
18 Acta Electrotechnica et Informatica, Vol. 18, No. 3, 2018, 18–26, DOI: 10.15546/aeei-2018-0021

TOWARDS A HIGH-LEVEL C++ ABSTRACTION TO UTILIZE THE
READ-COPY-UPDATE PATTERN

Gábor MÁRTON∗, Imre SZEKERES∗∗, Zoltán PORKOLÁB∗∗∗
∗Department of Programming Languages and Compilers, Faculty Informatics, Eötvös Loránd University, H-1117 Pázmány Péter

sétány 1/C, E-mail: martongabesz@gmail.com
∗∗Budapes University of Technology and Economics, Hungary, E-mail: iszekeres.x@gmail.com

∗∗∗Department of Programming Languages and Compilers, Faculty Informatics, Eötvös Loránd University, H-1117 Pázmány Péter
sétány 1/C, E-mail: gsd@elte.hu

ABSTRACT
Concurrent programming with classical mutex/lock techniques does not scale well when reads are way more frequent than writes.

Such situation happens in operating system kernels among other performance critical multithreaded applications. Read copy update
(RCU) is a well know technique for solving the problem. RCU guarantees minimal overhead for read operations and allows them to
occur concurrently with write operations. RCU is a favourite concurrent pattern in low level, performance critical applications, like the
Linux kernel. Currently there is no high-level abstraction for RCU for the C++ programming language. In this paper, we present our
C++ RCU class library to support efficient concurrent programming for the read-copy-update pattern. The library has been carefully
designed to optimise performance in a heavily multithreaded environment, in the same time providing high-level abstractions, like
smart pointers and other C++11/14/17 features.

Keywords: C++, threads, synchronisation, RCU

1. INTRODUCTION

Read-copy-update is a concurrent design pattern [1, 2]
which allows extremely low run-time overhead for readers.
Updates can happen concurrently with reads as they leave
the old versions of the data structure intact; this way the pre-
existing readers can finish their work. Thus, updates might
require more overhead than reads and their effect might be
delayed. In contrast to readers-writers lock [3] RCU does
not block the writers if there are concurrent readers.

Classical RCU first appeared in the Linux kernel in
2002 [4,5]. It provides the following reader side primitives:
rcu_read_lock() and rcu_read_unlock(). Read-side
critical sections may use rcu_dereference() to access
RCU protected pointers.

On the update side we may use the synchronize_rcu()
primitive and rcu_assign_pointer() to assign
values to protected pointer. Pointers stored by
rcu_assign_pointer() can be fetched from within read-
side critical sections by rcu_dereference().

The pseudo code in Figure 1 demonstrates how these
primitives can be used to implement the lookup and the
remove operations on a simple linked list of key-value
pairs. This implementation is a simplified excerpt of
McKenney’s pre-BSD routing table example [5]. With
rcu_read_lock() and rcu_read_unlock() we indicate
the reader side critical section. In this read-side crit-
ical section we traverse through the list (find()) and
once we found the key we return with the associated
value. In the implementation of find() we have to use
rcu_dereference() to access the elements in the list. It
might happen that the key is not in the list, in that case we
again close the critical section and then return with a special
value indicating the element is not in the list.

In remove() we have to use a spin lock in order to pro-
tect the list from concurrent write operations. The block
which is protected by the spin lock is the write-side criti-
cal section. We iterate over the list trying to find the key

and if we found it then we unlink (remove_node()) it
from the list. In the realization of the remove_node()

we have to use the rcu_assign_pointer() primitive.
After the removal, with the synchronize_rcu() primi-
tive we wait all pre-existing RCU read-side critical sec-
tions to completely finish. Then we can deallocate the
list node which is no longer needed and this way can
close the write-side critical section by releasing the lock.

SPINLOCK(lock);

Value lookup(List list, Key key) {
Node* node;
Value local_value;
rcu_read_lock();
// iterate over the list and return the value
// of the found element
if (node = find(list, key)) {

local_value = node->value
rcu_read_unlock();
return local_value;

}
rcu_read_unlock();
return not_found;

}

void remove (List list, Key key) {
Node* node;
spin_lock(lock);
// iterate over the list and find the key
if (node = find(list, key)) {

remove_node(list, node);
spin_unlock(lock);
synchronize_rcu();
free(node);
return;

}
spin_unlock(lock);

}

Fig. 1 Usage of RCU in a linked list

Classic RCU requires that read-side critical sections
obey the same rules obeyed by the critical sections of pure
spinlocks: blocking or sleeping of any sort is strictly pro-
hibited. Since 2002 many different RCU flavours have ap-
peared in the Linux kernel which relax this strict require-

ISSN 1335-8243 (print) © 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 18, No. 3, 2018 19

ment. Using realtime RCU [6–8] read-side critical sections
may be preempted and may block while acquiring spin-
locks. Sleepable RCU allows more, it permits arbitrary
sleeping (or blocking) within RCU read-side critical sec-
tions [9, 10].

The different RCU flavours in the Linux kernel are
naturally dependent on the kernel internals, for exam-
ple on the scheduler. Obviously they cannot be used in
user space. Userspace RCU (URCU) [11, 12] was cre-
ated by Desnoyers in 2009 and has a similar API to the
kernel space RCU flavours. URCU has different vari-
ants and implementations. For instance the Quiescent-
State-Based Reclamation RCU (QSBR) provides near-zero
read-side overhead but the price of minimal overhead is
that each thread in an application is required to peri-
odically invoke rcu_quiescent_state() to announce
that it resides in a quiescent state [13]. The general-
purpose user space realization can be used in applications
where we cannot guarantee that each threads will invoke
rcu_quiescent_state() sufficiently often. However,
this versatility has its own price, general-purpose RCU has
to use memory barriers in the read-side. A third variant
uses POSIX signals to eliminate these barriers, obviously
this flavour cannot be used on non-POSIX systems.

URCU has been proposed to be incorporated into the
C and C++ standard with the C API provided by Desnoy-
ers realization [14]. URCU provides a low level C API,
therefore it is more prone to errors in C++ programs than
a well established high-level C++ API can be. For in-
stance, it is easy to forget to call rcu_read_unlock() on
all return paths. In URCU there is no automatic mem-
ory reclamation; to deallocate memory, first we have to
use the synchronize_rcu() primitive. (Note that besides
Desnoyers realization there are a surprisingly large number
of other lesser known userspace RCU implementations, and
more are being created all the time. E.g. [15, 16].)

In this paper we present an alternative implementation
for user space RCU as a C++ smart pointer, thus there is
no need to manually deallocate memory. Our realization
provides a high-level abstraction C++ API to the users, so
they can use a simple construct which is not prone to errors,
still its performance is satisfying for most of the use cases.
Our paper is organized as follows. In section 2 we present
the steps which lead from using a mutex to the concept of
a high-level smart pointer for the RCU semantics. We de-
scribe the details and difficulties with the implementation
of the smart pointer in 3. Section 5 contains the description
of our testing methods. We write about ongoing and future
work in section 6. Our paper concludes in 7.

2. TOWARDS A HIGHER LEVEL ABSTRACTION
FOR RCU

Let us suppose we have a collection that is shared
among multiple readers and writers in a concurrent man-
ner (Figure 2). It is a common way to make the collec-
tion thread safe by holding a lock until the iteration is fin-
ished (on the reader thread). This approach does not scale
well, especially when reads are way more frequent than
writes [5]. Instead of a simple lock_guard we could use a

readers-writers lock [3], but that would scale badly as well,
especially when we have multiple concurrent writers [5].

The first idea to make it better is to have a shared
pointer and hold the lock only until that is copied
by the reader or updated by the writer (Figure 3).

class X {
std::vector<int> v;
mutable std::mutex m;

public:
int sum() const { // read operation

std::lock_guard<std::mutex> lock{m};
return std::accumulate(v.begin(), v.end(),

0);
}
void add(int i) { // write operation

std::lock_guard<std::mutex> lock{m};
v.push_back(i);

}
};

Fig. 2 A shared collection

class X {
std::shared_ptr<std::vector<int>> v;
mutable std::mutex m;

public:
X()

: v(std::make_shared<
std::vector<int>>()) {}

int sum() const { // read operation
std::shared_ptr<std::vector<int>>

local_copy;
{

std::lock_guard<std::mutex> lock{m};
local_copy = v;

}
// assume processing the data takes longer
// than copying it
return std::accumulate(local_copy->begin(),

local_copy->end(),
0);

}
void add(int i) { // write operation

std::shared_ptr<std::vector<int>>
local_copy;

{
std::lock_guard<std::mutex> lock{m};
local_copy = v;

}
local_copy->push_back(i);
{

std::lock_guard<std::mutex> lock{m};
v = local_copy;

}
}

};

Fig. 3 Using a shared pointer in the collection

void add(int i) { // write operation
std::shared_ptr<std::vector<int>> local_copy;
{

std::lock_guard<std::mutex> lock{m};
local_copy = v;

}
auto local_deep_copy =

std::make_shared<std::vector<int>>(
*local_copy);

local_deep_copy->push_back(i);
{

std::lock_guard<std::mutex> lock{m};
v = local_deep_copy;

}
}

Fig. 4 Deep copy

ISSN 1335-8243 (print) © 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



20 Towards a High-level C++ Abstraction to Utilize the Read-Copy-Update Pattern

Now we have a race on the pointee itself during the
write. So we need to have a deep copy (Figure 4). The
copy construction of the underlying data (vector<int>) is
thread safe, since the copy constructor parameter is a con-
stant reference to vector<int>.

Still, there is one more problem: if there are two con-
current write operations then we might miss one of them.
We should check whether the other writer had done an
update after the actual writer has loaded the local copy.
If it did then we should load the data again and try to
do the update again. This leads to the idea of using an
atomic_compare_exchange in a while loop. We could
use an atomic_shared_ptr if that was included in the
current C++ standard, but until then we have to be sat-
isfied with the free function overloads for shared_ptr

(Figure 5). These free function overloads take a sim-
ple shared_ptr as a parameter and perform the specific
atomic operations:

template <class T>
std::shared_ptr<T> atomic_load(

const std::shared_ptr<T> *p);

template <class T>
bool atomic_compare_exchange_strong(

std::shared_ptr<T> * p,
std::shared_ptr<T> * expected,
std::shared_ptr<T> desired);

Note, atomic_shared_ptr class template which would
replace these free functions might be included in the C++20
standard [17].

1 class X {
2 std::shared_ptr<std::vector<int>> v;
3

4 public:
5 X()
6 : v(std::make_shared<
7 std::vector<int>>()) {}
8 int sum() const { // read operation
9 auto local_copy = std::atomic_load(&v);

10 return std::accumulate(local_copy->begin(),
11 local_copy->end(),
12 0);
13 }
14 void add(int i) { // write operation
15 auto local_copy = std::atomic_load(&v);
16 auto exchange_result = false;
17 while (!exchange_result) {
18 // we need a deep copy
19 auto local_deep_copy =
20 std::make_shared<std::vector<int>>(
21 *local_copy);
22 local_deep_copy->push_back(i);
23 exchange_result =
24 std::atomic_compare_exchange_strong(
25 &v, &local_copy, local_deep_copy);
26 }
27 }
28 };

Fig. 5 Using atomic shared pointer

Since both during the read operation and the write oper-
ation we do not modify the pointee the element type of the
member shared_ptr can be changed to be a constant:

class X {
std::shared_ptr<const std::vector<int>> v;
// ...

};

In the write operation we do the update on the copy of the
original pointee (line 22 of Figure 5) and not on the pointee
of the member.

We might notice that we can move construct the
third parameter of atomic_compare_exchange_strong,
therefore we can spare a reference count increment and
decrement:

exchange_result =
std::atomic_compare_exchange_strong(

&v, &local_copy,
std::move(local_deep_copy));

Regarding the write operation, since we
are already in a while loop we could re-
place atomic_compare_exchange_strong with
atomic_compare_exchange_weak. That can result in
a performance gain on some platforms [18, 19]. However,
atomic_compare_exchange_weak can fail spuriously1.
Consequently, we might do the deep copy more often than
needed if we used the weak counterpart.

In the current form of class X nothing stops an other pro-
grammer (e.g. a naive maintainer of the code years later) to
add a new reader operation, like this:

int another_sum() const {
return std::accumulate(v->begin(), v->end(),

0);
}

This is definitely a race condition and a problem. To avoid
this user error and to hide the sensitive technical details
we created a smart pointer which we named as rcu_ptr.
This smart pointer provides a general higher level abstrac-
tion above atomic_shared_ptr. Figure 6 represents how
can we use rcu_ptr in our running example.

class X {
rcu_ptr<std::vector<int>> v;

public:
X()

: v(std::make_shared<
std::vector<int>>()) {}

int sum() const { // read operation
std::shared_ptr<const std::vector<int>>

local_copy = v.read();
return std::accumulate(local_copy->begin(),

local_copy->end(),
0);

}
void add(int i) { // write operation

v.copy_update([i](std::vector<int> *copy) {
copy->push_back(i);

});
}

};

Fig. 6 Usage of rcu ptr

The read() method of rcu_ptr returns a
shared_ptr<const T> by value, therefore it is thread
safe. The existence of the shared_ptr in the scope en-
forces that the read object will live at least until this read
operation finishes. By using the shared pointer this way, we
are free from the ABA problem [20, 21] since the memory
address associated with the object cannot be reused until
the object itself is reclaimed [22]. The copy_update()

method receives a lambda. This lambda is called whenever
1Spurious failure enables implementation of compare-and-exchange on a broader class of machines, e.g., load-locked store-conditional machines [18]

ISSN 1335-8243 (print) © 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 18, No. 3, 2018 21

an update needs to be done, i.e. it will be called continu-
ously until the update is successful. The lambda receives a
T* for the copy of the actual data. We can modify the copy
of the actual data inside the lambda.

3. SMART POINTER FOR RCU SEMANTICS

In Figure 7 we present the simplified implementation of
the rcu_ptr class template. The complete implementation
is available and free to use at [23].

1 template <typename T> class rcu_ptr {
2 std::shared_ptr<const T> sp;
3

4 public:
5 rcu_ptr() = default;
6 ~rcu_ptr() = default;
7

8 rcu_ptr(const rcu_ptr &rhs) = delete;
9 rcu_ptr &

10 operator=(const rcu_ptr &rhs) = delete;
11 rcu_ptr(rcu_ptr &&) = delete;
12 rcu_ptr &operator=(rcu_ptr &&) = delete;
13

14 rcu_ptr(const std::shared_ptr<const T> &sp_)
15 : sp(sp_) {}
16 rcu_ptr(std::shared_ptr<const T> &&sp_)
17 : sp(std::move(sp_)) {}
18

19 std::shared_ptr<const T> read() const {
20 return std::atomic_load_explicit(
21 &sp, std::memory_order_consume);
22 }
23

24 void
25 reset(const std::shared_ptr<const T> &r) {
26 std::atomic_store_explicit(
27 &sp, r, std::memory_order_release);
28 }
29 void reset(std::shared_ptr<const T> &&r) {
30 std::atomic_store_explicit(
31 &sp, std::move(r),
32 std::memory_order_release);
33 }
34

35 template <typename R>
36 void copy_update(R &&fun) {
37

38 std::shared_ptr<const T> sp_l =
39 std::atomic_load_explicit(
40 &sp, std::memory_order_consume);
41

42 std::shared_ptr<T> r;
43 do {
44 if (sp_l) {
45 // deep copy
46 r = std::make_shared<T>(*sp_l);
47 }
48

49 // update
50 std::forward<R>(fun)(r.get());
51

52 } while (
53 !std::
54 atomic_compare_exchange_strong_explicit(
55 &sp, &sp_l,
56 std::shared_ptr<const T>(
57 std::move(r)),
58 std::memory_order_release,
59 std::memory_order_consume));
60 }
61 };

Fig. 7 The rcu ptr class template

We provide a default constructor and a default de-
structor (lines 5 and 6). The move and copy operations
are deleted (lines 8-12) because rcu_ptr is essentially
a wrapper around an atomic type (we plan to support
atomic_shared_ptr as soon as it is included in the stan-

dard). And all atomic types are neither copyable nor mov-
able (because there is no sense to assign meaning for an
operation spanning two separately atomic objects) [24, 25].

We can create an rcu_ptr from an lvalue or rvalue
reference of shared_ptr<const T> (lines 14-17). These
functions just simply copy or move their parameter into the
member shared_ptr. There is no need to make these con-
structors thread safe, because the construction can be done
only by one thread.

Lines 24-33 is the realization of the reset() meth-
ods which receive a shared_ptr<const T> as an lvalue
or rvalue reference parameter. We can use it to reset the
wrapped data to a new value independent from the old value
(e.g. vector.clear() ). Actually, with the parameter we
overwrite the currently contained shared_ptr. The over-
write has to be an atomic operation in order to protect the
member from concurrent reset() calls.

In lines 19-22, the read() method atomically loads the
member shared_ptr and returns with a copy of that. The
copy_update() function template (lines 35-60) receives
an rvalue reference to an instance of a callable type. First
we create a local copy of the member as sp_l (lines 38-40).
If this local copy is set (i.e the rcu_ptr instance is initial-
ized) then we create a deep copy, that is we copy the pointee
itself and we create a new shared_ptr<T> (denoted as r)
pointing to the copy (lines 44-47). Note, that this is a non-
constant shared pointer. On line 50 we call the callable and
we pass a non-constant pointer to the new copy as a param-
eter. Then in lines 53-59 we exchange the member shared
pointer with a shared_ptr to the deep copy if we find that
the member still points to the same object of which we cre-
ated the copy. If it turns out that is not the case (i.e. another
thread was faster), then we repeat the whole deep copy up-
date sequence until we succeed (line 43). The callers of the
copy_update() function must be aware that in case of an
unset (or default initialized) rcu_ptr the callable will be
called with a null pointer as an argument. Also, a call ex-
pression with this function is invalid, if the wrapped data
type (T) is a non-copyable type.

3.1. Memory Ordering

A memory_order_release store is said to synchro-
nize with a memory_order_acquire load if that load re-
turns the value stored or in some special cases, some later
value [18, 26]. When a memory_order_release store
synchronizes with a memory_order_acquire load, any
memory reference preceding the memory_order_release
store will happen before any memory reference following
the memory_order_acquire load [18, 26]. This prop-
erty allows a linked structure to be locklessly traversed
by using memory_order_release stores when updat-
ing pointers to reference new data elements and by us-
ing memory_order_acquire loads when loading point-
ers while locklessly traversing the data structure [26]. A
memory_order_release store is dependency ordered be-
fore a memory_order_consume load when that load re-
turns the value stored, or in some special cases, some
later value [18, 26]. Then, if the load carries a de-
pendency to some later memory reference, any mem-

ISSN 1335-8243 (print) © 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



22 Towards a High-level C++ Abstraction to Utilize the Read-Copy-Update Pattern

ory reference preceding the memory_order_release store
will happen before that later memory reference [18, 26].
This means that when there is dependency ordering,
memory_order_consume gives the same guarantees that
memory_order_acquire does, but possibly at lower cost
[26].

In the classical RCU, the rcu_dereference() primi-
tive implements the notion of a dependency ordered load,
which suppresses aggressive code-motion compiler opti-
mizations and generates a simple load on any system other
than DEC Alpha, where it generates a load followed by a
memory-barrier instruction. The rcu_assign_pointer()
primitive implements the notion of store release, which
on sequentially consistent and total-store-ordered systems
compiles to a simple assignment [11].

In our implementation of rcu_ptr::copy_update()
function we can also use the release and consume se-
mantics. We cannot use relaxed ordering because in case
of that if the fun is inlined and fun itself is not an or-
dering operation or it does not contain any fences then
the load or the compare exchange might be reordered
into the middle of fun. Also we need to ”see” the lat-
est updates so we can copy and update the ”most re-
cent” version. Though, there is a data dependency chain:
sp_l->r->compare_exchange(...,r). So if all the ar-
chitectures were preserving data dependency ordering, than
we would be fine with relaxed. However, some archi-
tectures do not preserve data dependency ordering (e.g.
DEC Alpha), therefore we need to explicitly state that we
rely on that neither the CPU nor the compiler will re-
order data dependent operations. This is what we express
with the consume-release semantics. Consequently, dur-
ing all the atomic load operations in the rcu_ptr class
template we can use memory_order_consume and dur-
ing all atomic store operations (including the read-modify-
write operation) we use memory_order_release. If the
definition of the fun callable is unseen by the compiler
(i.e. it is defined in an other translation unit) then the user
have to annotate the declaration of the callable with the
[[carries_dependency]] attribute [18]. Otherwise, the
compiler may assume that the dependency chain is broken
during the call and consequently it would fall back to the
safer but less efficient acquire semantics [18].

Unfortunately the consume memory order is temporar-
ily deprecated in C++17. It is widely accepted that
the current definition of memory_order_consume in the
C++11/14 standard is not useful. All current compilers es-
sentially map it to memory_order_acquire. The difficul-
ties appear to stem both from the high implementation com-
plexity and from the fact that the current definition uses a
fairly general definition of ”dependency” [26,27]. As such,
the consume ordering has to be redefined. While this work
is in progress, hopefully ready for the next revision of C++,
users are encouraged to not use this ordering and instead
use acquire ordering, so as to not be exposed to a break-
ing change in the future. As for our rcu_ptr, in order to
reach the consume semantics we may use hardware specific
instructions in the future to overcome the mentioned prob-
lem.

3.2. Lock Free atomic shared ptr

Our rcu_ptr can be used with the free functions over-
loads of the atomic_ prefix [18, section 20.8.2.6] for
std::shared_ptr. Since the atomic_shared_ptr [17]
is still in experimental phase, we use our own wrapper
template class around the free functions. The free func-
tions are implemented in terms of a spinlock in the cur-
rently available standard libraries. Having a lock-free
atomic_shared_ptr would be really beneficial. How-
ever, implementing a lock-free atomic_shared_ptr in a
portable way can have extreme difficulties [28]. Though, it
is easier on architectures where the double word CAS op-
eration is available as a CPU instruction as we can see that
with Anthony Williams implementation [29]. We can use
Williams’ implementation with our rcu_ptr class template
as well if a double word CAS operation is available.

4. PERFORMANCE EVALUATION

We executed performance measurements on a dual CPU
system (two Intel® Xeon® X5670 CPUs). Each CPU had 6
physical cores with hyper-threading enabled, this sums up
to 24 threads. Also each CPU had 12MB cache. We used
Ubuntu 14.04 operating system (Linux kernel 3.13).

We took the class X from the running example (pre-
sented in Figure 2) and slightly changed it:

class X {
std::vector<int> v;
const int default_value = 1;
mutable std::mutex m;

public:
X(size_t vec_size)

: v(vec_size, default_value) {}
int read_one(

unsigned index) const { // read operation
std::lock_guard<std::mutex> lock{m};
return v[index];

}
void
update_all(int value) { // write operation

std::lock_guard<std::mutex> lock{m};
for (auto &e : v)

e = value;
}

};

We added a constructor via which we can setup the size of
the vector. We modified the read operation to read only
one value from the vector. We also changed the write oper-
ation to update all elements in the vector. We implemented
this modified class in terms of several different synchro-
nization mechanisms:

• std mutex. Standard mutex from the C++
Standard Template Library (STL). We used the
STL implementation libstdc++ from GNU Com-
piler Collection (version 5.4). On POSIX sys-
tems, std::mutex uses pthread_mutex_lock

and pthread_mutex_unlock functions from the
pthread library. On Linux, these pthread functions
are implemented in terms of futex (fast userspace
mutex) [30] system call. It provides very fast uncon-
tended lock acquisition and release. The futex state
is stored in a user-space variable. Atomic operations
are used in order to change the state of the futex in the
uncontended case without the overhead of a syscall.

ISSN 1335-8243 (print) © 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 18, No. 3, 2018 23

In the contended cases, the kernel is invoked to put
tasks to sleep and wake them up.

• tbb qrw mutex. Intel® TBB queuing reader-writer
mutex [31]. A queuing_rw_mutex is scalable, in
the sense that if a thread has to wait to acquire
the mutex, it spins on its own local cache line. A
queuing_rw_mutex is fair. Threads acquire a lock
on a queuing_rw_mutex in the order that they re-
quest it.

• tbb srw mutex.Intel® TBB spin reader-writer mu-
tex [31]. A spin_rw_mutex is not scalable or fair. It
is ideal when the lock is lightly contended and is held
for only a few machine instructions. If a thread has
to wait to acquire a spin_rw_mutex, it busy waits,
which can degrade system performance if the wait
is long. However, if the wait is typically short, a
spin_rw_mutex significantly improves performance
compared to other mutexes.

• rcuptr. Our rcu_ptr with non-lock-free atomic
shared pointer. We use a wrapper template class
which encapsulates the free function overloads for
atomic operations on a standard shared_ptr.

• rcuptr jss. Our rcu_ptr with Anthony Williams’
lock-free atomic shared pointer [29]. Note that the
examined Intel CPU has the double word CAS oper-
ation.

• urcu bp. Bulletproof version of the URCU library.
We used the bulletproof version because that is the
general version of URCU. The ”bulletproof” version
is the only one which can be used even when we
cannot register individual threads with the URCU li-
brary.

We created a separate test binary for each mechanism.
Each test binary consists of a timer thread which ticks ap-
proximately after one second, one writer thread and sev-
eral reader threads (configurable number). As for the mea-
sure metrics we count how many times a reader or writer
thread finishes its operation during the elapsed time period.
The timer thread sets an atomic stop flag while all the other
threads read this flag continuously and they stop when it is
set. We used relaxed memory ordering for writing and read-
ing this flag in order to make sure that the cache system is
not affected by the measurement itself. We executed each
test binary with different number of reader threads and with
different vector sizes. We executed one test binary with a
specific configuration (number of threads, vector size) five
times. During the evaluation of each performance indicator
value we dropped the smallest and the largest values and we
took the average of the remaining three values. The mea-
surement scripts and the source code for the test binaries are
readily available at [32], thus our measurements are easily
replicable on any other hardware.

0 5 10 15 20 25
Number of Reader Threads

104

105

106

107

108

109

N
u
m
b
er

of
R
ea
d
O
p
er
at
io
n
s
/
se
co
n
d

tbb qrw mutex

urcu bp

rcuptr

tbb srw mutex

rcuptr jss

std mutex

Fig. 8 Read-side performance, data size: 32KiB

0 5 10 15 20 25
Number of Reader Threads

103

104

105

106

107

108

109

N
u
m
b
er

of
R
ea
d
O
p
er
at
io
n
s
/
se
co
n
d

tbb qrw mutex

urcu bp

rcuptr

tbb srw mutex

rcuptr jss

std mutex

Fig. 9 Read-side performance, data size: 512KiB

0 5 10 15 20 25
Number of Reader Threads

103

104

105

106

107

108

109

N
u
m
b
er

of
R
ea
d
O
p
er
at
io
n
s
/
se
co
n
d

tbb qrw mutex

urcu bp

rcuptr

tbb srw mutex

rcuptr jss

std mutex

Fig. 10 Read-side performance, data size: 4MiB

We experienced that if the size of the vector is really
small (smaller than 4KiB) then the read-side performance
of the RCU mechanisms are outperformed by a simple stan-
dard mutex. However, as the data grows, the RCU mecha-
nism is getting advantage over the standard mutex and over
the read-write mutexes (Figure 8). In Figure 8 we display
the performance of the different techniques when the size of

ISSN 1335-8243 (print) © 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



24 Towards a High-level C++ Abstraction to Utilize the Read-Copy-Update Pattern

the used data is 32KiB (i.e. the vector has 8192 elements).
Note that the y axis presents a logarithmic scale. The x axis
presents how many reader threads were active during the
measurement. Similarly to Figure 8, Figure 9 and 10 show
the read performance in case of 512KiB and 4MiB data size
respectively. Figure 9 and 10 illustrate that our rcu_ptr
implementation can outperform the traditional mutex based
implementation with more than two orders of magnitude.
Also, rcu_ptr can outperform the read-write mutex based
realizations with more than one order of magnitude. The
rcu_ptr based techniques have some degradation until the
readers number is less than 5 (approximately). From that
point, the performance has no or minimal degradation. This
is in contrast to the read-write mutex and the URCU based
methods, where the performance is growing continuously
as the number of the readers grows. Compared to URCU,
our technique can be outperformed up to two orders of mag-
nitudes. This is the price we pay for the higher level of ab-
straction and for the general usability: we loose most of the
performance because of the extra administration done with
the reference counting in the underlying shared_ptr im-
plementations while the bulletproof URCU uses only mem-
ory barrier instructions.

Figure 11 presents that RCU write-side perfor-
mance is outperformed by the mutex variants (32KiB
data size). This is the expected behaviour since RCU
solutions are tuned for the read-side performance,
but this implies some trade-offs on the write-side.

0 5 10 15 20 25
Number of Reader Threads

0

200000

400000

600000

800000

1000000

N
u
m
b
er

of
W
ri
te

O
p
er
at
io
n
s
/
se
co
n
d

tbb qrw mutex

urcu bp

rcuptr

tbb srw mutex

rcuptr jss

std mutex

Fig. 11 Write-side performance, data size: 32KiB

However, our technique can outperform the bulletproof
version of URCU in write-side performance. E.g, when
the data size is 512 KiB then our method can be twice
as fast (Figure 12). This is because with urcu bp

one cannot use the call_rcu() to deallocate mem-
ory asynchronously, thus the writer thread must wait
for all the pre-existing readers to be completed. This
wait is done by synchronize_rcu() function and the
duration actually waited is called an RCU grace pe-
riod. Regarding to write-side performance we measured
that all RCU based approaches are outperformed by the
all the mutex based solutions. The difference can be
up to 20x, based on the used RCU and mutex imple-
mentation and on the size of the data. Interestingly,

our measurements show that the lock-free implemen-
tation of shared_ptr does not provide higher read or
writer performance compared to the non lock-free version.

0 5 10 15 20 25
Number of Reader Threads

0

2000

4000

6000

8000

10000

12000

14000

N
u
m
b
er

of
W
ri
te

O
p
er
at
io
n
s
/
se
co
n
d

rcuptr jss

urcu bp

rcuptr

Fig. 12 Write performance of RCU, data size: 512KiB

5. CORRECTNESS AND TESTING

To validate the correctness of our data structure we used
different testing methods. We executed unit tests in a se-
quential manner (i.e. no parallel execution) to validate the
basic behaviour of the class template. We used oriented
stress testing [33] and sanitizers from the LLVM/Clang in-
frastructure [34] to verify behaviour during concurrent exe-
cution. During our stress tests we focused on pairs of public
methods of rcu_ptr and we executed these functions from
different threads. We executed the operations in a loop on
each thread and we added random delays in between each
calls. This way we tested different execution timings and
we could make race windows slightly larger.

6. FUTURE WORK

It is our ongoing work to create performance measure-
ments of our rcu_ptr on a weekly ordered architecture
like ARMv7 as well. In order to reach the consume seman-
tics in rcu_ptr we may use hardware specific instructions
in the future to overcome the problem of the deprecated
memory_order_consume.

7. CONCLUSION

RCU is a technique in concurrent programming which
is getting used more and more often nowadays. It has been
introduced in the Linux kernel first, but the efficiency of
the technique became proven so people demanded an im-
plementation which could be used in user space too. The
current available user space RCU solutions do not provide
a mechanism for automatic memory reclamation, also they
provide a low level C API, which may be prone to errors.
In this paper we presented a high-level C++ implementation
for the read-copy-update pattern, which provides automatic
memory deallocation. Our technique complements the ex-
isting user space RCU implementation by providing a well

ISSN 1335-8243 (print) © 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 18, No. 3, 2018 25

performing safe and hard-to-misuse library. Thus, this li-
brary may be a good default choice by C++ developers who
expect more readers than writers in their application.

REFERENCES

[1] McKENNEY, P. E. – SLINGWINE, J. D. , “Read-
copy update: Using execution history to solve con-
currency problems,” in Parallel and Distributed Com-
puting and Systems, 1998, pp. 509–518.

[2] McKENNEY, P. E. – APPAVOO, J. – KLEEN, A. –
KRIEGER, O. – RUSSEL, R. – SARMA, D. – SONI,
M. , “Read-copy update,” in AUUG Conference Pro-
ceedings. AUUG, Inc., 2001, p. 175.

[3] MELLOR-CRUMMEY, J. M. – SCOTT, M. L. ,
“Scalable reader-writer synchronization for shared-
memory multiprocessors,” SIGPLAN Not., vol. 26,
no. 7, pp. 106–113, Apr. 1991. [Online]. Available:
http://doi.acm.org/10.1145/109626.109637

[4] McKENNEY, P. E. – WALPOLE, J. , “What is
RCU, fundamentally?” December 2007, avail-
able: http://lwn.net/Articles/262464/ [Viewed De-
cember 27, 2007].

[5] McKENNEY, P. E. , Is Parallel Programming
Hard, And, If So, What Can You Do About It?
Corvallis, OR, USA: kernel.org, 2010. [Online].
Available: http://kernel.org/pub/linux/kernel/people/
paulmck/perfbook/perfbook.html

[6] McKENNEY, “The design of preemptible read-copy-
update,” October 2007, available: http://lwn.net/
Articles/253651/ [Viewed October 25, 2007].

[7] McKENNEY, P. E. – SARMA, D. – MOLNAR, I. –
BHATTACHARYA, S. , “Extending rcu for realtime
and embedded workloads,” in Ottawa Linux Sympo-
sium, pages v2, 2006, pp. 123–138.

[8] McKENNEY, P. E. – SARMA, D. , “Adapting rcu for
real-time operating system usage,” Oct. 23 2007, uS
Patent 7,287,135.

[9] McKENNEY, P. E. , “Sleepable RCU,” Octo-
ber 2006, available: http://lwn.net/Articles/202847/
Revised: http://www.rdrop.com/users/paulmck/RCU/
srcu.2007.01.14a.pdf [Viewed August 21, 2006].

[10] GUNIGUNTALA, D. – McKENNEY, P. E. –
TRIPLETT, J. – WALPOLE, J. , “The read-copy-
update mechanism for supporting real-time applica-
tions on shared-memory multiprocessor systems with
Linux,” IBM Systems Journal, vol. 47, no. 2, pp. 221–
236, May 2008.

[11] DESNOYERS, M. – McKENNEY, P. E. – STERN,
A. S. – DAGENAIS, M. R. – WALPOLE, J. , “User-
level implementations of read-copy update,” IEEE
Transactions on Parallel and Distributed Systems,
vol. 23, no. 2, pp. 375–382, 2012.

[12] DESNOYERS, M. , “[RFC git tree] userspace RCU
(urcu) for Linux,” February 2009, http://lttng.org/
urcu.

[13] HART, T. E. – McKENNEY, P. E. – BROWN, A. D.
– WALPOLE, J. , “Performance of memory reclama-
tion for lockless synchronization,” J. Parallel Distrib.
Comput., vol. 67, no. 12, pp. 1270–1285, 2007.

[14] McKENNEY, P. E. . (2016) Read-copy update (rcu)
for c++. [Online]. Available: http://open-std.org/
JTC1/SC22/WG21/docs/papers/2016/p0279r0.html

[15] GOODMAN, P. . (2018) C++ implementation of rcu
based on reference counting and hazard pointers. [On-
line]. Available: https://github.com/pgoodman/rcu

[16] KHIZHINSKY, M. . (2018) A c++ library of
concurrent data structures. [Online]. Available:
https://github.com/khizmax/libcds

[17] SUTTER, H. , “Atomic smart pointers, rev. 1,”
ISO/IEC JTC 1, Information Technology, Subcom-
mittee SC 22, Programming Language C++, Tech.
Rep. n4162, Oct. 2014.

[18] ISO, ISO/IEC 14882:2014 Information technology —
Programming languages — C++. Geneva, Switzer-
land: International Organization for Standardization,
2014.

[19] stackoverflow.com, “Understanding
std::atomic::compare exchange weak() in c++11,”
2017. [Online]. Available: https://goo.gl/jwjgGC

[20] TREIBER, R. K. , Systems programming: Coping
with parallelism. International Business Machines
Incorporated, Thomas J. Watson Research Center,
1986.

[21] DECHEV, D. – PIRKELBAUER, P. – STROUS-
TRUP, B. , “Understanding and effectively prevent-
ing the aba problem in descriptor-based lock-free de-
signs,” in Object/Component/Service-Oriented Real-
Time Distributed Computing (ISORC), 2010 13th
IEEE International Symposium on. IEEE, 2010, pp.
185–192.

[22] WILLIAMS, A. , “Why do we need
atomic shared ptr?” August 2015, available:
https://www.justsoftwaresolutions.co.uk/threading/
why-do-we-need-atomic shared ptr.html.

[23] MÁRTON, G. . (2018) rcu ptr. [Online]. Available:
https://github.com/martong/rcu ptr

[24] WILLIAMS, A., C++ concurrency in action: practi-
cal multithreading. Manning Publ., 2012.

[25] stackoverflow.com, “Why are std::atomic objects
not copyable?” 2017. [Online]. Available:
https://goo.gl/fvuY3f

[26] McKENNEY, P. E. – RIEGEL, T. – PRESHING, J.
– BOEHM, H. – NELSON, C. – GIROUX, O. –
CROWL, L. , “Towards implementation and use of
memory order consume,” ISO/IEC JTC 1, Informa-
tion Technology, Subcommittee SC 22, Programming
Language C++, Tech. Rep. P0098R0, 2015.

[27] BOEHM, H. J. , “Temporarily deprecate mem-
ory order consume,” ISO/IEC JTC 1, Information
Technology, Subcommittee SC 22, Programming
Language C++, Tech. Rep. P0371R0, May 2016.

ISSN 1335-8243 (print) © 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

http://doi.acm.org/10.1145/109626.109637
http://lwn.net/Articles/262464/
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://lwn.net/Articles/253651/
http://lwn.net/Articles/253651/
http://lwn.net/Articles/202847/
http://www.rdrop.com/users/paulmck/RCU/srcu.2007.01.14a.pdf
http://www.rdrop.com/users/paulmck/RCU/srcu.2007.01.14a.pdf
http://lttng.org/urcu
http://lttng.org/urcu
http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0279r0.html
http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0279r0.html
https://github.com/pgoodman/rcu
https://github.com/khizmax/libcds
https://goo.gl/jwjgGC
https://www.justsoftwaresolutions.co.uk/threading/why-do-we-need-atomic_shared_ptr.html
https://www.justsoftwaresolutions.co.uk/threading/why-do-we-need-atomic_shared_ptr.html
https://github.com/martong/rcu_ptr
https://goo.gl/fvuY3f


26 Towards a High-level C++ Abstraction to Utilize the Read-Copy-Update Pattern

[28] McCARTY, M. , “Implementing a lock-free
atomic shared ptr,” 2016, cppNow 2016. [Online].
Available: https://goo.gl/qErf1h

[29] WILLIAMS, A. , “Implementation of a lock-
free atomic shared ptr class template as de-
scribed in n4162,” 2016. [Online]. Available:
https://bitbucket.org/anthonyw/atomic shared ptr

[30] HART, D. , “A futex overview and update,” LWN. net,
2009.

[31] Intel®, “Intel® threading building blocks doc-
umentation,” 2018. [Online]. Available: https:
//software.intel.com/en-us/tbb-documentation

[32] MÁRTON, G. . (2018) rcu ptr measurements. [On-
line]. Available: https://github.com/martong/rcu ptr

[33] DESNOYERS, M. , “Proving the correctness of non-
blocking data structures,” Communications of the
ACM, vol. 56, no. 7, pp. 62–69, 2013.

[34] llvm.org. (2017) clang: a c language family frontend
for llvm. [Online]. Available: http://clang.llvm.org

Received May 5, 2018, accepted July 10, 2018

BIOGRAPHIES

Gábor Márton received his M.Sc degree in 2007 in In-
formation Technology from the Budapest University of
Technology and Economics. Currently, he is a PhD can-
didate at the Department of Programming Languages and
Compilers at the Faculty of Informatics, Eötvös Loránd
University (ELTE), Budapest, Hungary. His research fo-
cuses on compiler technology and concurrency.

Imre Szekeres graduated (M.Sc) in 2015 at the Depart-
ment of Computer Science and Information Theory of the
Faculty of Electrical Engineering and Informatics at the
Budapest University of Technology and Economics. He
aims to start his PhD studies soon. Currently, he is working
in algorithmic trading solutions; striving for low latency
and efficiency in modern C++ in a concurrent environment.

Zoltán Porkoláb received his M.Sc and PhD degrees in
Information Technology in 1988 and 2003, respectively. At
present, he is an Associate Professor of the Department of
Programming Languages and Compilers at the Faculty of
Informatics, Eötvös Loránd University (ELTE), Budapest,
Hungary. His main research topics are C++ metaprogram-
ming and compiler technology.

ISSN 1335-8243 (print) © 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

https://goo.gl/qErf1h
https://bitbucket.org/anthonyw/atomic_shared_ptr
https://software.intel.com/en-us/tbb-documentation
https://software.intel.com/en-us/tbb-documentation
https://github.com/martong/rcu_ptr
http://clang.llvm.org



