explored mechanically by Doczkal [3].

It is pertinent to briefly outline how our formalization
differs from its abstract counterpart [4]. We shall digress
for just a moment to once again refer the reader to our
original study, namely section 5, for further details on this
topic. Our original work represents a formalization with
great emphasis on preservation of computability – this al-
lows us to use the Lean code both as a CA simulator as well
as a mechanical environment to reason about their proper-
ties. These uses are symbiotic in that we can use certified
computation to help us with proofs and in turn, we can use
proven–correct properties to optimize computation.

These benefits do come at a price however. We have

lost some faithfulness to the original model. This manifests
the most in the presence of the so called ”extension func-
tion” which arbitrarily extends underlying lattices so that
computation is not limited to a bounded space. Its presence
interferes with properties of automata that follow naturally
from the abstract counterpart – as such, we have introduced
canonical forms that alleviate some of these issues.

This paper formulates several important properties
about said extension functions and canonical forms, ul-
timately building up to a mechanized formal proof
of the statement ∀a x,x 6= a.empty → count a x =
count (make canonical a) x. Various important properties
need to be shown along the way, as shall be demonstrated
shortly.

Additionally, we also extend the framework in a way
such that it is possible (and convenient) to define custom
boundary conditions, therefore replacing the original be-
haviour which enforced infinite lattices with empty constant
quasi–boundaries.

The entire formalization is available at https://

github.com/frankSil/CAExtensions. For ease of
reuse, we use the Lean packaging manager – once one in-
stalls Lean 3.4.2, it is only necessary to run leanpkg build
from the root of the repository. The formalization is com-
plete in the sense that all proofs have been checked by Lean.

2. CUSTOM BOUNDARY CONDITIONS

For brevity, we shall only include the altered Lean code
and focus mostly on discussing the introduced differences.
However, for context, we will give a brief outline of the
functionality in general.

structure cautomaton (α : Type)

[decidable_eq α] :=

(g : vec_grid0 α)

(empty : α)

(neigh : point → list point)

(bound : (bounding_box → bounding_box) ⊕
(α → vec_grid0 α → point → α))

(f : α → list α → α)

The first component of a cellular automaton is a two di-
mensional lattice g. The field empty represents the empty
cell state, neigh is a neighbourhood function and f is the

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

https://github.com/frankSil/CAExtensions
https://github.com/frankSil/CAExtensions

Acta Electrotechnica et Informatica, Vol. 20, No. 1, 2020 33

automaton rule acting on local configurations. Originally,
the member bound was called ext and represented an ex-
tension function that would shrink or expand the grid based
the needs of the function f. Now we have added the pos-
sibility to either provide an extension function, or instead
give a rule for boundary condition. If one opts into the
latter, it is implicitly assumed that no extension of the un-
derlying lattice happens. The boundary itself is a function
(notin : α)→ (lattice : vec grid0 α)→ (p : point)→ α .
The idea behind it is that we allow for two kinds of be-
haviours, depending on whether p ∈ lattice. The first argu-
ment notin allows us to specify a default value, generally
used when p /∈ lattice.

We also define two commonly used boundary situations.

def bound_const {α : Type*}

[grid α] (empty : carrier α)

(g : α) (p : point) : carrier α :=

if h : p ∈ g

then abs_data g p

else empty

This is the most straightforward boundary situation, in
which every position outside of underlying lattice is defined
to be some constant empty. The function abs data g p sim-
ply returns a cell of lattice g on position p. Also, we use gbl
and gtr to respectively represent bottom left and top right
corners of grids – note that gtr can be easily computed from
gbl and rows g/cols g . The rest of notation should be self–
explanatory but as with everything throughout this study,
one can consult the original work for further information.

def bound_periodic {α : Type*}

[grid α] (empty : carrier α)

(g : α) (p : point) : carrier α :=

if h : p ∈ g

then abs_data g p

else

if b1 : (gbl g).y ≤ p.y ∧ p.y < (gtr g).y

then

if p1 : p.x ≥ (gtr g).x

then abs_data g P1
else abs_data g P2

else

if b2 : (gbl g).x ≤ p.x ∧ p.x < (gtr g).x

then

if p2 : p.y ≥ (gtr g).y

then abs_data g P3
else abs_data g P4

else empty

Where

P1 = 〈p.y, (gbl g). x + (p.x − (gbl g). x) % (cols g)〉
P2 = 〈p.y, (gtr g). x − 1 − ((gbl g). x − p.x − 1) % (cols g)〉
P3 = 〈(gbl g).y + (p.y − (gbl g). y) % (rows g), p.x〉
P4 = 〈(gtr g).y − 1 − ((gbl g). y − p.y − 1) % (rows g), p.x〉

The function abs data g p requires a proof of p ∈ g,
which is just notation for (gbl g).x < p.x ≤ (gtr g).x ∧
(gbl g).y≤ p.y < (gtr g).y. For brevity, we just note that it
is relatively straightforward to show the necessary proper-
ties for all Pn. Said proofs are of course formalized in full
and we invite the interested reader to inspect the enclosed

formalization.
This boundary condition specifies periodic boundaries

in the sense that ”leaving” the lattice from one side has the
effect of entering the lattice on the opposite side. This cor-
responds spatially with a torus.

Having modified the definition of cellular automaton it-
self, we also need to slightly alter the way we compute
with them. The function ext aut a that expands underlying
lattices is changed in a way such that it acts as the iden-
tity function in case a boundary condition has been speci-
fied. Otherwise it uses the supplied extension function, i.e.
the left part of a.bound. On the other hand, the function
next gen a that computes future generations of configura-
tions checks if an extension function has been supplied. If
so, it uses bound const a.empty. Otherwise we just utilize
the provided boundary function, i.e. the second component
of the sum a.bound.

These changes are fairly trivial and therefore do not
warrant an inclusion in–full within the paper. Please
do consult the enclosed git repository. As a tiny side
note, we have modified Lengton’s Ant [5] to use periodic
boundaries to demonstrate the way it behaves – the file
ant.lean contains the definition along with a preset con-
figuration called simple. For various values of k, calling
#eval step_n simple k allows one to observe the be-
haviour of this boundary.

3. PROPERTIES OF CANONICAL FORMS

3.1. Exposition and context

Colloquially, we say an automaton is in canonical form
if it contains no empty rows nor columns on the edges of
its lattice. Formally, we have a canonicalization procedure
make canonical : cautomaton α → cautomaton α and de-
fine that an automaton a is in a canonical form if and only
if make canonical a = a. Also, configurations of automata
are stored in grids, which are important for the study only
conceptually – one can think of them as geometrical or-
thogonal two–dimensional lattices implemented as binary
functions that associate a unique cell state to each row and
column pair. Let us copy verbatim the most important defi-
nitions we shall be using throughout the study.

Definition 3.1. A subgrid is a part of a grid g delineated
by a bounding box bb within the bounds of g.

def subgrid {α : Type*}

[grid α]

(g : α) (bb : bounding_box)

(h : overlaid_by bb g) :

fgrid0 (carrier α) :=

〈rows_of_box bb, cols_of_box bb, ..., bb.p1,

λx y, abs_data g 〈〈x.1, ...〉, 〈y.1, ...〉〉〉

Note that the definition is trivial. It simply delegates to
the underlying original grid while restricting elements that
are outside of the provided bounding box. We shall also be
using overlaid by a b to mean that a fits spatially into b and
we also have a function gip g that is defined to be the ex-
haustive sequence of row–major coordinates starting at the
bottom left within g.

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

34 Extensions to Lean Cellular Automata

Also note that we can use gip g and abs data to define
a function that turns any grid into a list of its elements. We
shall henceforth denote such function with a unary prefix
symbol ℘ and its definition is as follows.

def ℘ {α : Type*} [grid α] (g : α) :=

map (abs_data g ◦ grid_point_of_prod

◦ inject_into_bounded g)

(attach $ gip g)

The functions attach, grid point o f prod and
in ject into bounded are mostly superfluous and do some
type–fixing for Lean; they can be safely ignored and we
shall be omitting them throughout the study.

Definition 3.2. Compute bounds represents the smallest
possible bounding box containing all nonempty elements of
a lattice.

def compute_bounds {α : Type}

[decidable_eq α] (a : cautomaton α) :

bounding_box :=

let bounded := gip_g a.g in

let mapped := ℘ a.g in

let zipped := zip bounded mapped in

let filtered :=

filter (λx, snd x 6= a.empty) zipped in

if h : empty_list filtered

then 〈
gbl a.g, gtr a.g, grid_is_bounding_box

〉
else

let unzipped := fst ◦ unzip $ filtered in

let xs := map point.x unzipped in

let ys := map point.y unzipped in

let min_x := min_element xs ... in

let max_x := max_element xs ... in

let min_y := min_element ys ... in

let max_y := max_element ys ... in

〈〈min_x, min_y〉, 〈max_x + 1, max_y + 1〉,
...〉

The function simply finds extrema for non–empty
cells and computes the smallest bounding box containing
them all. For space–preserving reasons, we shall denote
compute bounds = cb.

Definition 3.3. The function make canonical a represents
a new automaton with all properties equivalent to a but with
its underlying lattice restricted in accordance with cb.

def make_canonical : cautomaton α :=

{a with g :=

(subgrid a.g (cb a) P)}

The only property in our original work on cb is that the
bounding box it produces fits within the bounds of the origi-
nal grid (note the P in the preceding definition). It turns out
it is insufficient. The main motivation behind the general
counting lemma we shall now prove comes from an attempt
to show that a particular lattice–gas automaton hpp [7] pre-
serves the number of gas molecules as time progresses1.

3.2. Formulation of properties with their respective
proofs

We formulate and prove the main result first. On the
way to prove it, we discover and prove various useful prop-
erties about grids, their subgrids and canonical forms of au-
tomata. We designate general–purpose properties as theo-
rems and always note what they are used for. Everything
else is marked as a lemma and can be considered to be of
technical nature. We shall be omitting several simpler facts
and we do encourage the interested reader to inspect the en-
closed github repository in case anything is unclear. At the
end of the paper, we enclose formulations of lemmas used
from our baseline study.

Henceforth, unless specified otherwise, let α be any
Type with decidable equality defined thereover and let
a : cautomaton α . Also, we will occasionally use grids,
bounding boxes and their corresponding gbl / gtr corners
interchangeably.

Theorem 3.1. Given a nonempty x : α , count of x in a is
preserved by make canonical.

Proof. Counting x in an automaton a is by definition equiv-
alent to counting x in℘a.g. Considering also the definition
3.3, it suffices to show

count x (℘ a.g) = count x ℘ (subgrid a.g (cb a) ...)

which follows directly from lemma 3.1.

Definition 3.4. Effectively the dual of subgrid. Given a grid
g and a bounding box bb within g, return all elements of g
that are not in bb.
def subgrid’ {α : Type*} [grid α]

(bb : bounding_box) (h : overlaid_by bb g)

: list (carrier α) :=

map (abs_data g ◦ inject_filter_bounded _)

(attach $ filter (λp, p /∈ bb)

(gip_g g))

As with℘, note here that in ject f ilter bounded and attach
once again just help Lean accept our definitions. We shall
for the most part ignore their presence. Also, we will not
write the last explicit argument for this definition, which
also applies for subgrid.

Lemma 3.1. For any nonempty x : α , count x (℘ a.g) =
count x ℘ (subgrid a.g (cb a)).

Proof. Let bb = cb a and note that bb is overlaid by a.g. It
then suffices to show

count x ℘ (subgrid a.g (cb a))+

count x (subgrid′ a.g (cb a)) =

count x ℘ (subgrid a.g (cb a))

by theorem 3.3. However, the second summand here is zero
by theorem 3.2.

Theorem 3.2. For any nonempty x : α , count x (subgrid′ a.g
(cb a)) = 0.

This result states that cb never removes a nonempty cell.
1A formalization of hpp is available in the enclosed github repository and is a part of the original work.

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 20, No. 1, 2020 35

Proof. Counting elements x in a list l is equivalent to first
filtering l for those elements that are equal to x and then
taking its length. Then upon unfolding the definition 3.4, it
is clear it only suffices to show

| f ilter (= x) (map (abs data a.g)

(f ilter (λ p, p /∈ cb a) (gip g a.g)))|= 0

Furthermore, lists have length zero iff they are empty
and a filtered list l by P is empty iff for all elements x ∈ l,
¬P x. Let us therefore assume we have an arbitrary x ∈ l
here and we have to show ¬P x. Considering l = map f l′

in this case, it must be the case that there exists p ∈ l′ for
which f p = x. As such, we have H : p ∈ f ilter (λ p, p /∈
cb a) (gip g a.g) and we need to show x 6= abs data a.g p.
Assume however for the sake of contradiction that it is not
so. First show abs data a.g p = a.empty. This is because
from H it is clear that both p ∈ gip g a.g and p /∈ cb a and
as shown in our previous work (theorem 7), p ∈ gip g a.g
also entails p ∈ a.g. The property now follows from lemma
3.2. Here we can easily derive a contradiction as recall that
the original assumption states x 6= empty.

Lemma 3.2. Given a point p ∈ a.g and assuming p /∈ cb a,
abs data a.g p = a.empty

Proof. First define

i = (p.y− (gbl a.g).y)∗ cols a.g+(p.x− (gbl a.g).x)

It follows from p ∈ g that 0≤ i < |a.g|. Then define

l = f ilter (λx,x.snd 6= a.empty) (zip (gip g a.g) (℘ a.g))

Now assume that l is empty, from which we have that for
any p and b such that (p, b) ∈ zip (gip g a.g) (℘ a.g),
b = a.empty. Therefore, it suffices to show

(p, abs data a.g p) ∈ zip (gip g a.g) (℘ a.g)

and further

(p, abs data a.g p) = nth (zip (gip g a.g) (℘ a.g)) i

Note this is valid because the size of the zipped lists is
equivalent to either of them, which are in turn equivalent
to |a.g|, which is strongly preceded by i. It now only suf-
fices to exhibit each nth part of the zipped list separately.
For

nth (gip g a.g) i = p

we get

((gbl a.g).x+ i%(cols a.g), (gbl a.g).y+ i/(cols a.g)) = p

by theorem 8 of the preceding study. We are finished with
a bit of modular arithmetic. For the second list, we need to
show

nth (℘ a.g) i = abs data a.g (x, y)

By lemma 10 of the base study, it suffices to show

abs data a.g (

(gbl a.g).y+ i/cols a.g,

(gbl a.g).x+ i%cols a.g) = abs data a.g (y, x)

which is straightforward to do after the arguments are iso-
lated. In the case where l is not empty, first define

l′ = (unzip (f ilter (λx,x.snd 6= a.empty)

(zip (gip g a.g) (℘ a.g)))). f st

Note that the assumption p /∈ cb a is possible in four cases
given a nonempty l.

p.y < min element (map point.y l′) (1)
1+max element (map point.y l′)≤ p.y (2)

p.x < min element (map point.x l′) (3)
1+max element (map point.x l′)≤ p.x (4)

It is now clear that all of these cases imply that
either component of p is not in their respective
map point.component l′ list, from which we can show in
a similar fashion in all four cases, that abs data a.g p =
a.empty as follows. Let us arbitrarily pick (1). As
mentioned, it follows therefrom that y /∈ map point.y l′

from which it is clear that p /∈ l′. Let us assume
abs data a.g p 6= a.empty and derive a contradiction. De-
fine elem = abs data a.g p. Show

(p, elem) ∈ f ilter (λx,x.snd 6= a.empty)

(zip (gip g a.g) (℘ a.g))

which is in the filter iff

(p, elem) ∈ zip (gip a.g) (℘ a.g) (1)
elem 6= a.empty (2)

of which (2) is obvious and (1) follows from theorem 8 and
lemma 10 of the original paper. However, we can now triv-
ially show p ∈ l′ which is a contradiction. The other three
cases are similar, which concludes the proof.

Theorem 3.3. Given a type α which is a grid with el-
ements in carrier α , g : α , bb : bounding box such that
bb is overlaid by g and assuming we have decidable
equality over elements, then for all elem : carrier α ,
count elem (℘ g) = count elem (℘ (subgrid g bb)) +
count elem (subgrid′ g bb).

This theorem simply states that we can always split a
grid to two parts with subgrid and still preserve the count
of elements within. The residuum is then subgrid′.

Proof. First express each count as an appropriate slice of
filtered grid indices. Define P = λ p, elem = abs data g p
and let indices = gip g. For the left hand side, it follows
from the definition of ℘ that

count elem (℘ g) = | f ilter P (gip g g)|

from lemma 3.3 we get

count elem (℘ (subgrid g bb)) =

| f ilter P (f ilter (λ p, p ∈ bb) (gip g g)))|

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

36 Extensions to Lean Cellular Automata

and the definition 3.4 gives us

count elem (℘ (subgrid g bb)) =

| f ilter P (f ilter (λ p, p /∈ bb) (gip g g)))|

This is straightforward to prove by induction on gip g g.
Note that the filters on the right hand side are mutually ex-
clusive and cover the entire list.

Before we continue, it is worth stopping for just a mo-
ment to outline and discuss some differences, in this proof
in particular, between Lean and paper proofs. Recall we ig-
nored some type–mending transformations in the definition
3.4, which are necessary as abs data g : {p : point//p ∈
g} → β for some β that is the type of elements of g –
note the type of said expression is not point → β . This
has profound implications on the way the proof can be con-
structed. The function gip g g yields a list of points. It
first has to be lifted to a list of points that are within said
list – this very suddenly changes three homogeneous lists
(all of which contain points) to three separately typed se-
quences, corresponding with membership within their re-
spective, possibly filtered lists.

As an example, consider seq = f ilter (λ p, p /∈
bb) (gip g g) which ”normally” has the type list point.
Upon adjoining it with its natural property of each of the
points being members of the sequence (we shall denote the
function that does this attach), we have attach seq : list {p :
point//p∈ seq}. In this manner, the other two lists are their
own types as well.

The theorem then becomes unprovable with direct in-
duction over gip g – this is because the inductive hypothe-
sis has to be formulated in terms of the filtering predicate P :
{x//x ∈ hd :: tl} → Prop2, making our original predicate
unusable as it pertains to the entire list. The idea is to gen-
eralize over all predicates and structures, prove by induction
the general version and specialize for the concrete solution.
The abstracted formulation is too wordy to include in the
paper, however we do encourage the interested reader to
take a look at ”grid.lean/filter partition dependent’”.

Lemma 3.3. For all grid Types α with decidable equality
defined over their carrier α , given a grid g : α , a bound-
ing box bb overlaid by the grid g and an elem : carrier α ,
count elem (℘ (subgrid g bb)) = | f ilter (λ p, elem =
abs data g p) (f ilter (λ p, p ∈ bb) (gip g g)))|.

Proof. Define g′ = subgrid g bb . Counting elem in a se-
quence is the same as taking the length of the list containing
only elements equivalent to elem. Then, taking the defini-
tion of ℘ into consideration, we calculate on the left hand
side:

| f ilter (λx, x = elem) (map (abs data g′) (gip g g′)|=
|map (abs data g′) (f ilter ((λx, x = elem) ◦

(abs data g′)) (gip g g′))|=
| f ilter ((λx, x = elem)◦ (abs data g′)) (gip g g′)|=
| f ilter (λ p, elem = abs data g′ p) (gip g g′)|

Note that theorem 3.4 gives us H : f ilter (λ p, p ∈
bb) (gip g g) = gip g g′. Considering now H and

congruence of f ilter, it suffices to show ∀p (a : p ∈
gip g g′), elem= abs data g′ p ⇐⇒ elem= abs data g p,
which follows from the definition of subgrid.

Theorem 3.4. For all grid Types α , given a grid g : α and
a bounding box bb overlaid by the grid g, f ilter (λ p, p ∈
bb) (gip g g) = gip g (subgrid g bb).

This theorem expresses that the elements within a sub-
grid of a grid g made with a bounding box bb are those that
remain after we take only those elements from g which be-
long to bb. Please note that in the following proof, we refer
to the definition of gip g only conceptually – one can in-
spect the details in the enclosed formalization or in the text
of the paper of the baseline study. Also note that we shall
use range a b to mean the sequence {a, a+ 1, ..., b− 1}
and grp a b r to mean {(a, r), (a+1, r), ..., (b−1, r)}.

Proof. Let p1 = bb.p1 and p2 = bb.p2. Note as also that
p1 ↗ p2. It follows from the definition of gip g that we
need to show

f ilter (λ p, p ∈ g)

(join (map (grp (gbl g).x (gtr g).x)

(range (gbl g).y (gtr g).y))) =

join (map (grp p1.x p2.x) (range p1.y p2.y))

Let us now set l = range p1.y p2.y and l1 =
range (gbl g).y (gtr g).y. Because bb fits within g and
p1 ↗ p2, we can write l1 as concatenation of the follow-
ing three lists, in the respective order.

l2 = range (gbl g).y p1.y

l3 = l

l4 = range p2.y (gtr g).y

Here we can represent the left hand side as concatenation of
f ilter (λ p, p ∈ g) (join (map (grp (gbl g).x (gtr g).x) ln))
where n = {2, 3, 4} in left to right order (note that,
of course, concatenation is not commutative). Here note
the first list is empty, because it would be absurd if it
were not so – clearly all of its elements must both be
within the bounding box vertically yet the very last in-
dex is p1.y− 1. Similar reasoning holds for the third list,
which is empty as well. We are therefore left to show
that the preceding expression with n = 3 is equivalent with
join (map (grp p1.x p2.x) (range p1.y p2.y)), which is
straightforward to do.

4. DISCUSSION, CONCLUSIONS AND FUTURE
WORK

This study is a direct continuation of our previous work
– originally, we defined canonical forms to deal with com-
putational aspects of cellular automata proofs. We therefore
needed very little in terms of their behaviour and just relied
on Lean to run the definitions. As a result, we only proved
the absolute necessary properties.

This paper, on the other hand, both extends the work
in the sense that we have new functionality – namely, we

2Note it is standard to induce over the structure of a list with hd being its head and tl being the tail.

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 20, No. 1, 2020 37

can now specify boundary conditions, as well as finishes
formulating and proving properties missing in the baseline
work.

Boundary conditions are an important part of the the-
ory of cellular automata. For example, many traffic sim-
ulation models are simplified greatly by introducing peri-
odic boundaries, which removes the need to account for in-
finite spaces. One can for example examine the Biham–
Middleton–Levine model [6]. In addition to extending
the framework in a way such that custom boundary con-
ditions can be defined, we have also provided two most
common boundary functions – the constant and the peri-
odic boundary, which are the functions bound const and
bound periodic respectively.

With regards to missing theorems from the original
study, we have formulated and proven several new prop-
erties. We have listed the most important ones in the paper,
along with outlines of their proofs.

• The theorem 3.4 reformulates the function subgrid in
terms of the more general function f ilter.

• The theorem 3.3 says that splitting a grid into two dis-
junct parts preserves the count of any elements within
the grid.

• The theorem 3.2 states that the residuum we get after
obtaining the canonical form of a grid contains only
empty cells.

• The theorem 3.1 states that canonicalization only re-
moves empty cells.

Moreover, we have of course also defined several addi-
tional lemmas and auxiliary properties that can be utilized
while using our CA framework.

The main results of this study are most important in
cases where we want to formulate counting arguments for
more specific cellular automata, which leads us to further
research. As stated, the motivation was to express preser-
vation of molecules in the lattice–gas cellular automaton
hpp. This paper constitutes a next step in this direction,
because it allows us to completely disregard the effects of
make canonical. We are therefore left with proving that the
function translation, as defined in the file hpp.lean does in

fact preserve molecule counts. Naturally, one can formu-
late counting arguments for any other cellular automaton
specified within our framework.

This study is a part of a bigger project with several open
problems and goals. We encourage the interested reader to
further confer the section 6.3 of our original paper to learn
more about what venues can be explored with regards to
this research.

5. AUXILIARY LEMMAS USED IN PROOFS

Theorem 7 (used in theorem 3.2) states that a point is lo-
cated within a grid if and only if it is in the list generated by
the appropriate gip g.

p ∈ g ⇐⇒ p ∈ gip g g

Theorem 8 (used in lemma 3.2) states the intuitively obvi-
ous – as mentioned, gip g is the exhaustive list of coordi-
nates in a row–major fashion. As such, the elements follow
the row / column pattern as formulated in the theorem.

n < |g| =⇒
nth (gip g g) = (

(gbl g).x+n % (cols g),

(gbl g).y+n/(cols g))

Lemma 10 (used in lemma 3.2) reflects the mirrored nature
of gip g and ℘ – the nth element of a grid is the element at
the position computed by gip g.

n < |g| =⇒
nth (℘ g) = abs data g (

(gbl g).y+n/(cols g),

(gbl g).x+n % (cols g)))

ACKNOWLEDGEMENT

This work was supported by the Slovak Research and
Development Agency under the contract No. APVV-15-
0055. The paper was supported by project KEGA no.
079TUKE4/2017. This work was supported by FEI TUKE
Grant no. FEI-2018-57.

REFERENCES

[1] SILVÁŠI, F. – TOMÁŠEK, M.: Lean Formalization
of Bounded Grids and Computable Cellular Automata
Defined Thereover. To appear in Science of Computer
Programming. 2020.

[2] FILLITRE, J.C.: Finite Automata Theory in Coq - A
constructive proof of Kleene’s theorem. Ecole Nor-
male and Suprieure Lyon, 1997.

[3] DOCZKAL, C. – KAISER, J. O. – SMOLKA, G.: A
Constructive Theory of Regular Languages in Coq.

Springer International Publishing. In Certified Pro-
grams and Proofs. 2013. 82–97.

[4] KUTRIB, M. – VOLLMAR, R. – WORSCH, Th.: In-
troduction to the special issue on cellular automata. In
Parallel Computing. 23/11. 1997. 1567–1576.

[5] LANGTON, C.G.: Studying artificial life with cellu-
lar automata. In Proceedings of the Fifth Annual In-
ternational Conference. 22/1. 1986. 120–149.

[6] BIHAM, O. – MIDDLETON, A. A. – LEVINE, D.:
Self-organization and a dynamical transition in traffic-
flow models. In Phys. Rev. A. 46/10. 1992. 124–127.

[7] HARDY, J. – POMEAU, Y. – PAZZIS, D. O.: Time
evolution of a twodimensional model system. I. In-

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

38 Extensions to Lean Cellular Automata

variant states and time correlation functions. In Jour-
nal of Mathematical Physics. 14/12. 1973. 1746–
1759.

Received January 29, 2020, accepted March 23, 2020

BIOGRAPHIES

Frantisek Silváši is a Ph.D. student at Technical University
of Košice working on formal software verification utilizing
automated reasoning.

Martin Tomášek received Ph.D. degree in Software and
Information Systems in 2005 and currently works as an as-
sociate professor at Technical University of Košice. His re-
search interests include concurrency theory, distributed sys-
tems, and cloud computing.

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

