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ABSTRACT
The paper deals with numerical methods for the solution of ill-posed problems on special sets. A definition of well-posed problem is

given. A conjugate gradients projection method and a program written in the programming language Matlab, which solve the problem
on 28 special sets of correctness are briefly described. Some results for the numerical solution of Fredholm’s integral equation of
the first kind are presented. The method for solving systems of linear algebraic equations on special sets has been used also for the
functions smoothing for the experimental measurement data.
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1. INTRODUCTION

Solving practical tasks formulated in the form of oper-
ator equations (e.g., integral equations or systems of linear
algebraic equations)

A · z = u, u ∈U, z ∈ Z, (1)

where U and Z are some metric spaces, we usually as-
sume, that we don’t know accurate data of a task, but we
know only approximate system matrix and right-hand side
{Ah, uδ}, which approximate accurate data. Errors (de-
viation) can be interpreted as inadequacy of the idealized
mathematical model, or as a result of measurement uncer-
tainty of the input data, or errors, which are made in the
way of discretization or in numerical solution of a task [3].

On the basis of input data {Ah, uδ} it is necessary to
determine the solution of zh,δ , under the assumption that
‖Ah−A‖5 h and ‖uδ −u‖5 δ [7].

According to Hadamard, the problem (1) is said to be
correct, correctly posed or (Hadamard) well-posed if the
following two conditions hold:

1. For each u∈U the equation (1) has a unique solution.

2. The solution of (1) is stable under perturbation of the
right-hand side of this equation, i.e., the operator A−1

is defined on all of U and it is continuous.

Otherwise the problem (1) is said to be incorrectly posed or
ill-posed [7].

It was assumed, that ill-posed problems doesn’t have
physical sense, and there is no solution of such problems. It
turned out, that such problems arise in modeling of various
real physical sense, in geophysics, hydrodynamics, spec-
troscopy [3].

The first work that showed the importance of the solu-
tion of unstable problems and how to deal with such prob-
lems was the work [4]. A. N. Tikhonov have formulated
new definition of the correctness, now called correctness in
Tikhonov sense [3]. The problem is conditionally correct if:

1. It is apriori known, that the solution z of the task (1),
belongs to a certain subset M of the base space Z.

2. The solution is unique on the set M.

3. The solution is stable on the set M, i. e., if the right-
hand side uδ belongs to the operator A image of a set
M — uδ ∈ {u ∈U |u = Az, z ∈M ⊂ Z}.

Definition: A quasisolution to the equation (1) is called an
element of z̄∈M, which minimize the size of the residuum:

‖A · z̄−u‖= inf
z∈M
‖A · z−u‖ (2)

on the set M [2].
In the case of continuous operator A and the compact

set M, the infinum in (2) is equal to the minimum, so there
exists an element z̄ ∈M minimizing the residuum norm.

Authors of [7] stated that it’s not necessary to specify
an exact solution to the minimization task, and that any el-
ement zh,δ , for which the following applies:

‖Ah · zh,δ −uδ‖5 h · ‖zh,δ‖+δ , (3)

may be used instead of the quasisolution.
This choice ensures stability, i. e., the approximate so-

lution zh,δ will be converge to the exact solution z if the
inaccuracies h and δ tend to zero.

As a special sets M discrete analogs of compact subsets
in corresponding functional spaces (a set of monotone non-
increasing/nondecreasing convex/concave functions which
could be bounded from below, upper or from both sides) are
considered [7].

To solve problem (2) on some sets listed above, authors
of [7] have designed FORTRAN programs based on the
conjugate gradients projection method and on the condi-
tional gradient method. Focusing on the conjugate gradi-
ents projection method we have created a Matlab/Octave
program and spread it on the 28 special sets of functions,
which are listed in Table 1.

Dealing with stabilization of ill-posed problems the reg-
ularization method developed in 1963 by A.N. Tikhonov
should be mentioned. This method has become a kind of
basis for solution to the issues of ill-posed problems.

“We propose constructive methods for obtaining reg-
ularizing algorithms for the problem (1) in case not only
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Table 1 Special classes list

Notion Title ITASK
M↓ Non-increasing functions 1

M↓cl Non-increasing functions bounded from below 1.1
M↓cu Non-increasing functions bounded from above 1.2
M↓cu

cl
Non-increasing functions bounded from above and below 1.3

M↑ Non-decreasing functions 2
M↑cl Non-decreasing functions bounded from belowe 2.1
M↑cu Non-decreasing functions bounded from above 2.2
M↑cu

cl
Non-decreasing functions bounded from above and below 2.3

_
M Concave functions 3
_
Mcl Concave functions bounded from belowe 3.1
_
M↓ Concave non-increasing functions 4
_
M↓cl Concave non-increasing functions bounded from belowe 4.1
_
M↓cu Concave non-increasing functions bounded from above 4.2
_
M↓cu

cl
Concave non-increasing functions bounded from above and below 4.3

_
M↑ Concave non-decreasing functionsw 5
_
M↑cl Concave non-decreasing functions bounded from below 5.1
_
M↑cu Concave non-decreasing functions bounded from above 5.2
_
M↑cu

cl
Concave non-decreasing functions bounded from above and below 5.3

^
M Convex functions 6
^
Mcu Convex functions bounded from above 6.1
^
M↓cl Convex non-increasing functions 7
^
M↓cl Convex non-increasing functions bounded from below 7.1
^
M↓cu Convex non-increasing functions bounded from above 7.2
^
M↓cu

cl
Convex non-increasing functions bounded from above and below 7.3

^
M↑ Convex non-decreasing functions 8
^
M↑cl Convex non-decreasing functions bounded from below 8.1
^
M↑cu Convex non-decreasing functions bounded from above 8.2
^
M↑cu

cl
Convex non-decreasing functions bounded from above and below 8.3

the right-hand side but also the operator involves an error.
Suppose we are given an element uδ and a linear opera-
tor Ah such that ||uδ − ū||U 5 δ , ||Ah−A|| 5 h. In other
words, the initial information consists of {uδ ,Ah,δ ,h}. We
are required to construct from this data an element zη ∈ Z,
η = {δ ,h}, such that zη → z̄ as (δ ,h)→ (0,0). The follow-
ing construction for solving this problem is widely used.
Consider the functional

Mα [z] = ||Ahz−uδ ||2U +α||z||2Z . (4)

Let zα
η be an extremal of the functional Mα [z], i.e., an ele-

ment minimizing Mα [z] on Z. If the regularization parame-
ter α = α(η) matches in a certain sense the set η = {δ ,h},
then in a certain sense zα(η)

η will be a solution of (1)” [7].
Next in our paper we compare the numerical solution

of Fredholm’s integral equation of the first kind with our
method of conjugate gradients projection with the direct
method of solution of an unexact system and with two reg-
ularization methods based on two different regularization
functionals – the first using the L2 norm, the second using
the Sobolev’s W 1

2 norm ‖z‖Z .

2. METHODS

In our function PTILRB.m, the corresponding special set
may be chosen using a variable ITASK. All ITASK values
are listed in the Table1.

All considered special sets are determined using a sys-
tem of inequalities, e.g., the set

^
M↑cu of convex nondecreas-

ing functions with an upper bound cu is defined by:

^
M↑cu =

z ∈ Rn :

z1 ≤ z2,

zi−1−2zi + zi+1 ≥ 0; i = 2, . . . ,n−1,

zn ≤ cu.


(5)

All 28 cases of special sets can be described with a sim-
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ilar set of linear inequalities written in the form F · z ≤ b,
with the size mF ×n of a matrix F . So the problem of qua-
sisolution of a system (1) determinantion is formulated by
the following:

find z∗= argmin
z∈M
‖A ·z−u‖2

2, M = {z∈Rn |F ·z≤ b}, (6)

where ‖ · ‖2 is the Euclidean norm of a vector.
Below we will use I(z) =

{
i ∈ {1, . . . ,mF}|Fi · z = bi

}
– a set of active inequalities, where Fi denotes the i-th row
of a matrix F . The size of an actual set I(z) we will denote
m. We will use a submatrix FI of the matrix F with rows
corresponding to the set I(z), too. En is the identity matrix
of size n. Matrix Q is a matrix of a quadratic form

ϕ(z) = ‖A · z−u‖2
2 = (z,Qz)+(d,z)+ e.

The constrained minimization problem (6) can be
solved by many optimization methods. Below, a brief de-
scription of an algorithm of the conjugate gradients projec-
tion method is described:
Step 1: We start the minimization at any point z(0) satisfy-

ing required conditions F · z≤ b. The number m of
active inequalities is set to 0. For a register of itera-
tions methods we choose k = 0.

Step 1.1: If k = n we continue to step 6. Since the conju-
gate gradients projection method reaches after n steps
the minimum in Rn.

Step 1.2: Here we determine a direction p(k) of a func-
tional decrease. If k = 0 then we calculate it as:

p(k) =−gradϕ(z(k)), (7)

Otherwise:

p(k) =−gradϕ(z(k))+
||gradϕ(z(k))||2

||gradϕ(z(k−1))||2
· p(k−1).

(8)

Step 1.3: A value of the optimal step ak is determined:

ak =
1
2
· (gradϕ(z(k)), p(k))

(Qp(k), p(k))
(9)

Step 1.4: The maximal value of a step – amax in a given di-
rection p(k) is determined, to move within the bound-
aries of the M in (6).

Step 1.5: If is ak ≤ amax, then

z(k+1) = z(k)+ak · p(k), k = k+1, (10)

and repeat algorithm from step 1.1. If ak > amax then

z(k+1) = z(k)+amax · p(k), (11)

and continue in step 2.

Step 2: New active boundary appeared, set m = m+1.

Step 3: The projector on a subspace Rn−m is determined:

PI = En−FT
I (FIFT

I )−1FI . (12)

Step 4: The new starting point will be z(k) and instead of
gradϕ(z(k)) its projection is used, if k < n−m repeat
step 1.

If k = n−m and we still didn’t found the minimum,
we go back to step 2. Otherwise, if we found the min-
imum and m = 0, we continue at the step 6. If m 6= 0
we continue at the step 5.

Step 5: We have reached a minimum, and we have to re-
move some active bounding to get new decrease pos-
sibilities.

Step 5.1: We define a parameters vector w0 of a length m:

w0 = (FIFT
I )−1FI gradϕ. (13)

Step 5.2: If w0
i ≥ 0, for i = 1,2, . . . ,m, we’ve got the prob-

lem solution. We pass by the end of the algorithm,
step 6.

Step 5.3: If w0
i is negative for some i, we will remove the

index i out from a set I(z) of active inequalities and
we are going to step 3.

Step 6: Finish of the algorithm.

3. PROGRAM

The main function of our program has the following
structure:

function conjugate_gradients_projection
[d,Q] = PTILRA(A,u);
[F,b,z0] = PTILRB(n,ITASK,cu,cl);
[IEND,ICI,r,ma,mask,zv]=
=PTILR1(A,z0,u,Q,d,F,b,dgr,ICM,nn);
[IEND,ICI,r,ma,zv,mask]=
=PTILR2(A,z0,u,Q,d,F,b,dgr,ICM,mask,ma);

[FJ,ma]= PTILR3(F,mask);
[PL,P] = PTILR4(FJ,ma);
[IED,zv,ma,mask] =
=PTILR5(F,b,zv,mask,PL,Q,d,dgr,ma);
[IED,mask,ma] = PTILR6(P,mask,Q,d,zv);

[IEND,ICI,r,ma,zv,mask]=
=PTILR2(A,zv,u,Q,d,F,b,dgr,ICM,mask,ma);

[FJ,ma]= PTILR3(F,mask);
[PL,P] = PTILR4(FJ,ma);
[IED,zv,ma,mask] =
= PTILR5(F,b,zv,mask,PL,Q,d,dgr,ma);
[IED,mask,ma] = PTILR6(P,mask,Q,d,zv);

As we can see, function PTILR2 is calling two times.
This function is the core of all program. For the first time
it is calling through the function PTILR1, where the mask
and the number of borders are set to zero. Then we enter to
the function PTILR2 with initial vector z(0), satisfying the
condition F · z≤ b. The function PTILR2 is called for the
second time with the initial vector zv – the result of the first
run. After running this program, we get the final solution
vector zv.

In a function PTILR2 another functions are called.
Namely: PTILR3 – the subroutine for active boundaries
according to the mask creation, PTILR4 – subroutine of a
projector forming, PTILR5 – subroutine of functional mini-
mization within a domain determined by active boundaries
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and their order in MASK, PTILR6 – subroutine for the bound-
aries removal.

The value of variable ITASK shall be chosen according
to the Table 1.

4. NUMERICAL RESULTS

Below some numerical results of our calculations using
the conjugate gradients projection method are given.

4.1. Solving Fredholm’s Integral Equations
on a Special Sets

We will consider convolution Fredholm’s integral equa-
tion of the first kind:∫ 1

0
K(x,s) · z(s)ds = u(x), −2 5 x 5 2, (14)

with the kernel

K(x,s) =
1

1+100(x− s)2 . (15)

Two exact solutions of the problem (14) z1(s) = 1− s2

and z2(s) = 4s(1− s), s ∈ [0,1] were considered. The cor-
responding exact right-hand sides u1(x) and u2(x) of (14)
were determined using the program wxMaxima [1], e.g.:

z1:1-s^2;
u1:integrate(1/(1+100*(x-s)^2)*z1,s,0,1);
tex(%);
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Fig. 1 Comparison of analytical and numerical determination of
right-hand side u1(x) (left) and u2(x) (right)

To check the correctness of the right-hand side vector
u(x) determination we also used the numerical integration
methods based on the Simpson rule, trapezoid rule and rect-
angle rule. In Figure 1 both analytical u(x) and numerical
u = (u1, . . . ,unx) right-hand sides are compared. The differ-
ence calculated according

∆u = max
i=1,...,nx

|u(xi)−ui|, (16)

where nx is a number of discrete values xi, has been used.

Below in the Figure 2, 4 methods of the solution of the
problem (1) are compared. As the right-hand side vector
the exact vector with a multiplicative noise of size δ = 10−3

has been used. Exact solution is denote as ze. The solution
using the inverse matrix A−1 (or pseudoinverse matrix A+)
is called direct solution, and is denoted by zd. Two solu-
tions based on the regularization methods mentioned above
using the regularization parameter α = 10−6 are denoted
as zr1 and zr2, and, finally, the result of the stabilization
conjugate gradients projection method is denoted by zs.

In Figure 3 the logarithms of the residuals at each point
are shown. It is evident that in this particular case the sec-
ond regularization and our method gave us the best and sta-
ble results.

0 0.5 1
−2

−1

0

1

2
x 10

4

s

 

 

ze
zd

0 0.5 1

0

0.5

1

s

 

 

ze
zr1

0 0.5 1

0

0.5

1

s

 

 

ze
zr2

0 0.5 1

0

0.5

1

s

 

 

ze
zs

Fig. 2 Comparison of methods for numerical solution of
Fredholm’s equations of the first kind – δ = 10−3, α = 10−6,

ITASK=4.3
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Fig. 3 The logarithms of absolute differences between the exact
and numerical solutions

4.2. Functions Smoothing

Let us consider a function u(t) which belongs to some
class of correctness. E.g., if we consider a sum of k expo-

ISSN 1335-8243 (print) c© 2017 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 17, No. 2, 2017 47

nential functions

u(t) =
k

∑
i=1

Ai · e−αi·t , (17)

with Ai > 0 and αi > 0, i = 1, 2, . . . , k, we know, that the
function u(t) will be a positive decreasing (nonincreasing)
convex function (case ITASK=7.1).

For the smoothing of the noised data we simply put
A = En, where En is the identity matrix of size n. So, we are
looking for a data vector – the nearest vector to the noised
data which belongs to the set of positive nonincreasing con-
vex functions. E.g., we use the next script:

ITASK=7.3; delta=0.3;cl=0.1; cu=0.9;
A=eye(length(u)); ue=...;
u=(1+(rand(size(ue))-0.5)*2*delta).*ue;
[zv,z0]=conjugate_gradients_projection

(A,u,ITASK,cl,cu,ICM,dgr);
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Fig. 4 Comparison of smoothing methods with ITASK=1.1 and
ITASK=7.1
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Fig. 5 Relative residuals

For the calculation we used an example of a sum of three
exponential functions with positive coefficients. In Figures
4 and 5 the corresponding result of functions smoothing and
its relative residuals to the exact data vector are shown. Us-
ing Task 7.1 (solid red line in Fig. 5) led us to the maximal
relative error cca. 8% for a 20% noised data.

5. CONSLUSION

The results presented in Fig. 3 show that using the sta-
bilization methods including a solution of system of equa-
tions on a special sets of functions may be an effective tool
to solve ill-posed problems. Presented method can be used
also for noised data smoothing.
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