
Acta Electrotechnica et Informatica, Vol. 19, No. 3, 2019, 27–33, DOI: 10.15546/aeei-2019-0020 27

ISSN 1335-8243 (print) © 2019 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

VIRTUAL SYSTEM OBFUSCATION

Michal HULIČ, Martin CHOVANEC, Viliam KORBA
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic, tel. +421 55 602 4220,
E-mail: michal.hulic@tuke.sk, martin.chovanec@tuke.sk, viliam.korba@student.tuke.sk

ABSTRACT
This publication deals with obfuscating of virtual systems against malware. It describes virtual systems, malicious code,

weaknesses of virtual systems and methods of obfuscating. The addresses at the type of virtual system, use in practice, definition of
malware and methods of avoiding systems designed to detect malicious software. Findings are applied in the design and subsequently
in the implementation of the tool. The tool uses wear and tear artefacts to obfuscate virtual systems which are detecting malicious
software. Designed and implemented software section of this publication is launched in virtual system with operation system Windows.

Keywords: Virtual systems obfuscation, Malware, Wear and tear artefacts, Virtual systems, Detecting virtual systems.

1. INTRODUCTION

The problem of obfuscation virtual systems is one part
of a fight against malware attacks. The safest and most
common analysis environment for Malicious software is a
virtual environment where malicious sensitive software or
system resources are not affected by the software. In this
case, the attackers are so sophisticated that they can analyze
the environment and, on that principle, evaluate whether
they trigger their malicious behavior or malicious software
leaves for the sleeping phase. In the sleeping phase
malicious software is not identifiable because it does not
execute malicious operations and emulates harmless
software. This publication emulates the operating system in
a virtual environment Windows 10 from vendor Microsoft
so that it is from the attacker's point of view, the same as
the real system user. The work is focused on parts of the
operating system that are analyzed by malicious software.
It’s been investigated and identified under what conditions
or events changes their status. Then the options like that
were found and adjusted to the state of the desired parts and
implemented them into the tool. On the basis of this
information there was a need to design an obfuscation tool.
There must be selected the right strategy and focus on the
most essential features. Finally, the implementation was
verified and determined effectiveness of the tool. The aim
of the tool is to reduce the similarity of the environment to
environments that analyze malicious software.

2. VIRTUAL SYSTEMS

Virtualization is an activity of involving a creation of
virtual environment on one machine and partition its
computing power and storage for more concurrent running
operating systems (clients). Also, the host computer
hardware appears to be virtual, what allows us to run
applications that are designed for another architecture or
test purposes, since the OS does not direct access to
hardware. Hypervisor is hiding from physical hardware
available to users instead virtual hardware. This software
runs on a physical computer, manages virtualization and
provides services to clients. There are five kinds of
virtualization based on what it is. Types of virtualization:
Hardware virtualization, data virtualization, desktop

virtualization, operating virtualization and system
virtualization of network functions.

Fig. 1 Virtualisation [6]

Operating system virtualization creates virtualized
operating system-level hardware to create multiple isolated
virtualized instances that run on one system. This process
is performed without use of hypervisor. Operating system
virtualization has the same guest OS as host. The OS
virtualization uses the host OS like base of all independent
virtual machines in the system. Operating system
virtualization does not need driver emulation. This leads to
better performance and the ability to run multiple
virtualizations simultaneously.

2.1. Hardware virtualization

Also known as server virtualization. Servers are
designed to perform intensive tasks which needs to be
performed in a short amount of time (fractions of
milliseconds). In addition, servers are often required to do
tasks of different kinds for which are required different
environment. Virtualization helps solve this situation for
servers. One machine divides the parts as needed and
specific tasks are available for each specific task
environment [1]. Because in this kind of virtualization is a
hypervisor installed directly on computer hardware, and
others operating systems are installed later on. This
procedure is also known as bare-metal virtualization. Based
on this the hypervisor is considered to be a host operation
system with its own rights, although servers mostly use a
virtual machine with an operating system.

28 Virtual System Obfuscation

ISSN 1335-8243 (print) © 2019 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

3. MALWARE

Malicious software, also known as malware, is a term
that consists of two words: malicious, meaning dangerous
and the

word software. This software is embedded in the system to
compromise confidentiality, the integrity or availability of
software resources. While in security by the term threat is
thought possible security breaches which may arise if: there
are circumstances, possibilities, abilities of action or events
that can break safety and cause damage. This is a danger
that can exploit vulnerability system. Vulnerability is a
mind error or weakness system design of implementation
or operation which can be exploited to compromise system
security. The security confidentiality is divided into data
confidentiality and personal information. Data
confidentiality is private and confidential information shall
not be accessible to unauthorized persons. The
confidentiality of personal data means that the attackers
who collect and store user information for the purpose
blackmail or deceiving users will not be accessible.

We also divide the integrity of the system into two
groups: data integrity and system integrity. Data integrity
means that information and programs are changed only in
a specific and justified manner. System integrity again
ensures that the system performs the intended function
respectively. Operation without interruption any intentional
or involuntary unauthorized handling. The availability of
the system ensures that the systems work accurately, and
the service is not denied by authorized users. Mostly, this
software is embedded and hidden where its intention is also
to remain secret [2].

4. DETECTING THE ENVIRONMENT BY
ATTACKING SOFTWARE

Malicious software recognizes the environment it is in
to find out whether the environment is a sandbox system or
a virtual environment. If it’s the sandbox system where it’s
being operated, then there are two options malicious system
behavior [3]. A malicious system interrupts execution and
its processes are destroyed. This behavior is malicious
because of the tools on they will not be available to analyze
the malicious system no behavior to analyze and chances
increase evaluation of the system as harmless. The
malicious system will start harmless operations. In this
case, it is possible to detect a malicious system. To detect
the presence of a virtual machine or several technologies
are used in the sandbox system. We need to know these
technologies if we want to cover the presence of the
sandbox system. If we want to hide the presence of the
sandbox system is necessary to treat all the different
features of the sandbox system from real user system [4].

Recognition technologies:

 The presence of the Hypervisor
 specific hardware features
 using specific knowledge about intermediaries
 use of sandboxing technologies
 using artificial environment

 based on time
 user interaction
 system interaction
 obfuscating of internal data
 based on wear and tear artifacts

If we hide these features from the sandbox system, it is
theoretically difficult to discern. If the system will have all
the features of both the real user system and so, on
malicious software will take longer to analyze the system
and this will give us time for the malicious tool system.

4.1. Presence of hypervisor

In the past, when virtual machines did not have
hardware support and could be recognized by technical
artifacts that could be found on certain approaches. For
example, through a virtual machine from VMWare it was
0x5658. The second option was disclosure generic
hypervisor's artifacts. After arrival of a hardware support,
these techniques are not used because these approaches are
no longer visible [5].

Nowadays, a useful technique is the revelation
hypervisor's implementation artifacts. That is meant to get
the MAC address, device identification number or control
unit identification number. Another way of recognizing the
presence of the hypervisor is distinguishing values
registers. For example, register
“HKEY_LOCAL_MACHIN\
HARDWARE\DESCRIPTION\System” is associated with
virtual machine implementations.

4.2. Recognize a virtual machine based on specific
hardware properties

One of the Techniques of Detecting a Virtual Machine
based on specific hardware features is the technique called
Red Pill. The basic part of the code is SIDT (save
instruction) interrupt descriptor tables Store interrupt
descriptor table) instruction. This instruction stores content
of register to the interruption descriptor table (Interruption
Descriptor Table Register - IDTR) to target a surgeon who
is actually a memory location. SIDT the instruction is
accessed by non-privileged modes, returning sensitive
registry content used by the operating system.

Because of the processor has only one IDTR register
containing the descriptor table interruption, so in the case
of two running operational systems, which is a case of
virtualization, is a collision. One of the operating systems
is the host and another one is the guest (or real system and
virtual machine). The host operating system must allocate
the IDTR to the guest to avoid collisions between host and
guest registers. The virtual machine cannot know if it is or
when it is the SIDT instruction is executed because it has
no privileges to do so. This means that the process gets a
new allocated address. The Red Pill function compares
whether the original IDT address was not modified and
returns 1 as a result if is in the virtual machine and the value
0 if It is not. This strategy is effective on hardware, based
on Intel processor architecture [7].

Acta Electrotechnica et Informatica, Vol. 19, No. 3, 2019 29

ISSN 1335-8243 (print) © 2019 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

4.3. Utilization of specific knowledge of the
intermediary

Virtual environments have specific features. The
creators of malicious systems study these properties and
they try to detect them through malicious software. These
pages collect data about the most commonly used virtual
environments and their specific characteristics; and they
implement them in their analysis tools. One of these
properties is the ecosystem it represents the mechanisms
necessary to return the analytical environment to its
original clean state. E.g. freeze system. Or creating
communication with different approaches such specific
network environment. Sandbox can also have specific files,
processes, specific file structure, specific drivers or specific
username [8].

4.4. Using sandboxing technologies

Most sandbox systems use technology called a hook.
Hooks are specifically meant to edit a code and data to
intercept communications processes, drivers, and operating
system. And that's how it makes them recognizable.

 Usually check certain instructions or indicator
 Verify system integrity

Some sandboxes utilize the emulsions they have side
effects and it is difficult to distinguish them from the native
operating system. These systems have, for example
different instruction semantics, cache-based attacks
memory. The emulation gaps can be detected by invoking
unclear instructions of the control unit.

4.5. Based on artificial environment

Sandboxes are special systems for analysis of a
malicious system, and that’s why they are not entirely
identical to real operating systems. That means they are
recognizable by malicious software. Differences between
sandbox and real operating system are:

 Hardware features: unusual low-resolution screen,
no USB drivers, small memory sizes.

 Software features: no email account, untypical
software stack.

4.6. Time-based recognition of the virtual environment

In case of the harmful system prolongs the sleeping
phase after penetration into the virtual environment
respectively. sandbox, most often it successfully leaves the
sandbox system before activation phase. In cases where the
software is malicious programmed to execute execution in
a certain date and at a certain time. In this case, it also
leaves sandbox system before running. Malicious software
can contain malicious code that performs unnecessary
cycles to the central processing unit during the execution of
its real intention until the sandbox testing ends [9].

Monitoring the behavior of applications with sandbox
analysis is more time consuming to detect a malicious
system process as when the application is launched without
analysis. this feature can detect and evaluate malicious

software that is in the sandbox. Sandboxes try this to fix the
problem so that it is time but harmful the system can
include an external time source bypassing and covering up
the sandbox analysis [10].

4.7. Virtual environment recognition based on user
interaction

There are cases where a malicious system monitors user
interaction. User is interactive with graphical interface in
several possible ways:

 Scrolling through a document
 Pressing the mouse buttons
 Mouse movement
 Keyboard keystroke

A malicious system can occur in one document in which
it can wait to browse through a certain party. Most often
this technique was implemented in Microsoft Office
software. After fulfillment conditions, the malicious
software activated and fired the bomb. Another
implementation of this technique is motion tracking mouse
from entering malicious system into the environment. If
mouse is at all times located in the middle of the operating
screen so it is likely that the system is designed for analysis
of malicious systems.

4.8. Obfuscation of internal data

Malicious software can encrypt application calls
programming interface and therefore sandbox is unable to
read these calls and cannot evaluate the call software. The
same was for Trojan Dridex horse. Furthermore, a
malicious system can change the domain names and IP
addresses by which it intends to hide practices attackers
who are trying to trick the user for the purpose obtaining its
sensitive data based on which they could get money. In this
way the attacker covers up its actual address. The attackers
are not subsequently registered in the blacklist on pages that
use security systems.

4.9. Virtual environment recognition based on wear
and tear artifacts

In this technology, the hypervisor is not recognized
instead virtual environment is. Sandbox itself is recognized
with properties that are modified by used operating system
features such as: resolution screen, browser history,
connected history printers, disk management, applications
used, network management, unnecessary files ready for
deletion (trash), memory dumps, system activity. All these
features are in a freshly installed operating system (in this
case, it's a sandbox for recognizing malicious system) set
by default as well. These standards are known to the
malicious system and can be analyzed as the sandbox [2].

Because of the fact that the use of virtualization is and
has been used in several ways, mainly in the production
sphere as mentioned above in the chapter about virtual
machines, the attackers no longer focus on recognizing the
virtual environment but on artifacts environmental wear. If
they would focus on recognition of virtual environment
many potential victims such as virtualization companies

30 Virtual System Obfuscation

ISSN 1335-8243 (print) © 2019 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

would miss them. Therefore, this work is further devoted to
obfuscation of virtual environment based on creation or
simulating wear artifacts.

5. WEAR-AND-TEAR ARTIFACTS

Wear artifacts should be changes in the system resulting
from individual adjustments, system impersonation and use
of different types of an application. These artifacts can be
divided into two groups. Artifacts that arise from direct
activity and artifacts that the user does not have direct
effect. Artifacts that are directly affected by the user are
such as browser artifacts. The URLs that are searched for
are captured and downloaded files, or disc artifacts where
its files are stored. Based on this information can be found
using heuristics user’s interests. Artifacts that the user
doesn't have for example, some of the registry artifacts in
which is an artifact of DLL files that install the software
programs. There is some influence between a user and the
system because the user downloaded and started the files
and which is not direct approach since the user did not
directly create those files. Artifacts with direct influence are

stronger evidence of wear and tear operating system to
users as indirect. Therefore, it is possible that malicious
software may assign more weight such artifacts and focus
on a wider range of artifacts of this kind. For artifacts that
are not directly created users cannot fully rely on
optimization, cleaning tools that are in windows systems
very popular [11].

Many aspects of the system affect artifacts wear and
tear from the operating system. For example, a lot of
different file types, network, or responses system for
various events and other subsystems. Artifacts wear and
tear can be divided into these groups on the basis of
subsystems.

 System
 Drive
 Networks
 Registers
 Browsers

The complete table of wear and tear artifacts is located
in Table 1

Table 1 Complete list of wear-and-tear artifacts [7]

Acta Electrotechnica et Informatica, Vol. 19, No. 3, 2019 31

ISSN 1335-8243 (print) © 2019 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

5.1. System artifacts

These artifacts are generic systemic features such as the
number of running processes; or installed updates are
directly linked to system history because more system
installed with accumulates over the years. A rich source of
information the current state of the system is also recorded
events on Windows systems. They are recorded in its
different types of system events. Its contents are often
application, security, setup and system events of various
administrative assessments such as such as critical,
erroneous, or warning information; success or system
failure reports. Very interesting are the events that are the
most common part of these records under normal
conditions such as warnings missing files, incorrect
network addresses, unexpected shutdowns or rejection
errors implementation. Examples of this type of artifacts
the wear may be more including various other aspects of
different applications that may have records
implementation from the past. These artifacts are empty or
almost empty only on occasion if the malicious systemin a
freshly installed environment, or if the user recently deleted
them. And that's why it is not they can be relied upon from
the attacker's point of view [11].

5.2. Disc artifacts

The user activity results in a filled file different file
types or deleted files or various data in the cache. Most used
areas of operating system to ordinary users and are directly
user - associated: desktop and application temporary or
permanent lubrication called a basket. And finally, it is
needed to focus on files that are not created users
temporarily or cached data as such as file contents of
thumbnails or process such as minidump files [5].

5.3. Network artifacts

Network artifacts are especially from a historical
perspective, a strong indicator of current use. Behind
everyone when the host is to send a packet to a remote
destination, Examines the system's address resolution
protocol (ARP) cache to find the physical (MAC) address
of the gateway or the address of another host on the local
network. Similarly, for each domain name is translated to
an IP address, the DNS operating system contains it in the
buffer memory of the latest resolutions. Using encryption,
the public key is also the result of an artifact associated with
the certificates that have been denied. One list certificate
denied is downloaded and stored in cache locally. List of
URLs previously downloaded rejected lists certificates is
taken as another part of the information stored in cache. So,
the number of records in this the list is directly dependent
on the user and the previous one network activity that
automatically creates updates. [9].

5.4. Register artifacts

Windows registers contain a lot of information from
different aspects of the system. Some of these artifacts
could be mentioned in the previous chapters but because
the registers are ranked into one category because it
contains information that is not outside of the registers.

Whenever a driver or application is installed, windows
store key values and pair them in registers. This effect is
too extensive. The Windows system is known for following
uninstalling applications neglects uninstalling these files
and a lot of unused remaining files should be deleted.
Therefore, there are many tools that these deletes files save
and optimize system files resources. And there are many
other artifacts that maybe recognize such as: register size in
bytes, count firewall rules because new applications can
often install new rules [8].

5.5. Browser artifacts

For many users, browsers have become versatile tool
from office supplies respectively. services to internet
shopping, banking, games and services social networking
or internet surfing. In reality the older the system, the more
information the history collects in your browser. It is a
direct unusual state that the browser it is empty for a
commonly used system. This history the browser is built
from several artifacts wear related to user activity. In the
morning URLs visited, stored HTTP cookies, saved
bookmarks and downloads. Research these artifacts is
limited by the user's privacy. Because the user uses multiple
browsers for different purposes and most often different as
the default browser on the system is set up this one of the
artifacts of wear. Because crushing most users use browsers
that are not default among the most used operational
systems. The first most used browser is Google Chrome
with more than 63 percent of users by Globstat. In the
second place with more than 15 percent is Safari from
Apple and the third most used browser is Firefox [10].
According to the survey, the user has more than 2 browsers
in your system. Number of HTTP cookies corresponds to
the total number of cookies extracted formal installed
browsers [10].

6. DESING AND IMPLEMENTATION OF THE
OBFUSCATION TOOL

From system artifacts, we focus on the artifact total
processes which is shown in the table above. Straight the
user's influence on this artifact is launching applications or
processes that these applications create. Next artifacts are
network artifacts where the tool focuses on artifacts
ARPCacheEntries, dnsCacheEntries and CertUtilEntries.
These artifacts are the result of the user work with internet
connection and internet browsing. The artifacts of the disk
tool can be obfuscated by creating random files, by
throwing files into the trash application, linking to
applications and files, and saving files to the desktop.

The tool will affect the recycleBinSize,
recycleBinCount, tempFileSize artifacts tempFileCount
and desktopFilesCount as registers. These artifacts affect
the instrument by installing apps. They are regSize
artifacts, uninstallCount, totalSharedDlls, totalAppPaths,
muiCachedCount. Other artifacts are browser artifacts.
These user artifacts influence by crawling URLs and
downloading files via the browser. We will influence these
actionsbrowserNum artifacts, uniqueURLs,
totalTypeURLs, totalCookies, uniqueCookiesDomains,
totalDownloadedFiles. For a separate artifact that is not in
the table, but it is described in the browser section which

32 Virtual System Obfuscation

ISSN 1335-8243 (print) © 2019 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

shows the number of crawlers in the system, we download
and install the most commonly used browsers by Globstat
company statistics. These browsers are Chrome from
Google and Firefox from Mozilla [12].

This tool consists of two modules and one main class
where the methods of these modules are called. One
module provides the file structure and the other the module
will be in charge of network traffic. The module file
structure will take care of creation of new folders, files,
links, install programs and temporarily delete files of
different kinds. In the second module we focus on site
browsing, file downloads, filling ARP records in registers.

6.1. Creating random files

This part of the module is divided into several steps:

 generation of the file structure paths,
 analysis of the file paths and create an intersection

among them,
 files are written with the randomly generated

content.

The file structure would be a list character string. One
string represents the path to the file. Character strings will
consist of randomly selected pre-set options folder names -
files. Part of these pre-prepared basic paths are just the most
common files used, such as the desktop user. Therefore,
this design also affects the artifact desktopFilesCount.
Their existence will be verified and based on this, the next
interaction is detected. When there is a folder available, we
will sink into it and if it does not exist create a new one.
Each journey should be unique and count paths will
represent the number of files created. The files will work
with the base class belonging to basic I/O operations with
the name of File.

6.2. Implementation of FileSystemModule module

This module contains several private transformations
which are being processed during the obfuscation of file
artifacts system. "LinksPaths" variable contains paths or
folder names to which links are created in the system. The
"windowsPaths" variable contains names the most
commonly used folders in the operating system Windows
that are an essential part of filesystem of this operating
system. Directories variable are pre-defined user file
names. "UserFiles" is a variable that contains names of user
files. To variable "CreatedFileStructure" there is generated
the user file structure from paths that were randomly
created by combining previous transformations. These
variables have private visibility indicator because they are
only used in the module. The variables are of the list type
that have generic character string type.

6.3. The createUserFileStucture function

This function does not have a return type. Its task is to
create file structure from pre-made lists.

An index of 50 to 100 files is randomly created using
class "Random" from library "java.util". We invoke the
method "NextInt" from this class that expects a numeric

argument. Randomly created number from zero to the
entered number creates file paths based on a random
number of files from the "windowsPath" and "userFiles"
lists. Paths are then added to the "createdUserFileStructure"
list.

The deleteRandomFiles function feature uses the user
file structure and randomly selects the files to be included
in the list on deleted files.

The number of files is randomly generated that move to
the Trash app on your operating system. This random index
is inserted into the for loop in which randomly selecting
files from the list "CreatedUserFileStructure" file. Random
file selection is secured by entering a random number into
the "get" method that is part of the list object. Follow the
path to file creates a File object that represents a link to the
real file in the operating system and is inserted into
temporary list with generic File type. Chain representing
the file path is deleted from the list
"CreatedUserFileStructure" to avoid collisions, because the
list is still in use and with the files also works in another
part of the module. This list contains insert File objects
move to Thrash which verifies that an instance of the
FileUtils class is available based on "hasThrash" method,
which has "boolean" return value if the instance of the
FileUtils class has a recycle bin available, so the
moveToThrash method is called from fileUtilsobject. The
FileUtils class is located in an external libraryJNA.
CreateFilesFromPath and generateFileContentThis
function gets a string of characters representing file path.
This path is divided according to the slash character using
the String class method. This method has return type of a
string array to store in a temporary variable. Creates a
second temporary variable that represents a composite path
that a function has already gone through. From the field
string selects a string and determines whether it is the last
using of the "equals" method from an object string that
awaits an argument string type and evaluates whether the
string object is inserted into method is equal to the object
of which the method was induced. The return type of the
method is of the "boolean" type. INif the object is the last
of the field that is not attached to its lash.

Otherwise, the slash is assigned an instance of the File
class is created. The reference to file or folder exists and if
not created in otherwise, it continues. If this is the last
object from a string field so a file is created if it is not the
last one folder is created. To create a file is used the "write"
method from the "Files" class that comes from the
libraryJava Nio.

The method has two arguments, one is an object of type
"Path" which represents the path to the file and the other is
the content we want to fill the created file. This method
works with a container that fills according to its second
argument into which the tool inserts a value generated by
generate File Content. Generation of File Content has a
return value of list type chains. It returns a list of strings in
a temporary variable which it had declared at the beginning.
The function has one argument which is the number of
rows. This argument serves as an index for the For cycle.
The cycle is generated using the function next Bytes from
the object to generate random number of bytes. Feature
next Bytes has one argument which is an array of bytes.
This the field is filled with random bytes.

Acta Electrotechnica et Informatica, Vol. 19, No. 3, 2019 33

ISSN 1335-8243 (print) © 2019 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

6.4. Implementation of the NetworkTrafficModule
module

This module contains functions to work with
downloaded files, create browser history and creating false
arp records. This file downloads module in two ways.
Using the Java Nio and using a browser. The fillArpCache
and browse functions The "fillArpCache" function fills
cache entries using the command line and the "arp -s"
command to insert the false arp records argument. The
browse function searches pages with instances of the
Desktop class from the awt library and invoke methods
"Browse". This method starts the search process in default
search engine based on its parameter that is URL type.7.

7. CONCLUSIONS

This publication was dedicated to virtual obfuscation
systems from a malicious system. The job was to analyze
the issue and its connections. The main parts of an
obfuscated virtual systems are a virtual system, malicious
software and the act of congestion itself. Implementation is
needed for long-term purposes artifact obfuscation to
expand by more artifacts to make this product more
complex. In addition to complexity, the solution needs to
be optimized because obfuscation with this tool takes too
long and extending this solution could be much more time-
consuming.

REFERENCES

[1] STALINGS, W. L. B.: Malicious Software. rev.
Computer Security principles and practice, zv. II,
Sydney, Austrália: University New South Wales,
Australian Defence Force Academy, 2012, pp. 178-
219.

[2] MIRAMIRKHANI, N. – , APPINI, M. P. –
NIKIFORAKIS, N. – POLYCHRONAKIS,
M.:"Spotless Sandboxes: Evading Malware Analysis
Systems Using Wear-and-Tear Artifacts," 2017 IEEE
Symposium on Security and Privacy (SP), San Jose,
CA, 2017, pp. 1009-1024.

[3] WRIGHT, D. – STROSCHEIN, J.:"A Malware
Analysis and Artifact Capture Tool," 2018 IEEE 16th
Intl Conf on Dependable, Autonomic and Secure
Computing, 16th Intl Conf on Pervasive Intelligence
and Computing, 4th Intl Conf on Big Data
Intelligence and Computing and Cyber Science and
Technology
Congress(DASC/PiCom/DataCom/CyberSciTech),
Athens, 2018, pp. 328-333.

[4] BRUNTON, F. – NISSENBAUM,
H.:"Understanding Obfuscation," in Obfuscation: A
User's Guide for Privacy and Protest , , MITP, 2015,
pp.44-44.

[5] YOU, I. – YIM, K.:"Malware Obfuscation
Techniques: A Brief Survey," 2010 International
Conference on Broadband, Wireless Computing,
Communication and Applications, Fukuoka, 2010,
pp. 297-300.

[6] Red Hat, „www.redhat.com,“ Red Hat, 2019.
[Online]. Available:
https://www.redhat.com/en/topics/virtualization/what
-is-virtualization#.

[7] MIRAMIRKHANI, N. P.: „Spotless Sandboxes:
Evading Malware Analysis Systems using Wear-and-
Tear Artifacts,“ rev. IEEE Symposium on Security
and Privacy, 2017.

[8] YOSHIOKA, K. – HOSOBUCHI, Y. – ORII, T. –
MATSUMOTO, T.: "Vulnerability in Public Malware
Sandbox Analysis Systems," 2010 10th IEEE/IPSJ
International Symposium on Applications and the
Internet, Seoul, 2010, pp. 265-268.

[9] INOUE, D. – YOSHIOKA, K. – ETO, M. -
HOSHIZAWA, Y. – NALAO, K.: "Automated
Malware Analysis System and its Sandbox for
Revealing Malware's Internal and External Activities"
IEICE Trans. vol. E92D no. 5, 2009.

[10] WILLEMS, C. – HOLZ, T. – FREILING, F.:
"Toward Automated Dynamic Malware Analysis
Using CWSandbox" Security & Privacy
Magazine IEEE vol. 5 no. 2 pp. 32-39, 2007.

[11] BAYER, U. – KRUEGEL, C. – Kirda,
E.:"TTAnalyze: A Tool for Analyzing Malware" 15th
Annual Conference of the European Institute for
Computer Antivirus Research 2006.

[12] PARANTHAMAN, R. – THURAISINGHAM, B.:
"Malware Collection and Analysis," 2017 IEEE
International Conference on Information Reuse and
Integration (IRI), San Diego, CA, 2017, pp. 26-31.

Received October 3, 2019, accepted November 27, 2019

BIOGRAPHIES

Michal Hulič was born on 30.07.1992. In 2017 he
graduated (MSc) with distinction at the department of
Computers and Informatics of the Faculty of Electrical
Engineering and Informatics at Technical University in
Košice. Since 2017 he is a PhD student at Department of
Computers and Informatics. His scientific research is
focusing on computer security.

Martin Chovanec received his Engineering degree in
Informatics in 2005 from the Faculty of Electrical
Engineering and Informatics, Technical University of
Kosice. In 2008 he received his Ph.D. degree at the
Department of Computers and Informatics of the Faculty of
Electrical Engineering and Informatics of the Technical
University of Kosice and his scientific research was
focused on network security and encryption algorithms.
Currently, he is Director of the Institute of Computer
Technology of the Technical University of Kosice.

Viliam Korba received his Bachelor degree in Informatics
in 2019 from the Faculty of Electrical Engineering and
Informatics, Technical University of Kosice. Currently, He
is student the Faculty of Electrical Engineering and
Informatics, Technical University of Kosice.

