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ABSTRACT 
This paper proposes a mathematical model for generating synthetic artificial ECG signal based on geometrical features of a real 

ECG signal. By variation of its parameters each particular wave of PQRST complex can be adjusted as needed allowing the generation 
of arbitrary ECG patterns typical for diseases and arrhythmia. The input parameters are treated to avoid mixing order of PQRST 
waves in case of automatic parameter variation and allow generating different patterns for each subsequent heartbeat independently. 
Each particular wave is modelled using an elementary trigonometric function or a Gaussian monopulse. Including possible addition 
of equipment noise as well as respiration frequency such an artificial signal can be used as a test signal for some signal processing 
methods. The model was tested by comparison of synthetized patterns against patterns generated by LabVIEW Biomedical Toolkit, 
while the parameters of model are found using the differential evolution algorithm. 
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1. INTRODUCTION 

The heart is organ essentially made of muscle 
generating a spatio-temporal electric field every time it 
contracts during the cardiac pumping cycle. This electric 
field propagates through complex volume conductor of 
thorax and abdomen to the skin, where by placing 
electrodes on the skin surface the spatio-temporal potential 
difference can be measured. Such an electric potential 
difference is called the electrocardiographic signal (ECG) 
and it is one of the most important signals used in 
diagnostic methods for various cardiovascular diseases. 
According to placement of the electrodes there are several 
types of signal recordings called the leads. 

 
There are various signal processing methods [1] used 

for automatic analysis of ECG signals as well as methods 
for their compression which are required mainly for 
processing of long time ECG records. During development 
and experiments with these methods and algorithms it is 
essential to test them using suitable test signals. For the 
purposes of testing there are two approaches. The first one 
is using large database of real ECG recordings such as 
Phisionet [2]. However as these recordings often contain 
lots of noise and artifacts they are not always suitable for 
testing and comparing the accuracy of some methods 
because it is difficult to measure how the particular method 
would react in case of the same test signal shape but 
different levels or types of noise or sampling frequency. 
Therefore the second approach is to generate a synthetic 
ECG signal using suitable signal model that can be 
precisely adjusted according to one needs including 
possible addition of noise. 

 
The well-known and widely used ECG signal model for 

these purposes is the dynamical model [3] based on three 
coupled differential equations. Other methods include 
modeling the heartbeat using polynomials and rational 
functions [4] or based on Fourier series [5]. The approach 

presented in this paper uses elementary trigonometric 
functions and linear function or a derivation of Gaussian 
pulse to model each particular wave. 

 
The paper is organized as follows: first the basic 

morphology of a typical ECG heartbeat is discussed 
followed by detailed introduction of proposed model and 
its features. Finally the model is tested by comparing 
various synthetized QRS patterns with patterns generated 
by LabVIEW Biomedical Toolkit. 

2. MORPHOLOGY OF AN ECG SIGNAL 

An ECG signal consists of consecutive heartbeats. 
Every heartbeat is represented by five waves standardly 
labelled with the letters P, Q, R, S and T (see Fig.1). Each 
of these waves corresponds to depolarization and 
repolarization of heart muscles [6].  

 

 

Fig. 1  PQRST complex of a normal lead II ECG recording 

The P wave represents activation of atria and it is 
followed by relatively short isoelectric segment while the 
cardiac impulse is passed through the A-V node and the 
His-Purkinje system. Once the muscles of ventricles are 
excited they get contracted. This contraction provides the 
main force for circulating blood to the body organs and 
causes the largest wave present in ECG signal which 
consists of three components. First downward deflection is 
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called the Q wave, consecutive upward deflection is called 
the R wave and the final downward deflection is called the 
S wave. Group of these three waves is referred to as the 
QRS complex. The polarity and presence of each particular 
wave of QRS complex may vary according to the position 
of sensing leads as well as body abnormalities. Following 
the QRS complex there is another isoelectric segment. 
Finally the ventricles return to their electrical resting state 
and this repolarization can be seen as a low-frequency wave 
called the T wave. 

3. THE PROPOSED ECG MODEL 

According to typical ECG morphology it was decided 
to model each particular wave of a PQRST complex using 
elementary mathematical functions which are concatenated 
and compose a complete heartbeat. Parameters allow 
amplitude, width and position changes of each respective 
wave. In case of Q and S wave there are two variants 
introduced. The first one uses fixed shape of Q and S waves 
allowing for adjustment of amplitude and width. The 
second one moreover allows the change of their shape as 
well. 

3.1. PQRST complex with fixed shape Q and S waves 

Now the functions used for generating a single heartbeat 
will be described in detail. A heartbeat starts with a short 
isoelectric segment which is simply modelled by a 
function: 

  0kB ; for 
BKk 0 , (1) 

where KB is the width and k is the sample number within 
one wave segment. Ongoing P wave is modelled using a 
cosine function: 
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where AP is the amplitude and KP is the width of P wave. 
There is again a short isoelectric segment: 

  0kPQ
; for

PQKk 0 , (3) 

where KPQ is the width. The Q wave is modelled using a 
segment created by section of a Gaussian monopulse (a 
differentiated Gaussian pulse): 
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for 
QKk 0 , where AQ is the amplitude and KQ is the 

width of Q wave. The R wave is modelled using a sinewave 
segment: 
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RKk 0 , (5) 

where AR is the amplitude and KR is the width of R wave. 
The S wave is modelled again using a segment of Gaussian 
monopulse: 
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where AS is the amplitude, KS is the basic width of the S 
wave. KCS is a parameter which allows slight adjustment of 
S wave shape by cutting away a portion at the end. Now the 
transition between S and T wave is described as a linear 
function: 

     CSS
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for 
STKk 0 , where sm is the slope parameter and KST is 

the width of transition segment. The T wave is modelled 
using a segment of cosine function: 
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for 
TKk 0 , where AT is the amplitude and KT is the 

width of T wave. The final transition from T wave back to 
isoelectric line is modelled using function: 
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where sI is the parameter for setting the transition slope 
between T wave and isoelectric line and KI is the width of 
the ending section. 

A complete heartbeat H(1b,n) is given as concatenation 
of all waves modelled by (1-8) in such a way, that the 
beginning of each segment is appended to the end of a 
previous one, while their order is always the same starting 
with (1) and ending with (8). Here 1b denotes the set of 
heartbeat parameters for the first variant: 
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and n denotes the sample number within one generated 
heartbeat in such a way, that n = 0, 1, 2, …, N1-1. Each 
segment of a heartbeat has maximum length defined by 
width parameters (Kx). Thus the sum of all segment lengths 
is N1=KB+KP+KPQ+KQ+KR+KS–KCS+KST+KT+KI. 

3.2. PQRST complex with adjustable Q and S waves 

This variant differs from the previous one by usage of 
two linear functions to model Q and S wave instead of a 
Gaussian monopulse, which allows adjusting the shape of 
respective waves more precisely. Here all the modelling 
functions are the same as for the previous section, except of 
equations (4) and (6). The equation (4) is replaced by 
concatenation of two functions: 
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where KQ1 is the width of downward deflection, KQ2 is the 
width of upward deflection and AQ is the amplitude of Q 
wave. Similarly the equation (6) is replaced by 
concatenation of two functions: 
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where KS1 is the width of downward deflection, KS2 is the 
width of upward deflection, ss is the slope parameter of 
upward deflection and AS is the amplitude of S wave. The 
argument of S(KS-KCS) in equation (7) is now replaced by 
KS2. 

A complete heartbeat H(2b,n) is then adjusted using 
modified set of parameters 2b for the second variant: 
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here n denotes the sample number n = 0, 1, 2, …, N2-1, and 
N2=KB+KP+KPQ+KQ1+KQ2+KR+KS1+KS2+KST+KT +KI is 
the sum of all segment width parameters. 

3.3. Building a custom ECG signal 

For simplification let’s denote the function of one 
heartbeat generated using any of the described variants as 
H(b,n), where b is the set of parameters 1b or 2b and, n = 0, 
1, 2, …, N=N1-1 in case of 1b or N=N2-1 in case of 2b 
respectively. Because the concatenation of functions 
forming a heartbeat obviously leads to an unnatural sharp 
edges present in resulting signal, the generated heartbeat is 
filtered using a Savitzky-Golay smoothing filter with 
window size of 7: 
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for n=0, 1, 2, …, N, where H(b,n±j)=0 if the sum n±j is out 
of the specified interval for n. The filter plays a significant 
role while using the second model variant, because it forms 
the smooth shape of Q and S waves.  

A complete ECG signal now can be built by 
concatenating multiple heartbeats Hf(bi,n), where the set of 
parameters bi can vary in each consecutive heartbeat. The 
beginning and ending segment of each heartbeat aligns 
smoothly with isoelectric line, thus there are no artifacts 
present at the position of their joint. This allows creating a 
completely custom-made ECG signal which can include 
various irregular heartbeats present at custom positions. 

Even mixing the heartbeats generated from both proposed 
model variants is possible. As an example, a short signal 
containing a premature ventricular contraction (PVC) is 
modelled in Fig. 2 using the first model variant. 

 

 

Fig. 2  Modelled ECG signal containing a PVC heartbeat 

3.4. Equipment noise and the respiration frequency 

To make the modelled signal more realistic, it is 
possible to add white noise into resulting signal for 
simulating the equipment noise. If needed, powerline noise 
can be added as a small amplitude sinewave of powerline 
frequency 50Hz or 60Hz. Adding a suitable amount of 
noise can also hide some unnatural perturbations which can 
be present in modelled signal due to imprecise parameter 
setting or due to constraints of modelling functions used.  

The respiration causes a baseline wander of ECG signal 
[7]. It means that the isoelectric line relatively slowly 
periodically changes its position. A simple way to model 
this effect is to add a sinewave of respiration frequency into 
ECG signal, which may vary from about 0.2Hz to 0.5Hz 
(approximately 12 to 30 breaths per minute). 

An example of synthetized hypokalemia ECG signal 
with addition of equipment noise and effect of respiration 
can be seen in Fig. 3. 

 

 

Fig. 3  An example of modelled hypokalemia ECG signal with 
noise and respiration frequency added 

4. PERFORMANCE 

To test the possibilities of QRS pattern generation using 
proposed model its parameters were adjusted to fit typical 
irregular heartbeats. As a reference the irregular beats for 
various diagnoses were generated using ECG signal 
generator from LabVIEW Biomedical Toolkit. Each 
reference pattern Hr(n) was extracted from 60bpm signal 
generated with sampling frequency of 512Hz and contains 
one QRS complex with length of 1s. The set of model 
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parameters b was found using differential evolution 
optimization algorithm [8] (DE) solving the problem: 

MSEb
b

minarg , (17) 

where MSE is the mean square error between the reference 
and modeled heartbeat: 
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Initial bounds for b parameters were set in a following 
way: -0.2 to 2 for amplitude parameters, 0-150 for segment 
length parameters and 0-200 for slope parameters. After 
first iterations of DE the b parameter bounds were adjusted 
according to data found in Table 1. 

Table 1  DE parameters bound setting for both model variants 

1b min max 2b min max 

KB 0 130 KB 0 130 

AP -0.2 0.15 AP -0.2 0.15 

KP 10 100 KP 10 100 

KPQ 0 60 KPQ 0 60 

AQ 0 0.5 AQ 0 0.5 

KQ 10 150 KQ1 0 70 

AR 1 2 KQ2 0 50 

KR 10 150 AR 1 2 

AS 0 1 KR 10 150 

KS 10 200 AS 0 1 

KCS -5 150 KS1 0 50 

sm 1 150 ss 1 110 

KST 0 110 KS2 0 50 

AT -0.5 1 sm 1 150 

KT 50 200 KST 0 100 

sI 0 50 AT -0.5 1 

   KT 50 200 

   sI 0 150 

Table 2   First variant model parameter sets for each diagnosis 

1b 
Diagnosis 

a b c d e f g h 
KB 10 0 117 61 121 121 117 124 

AP 0.07 0 0.09 
0.10

6 
0.07 0.07 0.1 -0.04 

KP 93 23 79 91 73 69 79 75 

KPQ 0 0 0 48 6 13 5 0 

AQ 0.13
5 

0.32
5 

0.06
5 

0.04 0.04 0.02 0.03 0 

KQ 85 140 25 21 21 22 20 15 

AR 1.15 1.09 1.52 1.55 1.17 1 1.55 1.37 

KR 84 133 23 23 23 15 22 36 

AS 0.35 0.28 0.16 0.13 0.11 0.75 0.6 0.16 

KS 114 182 15 15 15 26 14 54 

KCS 61 100 5 2 4 -3 5 27 

sm 61 119 96 17 26 35 1 87 

KST 52 57 101 52 56 64 6 42 

AT 0.13 0 0.19 
0.13

2 
0.68

5 
-0.1 

0.11
5 

0.22
5 

KT 127 77 126 116 112 112 116 184 

sI 0 0 2 9 9 7 10 19 

KI 8 0 31 87 89 67 138 9 

MS
E 

x10-3 

0.74
8 

0.92
8 

0.70
5 

0.65
1 

4.22
5 

0.21
9 

1.02
4 

0.53
1 

 
The length parameter of last segment KI is calculated so 

that the total sum of length parameters N=N1-1 or N=N2-1 
is always equal to 512 and thus it is excluded from the set 
of parameters being optimized. Signal output of the model 
with such a configuration does not need resampling.  

Irregular QRS patterns used as a reference for which the 
model was tested correspond to atrial tachycardia (a), 
ventricular tachycardia (b), junctional tachycardia (c), 
atrioventricular block (d), hyperkalemia (e), hypokalemia 
(f), hypercalcemia (g) and hypocalcemia (h). 

 
 

 

Fig. 4  ECG QRS patterns generated by the first model variant:  
a) atrial tachycardia; b) ventricular tachycardia; c) junctional 

tachycardia; d) atrioventricular block; e) hyperkalemia;  
f) hypokalemia; g) hypercalcemia; h) hypocalcemia 
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Resulting QRS patterns modelled using first model 
variant for each diagnosis can be seen in Fig. 4. 
Corresponding parameter setting 1b found by DE and 
resulting MSE is listed in Table 2. For the second model 
variant the found parameters and MSE is listed in Table 3. 
Results were obtained using simulation in LabVIEW 
programming environment. DE optimization used uniform 
crossover method, population size of 500, and maximum 
number of 200 iterations for all the testing results provided. 
The listed parameters are average values for 10 runs of DE.  

It should be noted that listed amplitude parameters 
except the AT are approximately corresponding to 
respective amplitudes of generated waves in the units of 
mV. Yet this relation does not always apply if the Q and S 
segment is narrow and considering the signal is filtered. 
The finite amplitude of T wave is a function of preceding 
segment amplitudes. 

If the particular segment is not present in the signal it 
results in a zero length or amplitude parameter. Such a 
situation can be seen for example in Table 2 where the KPQ 
is zero for cases (a) or (b). Here the short isoelectric 
segment between P and Q wave is missing (Fig. 4b) or 
already modelled by initial slope of Q wave if the wave is 
large enough (Fig. 4a). 

Table 3   Second variant model parameter sets for each 
diagnosis  

2b 
Diagnosis 

a b c d e f g h 
KB 10 0 117 61 121 121 117 124 

AP 0.07 0 0.09 
0.10

6 
0.07 0.07 0.1 -0.04 

KP 93 23 79 91 73 69 79 75 

KPQ 1 1 14 50 13 43 14 17 

AQ 0.13 0.33 
0.06

5 
0.06

5 
0.04

7 
0 0.06 0 

KQ1 55 55 12 12 12 0 11 0 

KQ2 31 37 7 7 7 0 7 0 

AR 1.15 1.09 1.52 1.55 1.17 1 1.55 1.37 

KR 77 137 22 22 22 12 23 32 

AS 0.38 0.27 0.18 0.16 0.12 0.48 0.1 0.19 

KS1 32 44 9 7 7 12 5 15 

ss 62 108 4 4 6 6 2 8 

KS2 33 31 4 4 6 7 4 4 

sm 53 97 138 64 14 1 29 55 

KST 52 52 100 56 53 74 1 62 

AT 0.12 0 0.2 0.13 
0.66

5 
-0.1 0.12 0.23 

KT 119 87 137 126 126 126 133 183 

sI 17 0 0 128 32 0 23 0 

KI 9 45 11 76 72 48 118 0 

MS
E 

x10-3 

1.10
6 

1.78
2 

0.48
1 

0.46
8 

0.96
4 

0.43
5 

0.64
4 

1.16
8 

 
As it can be seen from higher MSE for (a) and (b) 

diagnosis, the second model variant is problematic when it 
comes to modelling patterns where the Q and S waves have 
low frequencies and thus are too wide. In this case the linear 
functions used for modelling create sharp edges present at 
the peaks of each wave and the filter (16) window size is 
too low to smooth these artifacts. Thus for the purpose of 
modelling low frequency Q and S waves the first model 

variant is performing better. For some situations where the 
Q and S waves are of high frequency e.g. diagnosis (e) and 
(g), the second model variant performs better. However, 
because the second model variant has more adjustable 
parameters and they are more difficult to set, for general 
purposes of simulating an ECG signal the first model 
variant is much suitable and simpler to use.  

5. CONCLUSIONS 

Two ECG model variants were introduced for 
generation of artificial ECG signals. Both models allow 
creating a custom-made signal including irregularities 
occurring at custom positions and at custom time instances 
as well as addition of equipment noise and respiration 
effect. The possibility of various irregular heartbeats 
generation was tested against reference QRS patterns 
generated by LabVIEW Biomedical Toolkit. Differential 
evolution optimization algorithm was used to find the 
model parameters fitting the reference QRS patterns 
corresponding to various diagnoses and the MSE was 
evaluated for each case.  

It was shown that the first model is suitable for 
modelling low frequency Q and S waves, while the second 
model variant using linear functions performs better in 
some cases of high frequency Q and S waves. However, 
because the first model uses fewer setting parameters it is 
much simpler to use and can be used universally. Second 
model variant is less suitable for generating QRS patterns 
where the Q and S waves are too wide. The relatively 
complex setting of heartbeat frequency of long-term signals 
by adjusting the length parameters of each wave segment is 
its complication. It can be solved by resampling the 
generated signal into suitable form. 

ACKNOWLEDGMENTS 

The work is a part of the project supported by the 
Cultural and Educational Grant Agency of the Slovak 
Republic (KEGA No. 015TUKE-4/2016) and the Science 
Grant Agency of the Slovak Republic (No. 1/0722/18). 

REFERENCES 

[1] TOMPKINS, W. J.: Biomedical digital signal 
processing, Prentice Hall, 2000. 

[2] GOLDBERGER, A. L. – AMARAL, L. A. N. – 
GLASS, L. – HAUSDORFF, J. M. – IVANOV, P. 
CH. – MARK, R. G. – MIETUS, J. E. – MOODY, G. 
B. – PENG, C. K. – STANLEY, H. E.: PhysioBank, 
PhysioToolkit, and PhysioNet: Components of a New 
Research Resource for Complex Physiologic Signals, 
Circulation 101(23):e215-e220; June 2000.  

[3] McSHARRY, P. E. – CLIFFORD, G. D. – 
TARASSENKO, L. – SMITH, L. A.: A Dynamical 
Model for Generating Synthetic Electrocardiogram 
Signals, IEEE Transactions on Biomedical 
Engineering, Vol. 50, No. 3, March 2003.  

[4] KOVÁCS, P.: ECG Signal Generator Based on 
Geometrical Features, Annales Universitatis 
Scientiarum Budapestinensis de Rolando Eötvös 



8 Model for Generating Simple Synthetic ECG Signals 

ISSN 1335-8243 (print) © 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk 

Nominatae Sectio Computatorica , Vol. 37, pp. 247-
260, 2012. 

[5] KUBICEK, J. – PENHAKER, M. – KAHANKOVA, 
R.: Design of a synthetic ECG signal based on the 
Fourier series, 2014 International Conference on 
Advances in Computing, Communications and 
Informatics (ICACCI), New Delhi, pp. 1881-1885, 
2014. 

[6] BERBARI, E. J.: Principles of Electrocardiography, 
Biomedical Engineering Handbook: Second Edition, 
CRC Press, 2000. 

[7] ZIVANOVIC, M. – GONZÁLEZ-IZAL, M.: 
Simultaneous powerline interference and baseline 
wander removal from ECG and EMG signals by 
sinusoidal modeling, Medical Engineering & Physics, 
Vol. 35, No. 10, pp. 1431-1441, 2013. 

[8] STORN, R. – PRICE, K.: Differential Evolution – A 
Simple and Efficient Heuristic for Global 
Optimization over Continuous Spaces, Journal of 
Global Optimization, Vol. 11, pp. 341-359, 1997. 

Received April 18, 2018, accepted July  11, 2018 

BIOGRAPHIES  

Pavol Dolinský was born on 10. 06. 1992. In 2015 he 
graduated (Ing.) at the Department of Electronics and 
Multimedia Telecommunications of the Faculty of 
Electrical Engineering and Informatics at Technical 
University in Košice. He defended his thesis in the field of 
electronic sensors of physical quantities.  Currently he is a 
postgraduate student at Department of Electronics and 
Multimedia Telecommunications. His scientific research is 

focusing on compressed sensing in biomedical signal 
processing. 

Imrich Andráš was born on 30. 06. 1991. He graduated 
(Ing.) at the Department of Technologies in Electronics of 
the Faculty of Electrical Engineering and Informatics at the 
Technical University of Košice. He defended his thesis in 
the field of microphone array speech sensing and 
processing. Since 2015 he is a post-graduate with the 
Department of Electronics and Multimedia 
Telecommunications. His scientific research is focusing on 
compressed sensing with environmental applications. 

Linus Michaeli was born in Žilina, Slovak Republic in 
1945. He received M. S. degree with honors in 
Telecommunications from the Technical University of 
Transport in 1968, "PhD" and "Doctor of the Academy" 
degrees from the Slovak Technical University (1979) and 
Slovak Academy of Sciences, Bratislava (2003), 
respectively. Since 1994 he is full professor at the Dept. of 
Electronics and Multimedia Telecommunications, 
Technical University of Košice and a visiting professor at 
the University of Calabria, Cosenza, Italy. His main field 
of interest is in the analog-digital and digital-analog 
conversion, analog and digital processing of measured 
signals, intelligent measuring systems, and methods for 
compressive sensing. 

Domenico Grimaldi is a Full Professor of Electronic 
Measurement with the Department of Computer Sciences, 
Modeling, Electronics, and System Science, University of 
Calabria, Rende, Italy. He is responsible for the laboratory 
for processing measurement information. His current 
research interests are in the characterization of 
measurement transducers, digital signal processing for 
monitoring and testing, distributed measurements and 
synchronization, and measurement for medical 
applications. 

 


