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ABSTRACT
Automatic identification of crosscutting concerns implementation is still a challenging task in software engineering. The approaches

proposed so far for crosscutting concerns identification are all bottom-up approaches: starting from the source code of a software
system they try to discover all the crosscutting concerns that exist in the system. In this paper we present a top-down approach that
we developed based on the observations gathered after analyzing how monitoring crosscutting concerns are implemented in different
open source object oriented software systems. The approach aims to identify only one type of crosscutting concern, namely monitoring.
It tries to automatically identify the type of the logger used for monitoring crosscutting concerns implementation by analyzing the
attributes defined in Java-based software systems. We also present and discuss the results obtained by applying this approach to
different open source Java software systems.

Keywords: monitoring crosscutting concerns, automatic identification, top-down approach

1. INTRODUCTION

The ever increasing complexity of software systems
makes designing and implementing them a difficult task.
Software systems are usually composed of many differ-
ent concerns. A concern is a specific requirement or con-
sideration that must be addressed in order to satisfy the
overall system. The concerns are classified in core con-
cerns and crosscutting concerns. The core concerns cap-
ture the central functionality of a module, while cross-
cutting concerns capture system-level, peripheral require-
ments that cross multiple modules. Paradigms like proce-
dural or object oriented programming provide good solu-
tions for the design and implementation of core concerns,
but they cannot deal properly with crosscutting concerns.
Many different approaches have been proposed for the de-
sign and implementation of crosscutting concerns: subject
oriented programming [1], composition filters [2], adaptive
programming [3], generative programming [4], and aspect
oriented programming (AOP) [5]. From these approaches,
the aspect oriented programming approach has known the
greatest success both in industry and academia.

For almost two decades researchers have tried to de-
velop techniques and tools to (automatically) identify cross-
cutting concerns in software systems that were already de-
veloped without using AOP. This area of research is called
Aspect Mining. The goal is to identify the crosscutting con-
cerns, and then to refactor them to aspects, in order to ob-
tain a system that can be easily understood, maintained and
modified. In order to identify crosscutting concerns, the
existing techniques try to discover one or both symptoms
that appear when designing and implementing crosscutting
concerns using the existing paradigms: code scattering and
code tangling. Code scattering means that the code that
implements a crosscutting concern is spread across the sys-
tem, and code tangling means that the code that implements
some concern is mixed with code from other (crosscutting)
concerns.

The main contribution of this paper is to propose the

first top-down aspect mining approach that tries to identify
the implementation of two kinds of monitoring crosscut-
ting concerns: logging and tracing. The approach does not
aim to identify all the crosscutting concerns that exist in a
software system, it only focuses on these two kinds of mon-
itoring crosscutting concerns. We also present and discuss
the results obtained by applying this approach to eight open
source Java-based software systems.

The rest of the paper is structured as follows. Section 2
presents an overview of the aspect mining techniques pro-
posed so far. Section 3 describes the two types of cross-
cutting concerns we are interested in, and the proposed ap-
proach for their automatic identification. In Section 4 we
present the software systems on which we have applied our
approach and the obtained results. Conclusions and further
work are given in Section 5 and Section 6, respectively.

2. ASPECT MINING TECHNIQUES

The first approaches in aspect mining were query-based
search techniques. The developer had to introduce a so-
called seed (eg., a word, the name of a method or of a field)
and the associated tool showed all the places where the seed
was found. Very soon, researchers discovered that this ap-
proach to aspect mining has some important disadvantages:
the user of the tool had to have an in-depth knowledge of the
analyzed system, as he/she had to figure out the seed(s) to
be introduced, and the large amount of time needed in order
to filter the results displayed. There were many query based
aspect mining tools proposed, like: Aspect Browser [6],
The Aspect Mining Tool (AMT) [7], Feature Exploration
and Analysis Tool (FEAT) [8]. All these tools are perform-
ing the search in the source code of the mined system.

Since 2004 researchers have focused on developing as-
pect mining techniques that do not require an initial seed
from the user. These techniques try to identify the crosscut-
ting concerns starting just from some kind of system rep-
resentation (the source code, the requirements documenta-
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tion, some execution traces, etc.), and are called automated
aspect mining techniques. Different approaches are used:
clustering [9–11], clone detection techniques [12–14], met-
rics [15], association rules [16], formal concept analysis
[17, 18], execution relations [19, 20], self organizing maps
[21], and link analysis [22].

All the presently proposed automated aspect mining
techniques try to discover all the crosscutting concerns that
exist in the mined software system. The obtained results
have shown that it is not an easy task to develop an approach
that can be used for discovering different types of crosscut-
ting concerns. Consequently, the obtained results are not
very accurate, and only some types of crosscutting concerns
are discovered. If the techniques proposed in the begin-
ning used very different approaches, the last ones are more
like improvements of some of the previously proposed tech-
niques. Even so, the results obtained by the new aspect
mining techniques did not improve significantly. They ob-
tained better results, but not much better. Also, practice has
shown that not all crosscutting concerns can be refactored
to aspects.

Mens et al. have conducted an analysis of the prob-
lems the proposed aspect mining techniques were encoun-
tering [23]. The main identified problems were: poor preci-
sion, poor recall, subjectivity, scalability, lack of empirical
validation. The study was conducted in 2008 and since then
the results obtained by the proposed aspect mining tech-
niques did not improve much.

3. A TOP-DOWN APPROACH

In this section we describe our approach for identifying
logging and tracing monitoring crosscutting concerns.

3.1. Monitoring Crosscutting Concerns

Monitoring concerns record the behaviour of a software
system during development, testing and execution in its
own environment. The most commonly used are: logging,
tracing and performance monitoring:

• Logging produces messages specific to the logic car-
ried by a piece of code.

• Tracing produces messages for lower-level events
such as: the entry or exit of a method, exception han-
dling or object construction, and state modification.

• Performance monitoring measures the time taken by
specific parts of the system to execute and/or the
number of times a particular method is invoked.

It is well-known that tracing and performance monitor-
ing are better implemented using AOP. The AOP-based so-
lution is clearly separated from the rest of the system, can
be easily understood and maintained, and it can be easily
plugged-in or plugged-out of the system. As for logging it
is not clear yet if an AOP-based solution can be designed,
and if it is better than the non-AOP one.

3.2. Our Approach

The proposed approach is based on the results obtained
in previous studies where we have manually analyzed ob-
ject oriented software systems to determine if a pattern (or
patterns) can be extracted for monitoring crosscutting con-
cerns implementation [24–26]. The obtained results have
shown that many different patterns are used for monitor-
ing concerns implementation, but the most used one is the
declaration of an attribute corresponding to the object used
for recording the produced messages, often called a logger,
and then calling different methods on it. This attribute is in
most cases a static and/or final one [25, 26].

Listing 1 shows a fragment from the source code of
AjpMessage class from Tomcat v9 [28] (one of the ana-
lyzed software systems).

package org.apache.coyote.ajp;

i m p or t org.apache.juli.logging .*;

i m p or t org.apache.tomcat.util.res.

StringManager;

p u b l i c c l a s s AjpMessage {

//The logger object
p r i v a t e s t a t i c f i n a l Log log =

LogFactory.getLog(AjpMessage. c l a s s );

// The string manager for this package.
p r o t e c t e d s t a t i c f i n a l StringManager sm

=

StringManager.getManager(AjpMessage.

c l a s s );

//Write a MessageBytes out at the
//current write position.
p u b l i c v o i d appendBytes(MessageBytes mb

) {

i f (mb == n u l l ) {

log.error(sm.getString("

ajpmessage.

null"), new
NullPointerException ());

appendInt (0);

appendByte (0);

r e t u r n ;

}

// other business logic code
appendByteChunk(mb.getByteChunk ());

}

//Write a ByteChunk out at the
//current write position.
p u b l i c v o i d appendByteChunk(ByteChunk

bc) {

i f (bc == n u l l ) {

log.error(sm.getString("

ajpmessage.

null"), new
NullPointerException ());

appendInt (0);

appendByte (0);

r e t u r n ;

}

appendBytes(bc.getBytes (), bc.

getStart (), bc.getLength ());

}

//other attributes and methods
}

Listing 1 Fragment from AjpMessage class from Tomcat v9 [28].
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The fragment includes the declaration of the logger ob-
ject (named log) as a static and final attribute. The ob-
ject is later used in some of the methods to record the cor-
responding messages. This pattern was identified in most
of the classes that recorded messages. Still, there are also
other patterns identified, like the declaration of the logger
object in a base class and methods from subclasses only use
it without declaring a new attribute, or the declaration of the
logger object as a local variable in the methods that needed
to record messages.

Based on these results we have developed a top-down
approach that tries to identify logging and tracing moni-
toring crosscutting concerns by analyzing the static or
final attributes defined in a Java-based software systems.
The approach consists of first automatically identifying the
type of the logger object, and then the automatic identifica-
tion of the affected classes (the classes in which the mon-
itoring concerns are implemented). Having identified the
classes, then we can (automatically) analyze them to de-
termine whether the concerns can be (automatically) refac-
tored to aspects.

Our approach for identifying the type of the logger ob-
ject consists of the following steps:

1. Instrumentation. In order to determine the static

or final attributes defined in a Java-based software
system we need to automatically analyze the source
code (.java files) or the bytecode (.class files) of
the system. The existing libraries and frameworks
that allow us to analyze them (like Soot [29] or Spoon
[30]) require and/or use a classpath variable that must
be properly set in order to be able to analyze the input
(source code or bytecode). During this step we deter-
mine all the dependencies (usually other .jar files)
of the system. This is the most time consuming step,
as large software systems may depend on many dif-
ferent libraries that must be identified by the user if
there is no additional information present (such as a
Gradle [31] or a Maven [32] build file). According to
Sulir and Poruban [27] even if a build file exists, it is
still a difficult and time consuming task to success-
fully build a complex software system, with many
third parties dependencies, from its source code.

2. Analysis. After the completion of the first step,
we automatically identify all the static or final
attributes defined in the analyzed software system.
During this step we gather the following information:
the type of the attribute, the number of times this type
was used for declaring a static or final attribute,
and the number of distinct classes defining this kind
of attributes. We consider that the number of distinct
classes in which static or final attributes of the
same type were defined is important, as in the same
class many different static or final attributes of
the same type may be defined.

3. Filtering. From the results obtained at the previ-
ous step we remove the following types: all Java
primitive types (byte, short, int, float, double,
char), any arrays of a primitive type (like byte[]

or int[][]), all the types defined in java.util or
java.lang packages (such as java.lang.String,
java.util.ArrayList) but not the subpackages
(types like java.lang.reflect.Method will not
be removed), any arrays of a type defined in these
two packages (eg. java.lang.String[]). During
this step we also remove the types that were used for
declaring static or final attributes in less than 3
classes. We consider that if a static or final at-
tribute of the same type is defined in more than 3
classes than it can be considered as crosscutting, oth-
erwise it can be considered as coupling between the
corresponding types (the type of the attribute(s) and
the classes in which the static or final attribute(s)
was (were) defined).

4. Ranking. The remaining static or final at-
tributes’ types are sorted descending by the number
of declaring classes. The first n results will be pre-
sented to the user as possible results for the logger
object’s type. From our observations of the manually
analyzed software systems the type should be among
the first ranked results. The value of n can be decided
by the user (or it could have a default value).

After identifying the type of the logger object, we con-
sider that logging and/or tracing monitoring crosscutting
concerns are implemented in all the classes having an at-
tribute of this type. These classes are determined during the
analysis of all the attributes defined in the software system,
so no additional computation is needed.

4. STUDY

In this section we present the software systems used for
our approach assessment and the obtained results.

4.1. Case Studies

In order to verify the applicability of the described ap-
proach we have used eight different open source Java-based
software systems as case studies. Four of them, namely
Spoon, Tomcat v9, Spring Framework, and ArgoUML,
were previously manually analyzed in order to be able to
also compute our approach accuracy. Four systems, namely
Mars simulator, JGAP, Neuroph and JEdit, are new systems
that we did not analyze before.

• Spoon is an open-source library that enables transfor-
mation and analysis of Java source code. It provides a
metamodel where any kind of program element such
as a class, a method, a field, a statement, etc. can be
accessed for reading and/or modification. The code
used for our analysis was downloaded from [33].

• ArgoUML is an open source UML modeling tool
that includes support for all standard UML 1.4 dia-
grams. It runs on any Java platform. We have used
version 0.34 for our analysis, and the source was
downloaded from [34].
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• Apache Tomcat is an open-source web container for
Java Servlet, JavaServer Pages, Java Expression Lan-
guage and Java WebSocket technologies [35]. We an-
alyzed version 9, the source code being downloaded
from [36].

• Spring Framework is a modular framework that
helps developing Java enterprise applications by pro-
viding a comprehensive programming and config-
uration model [37]. The developers focus on the
application-level business logic, and the framework
helps putting together the final system. The source
code that we have used for our analysis was down-
loaded from [38].

• Mars simulator is a Java based open source project
that simulates the activities of the first generation of
settlers on Mars. The byte code that we have ana-
lyzed was downloaded from [39].

• JGAP is a Genetic Algorithms and Genetic Program-
ming package written in Java. The analyzed byte
code was downloaded from [40].

• Neuroph is lightweight Java neural network frame-
work to develop common neural network architec-
tures. The byte code that we have analyzed was
downloaded from [41].

• JEdit is a text editor for programmers with support
for many different programming languages. The an-
alyzed byte code was downloaded from [42].

Table 1 presents the number of .class files analyzed for
each case study.

Table 1 Case Studies

Case study Number of .class
files analyzed (CI)

Spoon 724
ArgoUML 2247
Tomcat v9 2502

Spring 5235
Mars 711
JGAP 447

Neuroph 382
JEdit 1355

For the automatic analysis step we have used Soot [29],
a Java optimization framework that provides various rep-
resentations for analyzing and transforming Java bytecode.
In order to obtain the bytecode of the systems for which we
only had the source code, we have first built the systems by
following the instructions described on the corresponding
websites.

4.2. Results

Table 2 presents the obtained results after executing the
Analysis step of our approach. As the results show the

number of static or final attributes defined in a large
Java-based software system is big. In almost all case stud-
ies (with the exception of Neuroph), the number is greater
than the number of classes and interfaces analyzed, and for
ArgoUML and Tomcat the number is even bigger than the
doubled number of classes and interfaces. However, if we
consider only the attributes’ type their number decreases
significantly. In all cases, the number of distinct types (DT)
is less than 25% of the number of static or final at-
tributes. In six of the cases (ArgoUML, Tomcat V9, Spring,
Mars, JGAP and Neuroph) the percentage of distinct types
over the number of static or final attributes is even less
than 16%, and in the case of ArgoUML and JGAP it is even
less than 9% meaning that only a small part of this informa-
tion is necessary for the identification of the logger object
type

In Table 3 are given the obtained results after executing
the Filtering step. These results show that after this step
more than 80% of the types are removed for almost all case
studies, meaning that they are either types which are com-
monly used for the business logic of a system (like the prim-
itive types or the types from the java.util or java.lang
packages) or they are not crosscutting (they were used in
at most 2 different classes). For six case studies (Spoon,
ArgoUML, Tomcat, Spring, JGAP, and Neuroph) the num-
ber of possible types for the logger object is less than 20%
of the total number of types used for declaring static or
final attributes, and for all case studies it is less than 4%
of the total number of static or final attributes defined
in the system.

In Table 4 is presented a subset of the results obtained
after executing the Ranking step for each case study. Col-
umn DA represents the number of times a static or final
attribute of the corresponding type was declared, DC repre-
sents the number of classes that declare a static or final
attribute of this type, TDC represents the number of classes
that declare an attribute of this type (independently of the
modifier used: static, final or none), and TDC/CI rep-
resents the ratio of the number of declaring classes over the
total number of classes and interfaces from the system. For
five case studies (ArgoUML, Tomcat v9, Spring, JGAP and
Neuroph) the type ranked at the first position is the type of
the logger object, showing that this approach could be used
for automatic identification of logging and tracing monitor-
ing crosscutting concerns. For these case studies (except-
ing Neuroph) the ratio of TDC/CI of the type ranked at the
first position is also significantly greater than the percent-
age of the type ranked at the second position. The results
also show that the type used for the logger object is differ-
ent for almost each case study, meaning that it is dependent
on the software system.

In the case of Spoon case study the top 3 ranked
types do not include the type of the logger ob-
ject. The most used type for declaring static

or final attributes is ReplacementVisitor from
spoon.support.visitor.replace package which was
used in more than 10% of the classes from system. In this
case the type of the logger object was ranked only at the po-
sition 15, being declared as a static or final attribute in
only 4 classes, meaning less than 1% of the total number of
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classes. The manual analysis has determined that the type
was used in 5 classes, but in one class the logger object was
not declared neither as a static nor a final attribute.

For Mars and JEdit case studies the filtered list of types

does not include any type that could be used for recording
monitoring messages. For these systems no logger object
could be determined.

Table 2 Case Studies Results - Analysis Step

Case study Number of static Distinct types Percentage of
or final attributes (DT) DT/attributes

Spoon 879 213 24.23%
ArgoUML 5374 394 7.33%
Tomcat v9 6630 733 11.05%

Spring 7776 1198 15.40%
Mars 1254 137 10.92%
JGAP 619 52 8.40%

Neuroph 274 39 14.23%
JEdit 2379 433 18.20%

Table 3 Case Studies Results - Filtering Step

Case study Number of types Percentage of Percentage of
after filtering (TF) TF/DT TF/attributes

Spoon 35 16.43% 3.98%
ArgoUML 57 14.46% 1.06%
Tomcat v9 136 18.55% 2.05%

Spring 214 17.86% 2.75%
Mars 44 32.11% 3.50%
JGAP 4 7.69% 0.64%

Neuroph 5 12.82% 1.82%
JEdit 95 21.93 % 3.99%

The studies presented in [24–26] have also shown that
there are software systems which use more than one type
for the logger object. The manual analysis of two of the
systems used in this study have shown that they use more
than one type for the logger object: Tomcat v9 uses 2 types,
and Spring Framework uses 3 types. For Tomcat case study
the results obtained by our approach actually included both
types, but the second type was ranked at the position 96
(from 136 possible positions), as shown in Table 4. The
second type was used only in 4 classes, and the logger ob-
ject was declared as a static or final attribute in only 3
of the classes. In the case of Spring Framework, only one
type was given among the possible results. The other two
types were not included because they were used in at most
4 classes, and in some of these classes the logger object was
not defined as a static or final attribute.

In Table 5 is presented the accuracy of our approach
for the software systems which were manually analyzed.
TDC represents the number of classes where an attribute of
the logger type was declared, CCC presents the number of
classes from the software system in which the concerns are
implemented (the number was determined during the man-

ual analysis of the system), and ACC represents the accu-
racy of our approach. The accuracy is considered to be the
percentage of classes from the software system that are part
of the crosscutting concerns implementation and were iden-
tified as such by our approach. For this study the accuracy
is computed as the percentage of TDC/CCC.

As shown in Table 5, the accuracy of our approach is
higher than 78% for the three larger case studies, for two
of them the accuracy being even higher than 90%. Even if
for Spoon case study, where the type of the logger object
is not among the top 3 ranked possible types, after the user
chooses the correct type, the accuracy of our approach is
100%. JGAP and Neuroph were not manually analyzed be-
fore applying our approach, so we could not compute their
accuracy.

5. CONCLUSIONS

The conclusions that can be drawn from the results ob-
tained in Section 4 are:

• The proposed approach can be used for the auto-
matic identification of logging and tracing monitor-
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ing crosscutting concerns. The results obtained for
the three larger case studies have shown that the anal-
ysis of static or final attributes of a software sys-
tem is a good starting point for the identification of
the type of the logger object used for these cross-
cutting concerns implementation. The set of classes
in which an attribute of this type is defined is also
a good starting point for determining all the affected
parts of the software systems. On these classes we
can perform a more in-depth analysis in order to de-
termine, for example, the methods in which the at-
tribute is used and to also determine if the imple-
mentation can be refactored to aspects. As Table 3
shows the searching space is significantly reduced,
less than 15% of the total number of classes and in-

terfaces need to be considered for the in-depth analy-
sis.

• This approach is scalable. As the results of the study
have shown, the number of types considered as pos-
sible results are less than 7.5% of the total number of
classes and interfaces. Even for large or very large
software systems, the possible results for the log-
ger object’s type are reduced significantly. The time
needed to obtain all the possible types is also small.
It takes less than 3 seconds to obtain the possible
types for any of our case studies. Identifying all the
other parts of the concerns implementation may take
longer, but it should still be an acceptable amount of
type.

Table 4 Case Studies Results - Ranking Step

Case study Rank Attribute’s type DA DC TDC TDC/CI

ArgoUML
1 org.apache.log4j.Logger 253 253 253 11.25%
2 org.argouml.language.java.reveng.JavaParser 89 89 89 3.96%

3 org.argouml.configuration.ConfigurationKey 93 23 24 1.06%

Tomcat v9

1 org.apache.juli.logging.Log 274 274 276 11.03%
2 org.apache.tomcat.util.res.StringManager 188 187 187 7.47%

3 org.apache.catalina.tribes.util.StringManager 37 37 37 1.47%

... ... ... ... ... ...

96 java.util.logging.Logger 4 3 4 0.15%

Spring

1 org.apache.commons.logging.Log 357 355 365 6.97%
2 java.lang.reflect.Method 117 76 94 1.79%

3 org.springframework.orm.hibernate3. 39 39 40 0.76%

HibernateTemplate

Spoon

1 spoon.support.visitor.replace. 82 82 82 11.32%

ReplacementVisitor

2 spoon.reflect.factory.Factory 7 7 22 3.03%

3 spoon.reflect.visitor.chain.CtQueryImpl 7 7 7 0.96%

... ... ... ... ... ...

15 org.apache.log4j.Logger 4 4 5 0.69%

Mars
1 mars.mips.instructions.InstructionSet 156 156 156 21.94%

2 mars.venus.DataSegmentWindow 16 16 17 2.39%

3 mars.tools.AbstractMarsToolAndApplication 15 15 16 2.25%

JGAP
1 org.apache.log4j.Logger 10 10 14 3.13%
2 org.jgap.gui.ConfigFrame 5 5 7 1.56%

3 org.jgap.NaturalSelector 3 3 4 0.89 %

Neuroph
1 org.slf4j.Logger 9 9 9 2.35%
2 org.neuroph.core.NeuralNetwork 4 4 17 4.45%

3 org.neuroph.samples.mnist.master.FuNet1 4 4 4 1.04%

JEdit
1 org.gjt.sp.jedit.View 58 55 80 5.90 %

2 org.gjt.sp.jedit.textarea.TextArea 21 21 28 2.06%

3 org.gjt.sp.jedit.print.PrinterDialog 19 19 19 1.40%
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Table 5 Case Studies Accuracy

Case study Rank Attribute’s type TDC CCC ACC
ArgoUML 1 org.apache.log4j.Logger 253 324 78.08%

Tomcat v9
1 org.apache.juli.logging.Log 276 288 95.83%

96 java.util.logging.Logger 4 4 100%

Spring 1 org.apache.commons.logging.Log 365 402 90.76%

Spoon 15 org.apache.log4j.Logger 5 5 100%

JGAP 1 org.apache.log4j.Logger 14 NA NA

Neuroph 1 org.slf4j.Logger 9 NA NA

• The majority of the already proposed aspect mining
techniques try to identify crosscutting concerns by
analyzing the methods defined in a software system.
However, the obtained results show that for logging
and tracing monitoring crosscutting concerns, a dif-
ferent granularity provides more accurate results.

• The results of this approach can be considered as
input for automatically refactoring the implementa-
tion of these monitoring crosscutting concerns into
aspects. This approach can also be used to determine
if the implementation can actually be refactored into
aspects. In the analysis described in [24] we have de-
termined that at least 25% of the messages recorded
using the logger object are constructed using local
variables. This kind of monitoring messages cannot
be refactored to aspects.

• Mars and JEdit case studies revealed a disadvantage
of our approach: it cannot automatically determine
whether monitoring concerns are implemented in the
analyzed system or not. The user has to decide, af-
ter analyzing the obtained results if there is a type (or
more types) used as a logger.

We did not include in this paper a comparison of our ap-
proach with other already proposed approaches as it is dif-
ficult to compare them due to their different granularities.
Also, they do not automatically separate the results based
on the kind of crosscutting concerns, letting the user decide
which results belongs to which crosscutting concerns.

6. FURTHER WORK

In this paper we have presented a top-down approach for
automatic identification of logging and tracing monitoring
crosscutting concerns implementation. The approach ana-
lyzes the attributes defined in a Java-based software system
in order to determine the logger object’s type, and then de-
termines all the affected classes. We have used the proposed
approach on four open source Java-based software systems.

Further work will be done in the following directions:

• To apply the proposed approach on other open source
(larger) case studies.

• To determine if the proposed approach can be used

for software systems developed using other program-
ming languages like C# or C++.

• To develop a plugin for a popular IDE like IntelliJ
or Eclipse that will allow the automatic identification
of logging and tracing monitoring crosscutting con-
cerns.

• To determine if refactoring is possible for the ana-
lyzed software systems.

• To evaluate if the structure of the system would im-
prove if refactoring to aspects is possible.
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