
Acta Electrotechnica et Informatica, Vol. 17, No. 2, 2017, 3–10, DOI: 10.15546/aeei-2017-0009 3

AN ANALYSIS OF SOME ASPECTS OF COMPONENT-BASED PROGRAMMING FOR
SELECTING APPROPRIATE CATEGORICAL STRUCTURES AS THEIR MODELS

William STEINGARTNER∗, Davorka RADAKOVIĆ∗∗, Valerie NOVITZKÁ∗, Mohamed Ali M. ELDOJALI∗
∗Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of Košice,

Letná 9, 042 00 Košice, Slovak Republic,
E-mail: william.steingartner@tuke.sk, valerie.novitzka@tuke.sk, eldojalimohamed@gmail.com
∗∗Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad,

Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia, E-mail: davorkar@dmi.uns.ac.rs

ABSTRACT
Formal methods and formal models are important tools in software engineering. Formal methods provide unambiguous meaning of

programs written in some language or constructed from modules. Moreover, they provide the basic mathematical techniques necessary
for those who are working with theoretical background in computer science. Categories are interesting mathematical structures which
have become important for constructing the models of programs and program systems. In this paper we formulate an introductory
analysis of some aspects of component-based programming for selecting appropriate categorical structures as their models.

Keywords: category theory, component, contract, designs, interface, interactions, software

1. INTRODUCTION

Component oriented programming has been, for the
past few years, an emergent programming paradigm. Com-
ponent software with its benefits has recently come to the
fore of interest not only in information technology but also
on markets, with further growth predicted. The ability of
computers and customer demands are increasing and there-
fore it is necessary to increase the productivity of programs.
Satisfied customer is the priority therefore the commitment
is to follow its needs and requirements. This is the reason
why the markets use the concept of component software.
An exponential growth in this segment is expected in near
future.

Currently, there is no doubt that the formal specifica-
tions are necessary to improve the quality of software sys-
tems. Formal specification techniques have a formal syntax
and formal semantics which are based on a mathematical
theory, for example set theory, logic, algebra and category
theory [12]. This contribution explains the basic theory of
categories, which can be understood as a general theory of
structures. The idea is to describe the properties of struc-
tures consisting of objects which include morphisms.

Category theory is a relatively young branch of math-
ematics. Its influence is being felt in many parts of com-
puter science, including the design of functional and imper-
ative programming languages, implementation techniques
for functional languages, semantic models of programming
languages, type theory, specification languages, etc.

This paper examines category theory for formal descrip-
tion of components in component model. The work de-
picts two approaches. The first approach is explained on
the MVC model. In the second approach contracts play
an important role as they are used when components com-
municate with each other via interfaces. Contracts are the
rights and obligations on both sides of the communication.
Pre and post conditions are used in Fig. 2. A contract can
be compared to the filter, which accepts any input, but the
output will show only data that comply with the contract
and these are forwarded.

The remainder of the paper is organized as follows: Sec-
tion 2 gives an overview of some applications of Compo-
nent oriented programming. In section 3, we present basic
notes of Component oriented programming. Section 4 de-
fines interface as main object for communication between
components. Finally, some guidelines for future develop-
ment and conclusions are closing our paper.

2. RELATED WORK

In this section we present various approaches for han-
dling components and their composition. Chen et al. [8]
have proposed a model supporting component-based pro-
gramming using processes to model application programs
and glue programs to build new components from existing
ones.

ComponentJ [27] is a Java-like programming language
with basic idea to be used as a glue language for existing
components that are afterwards used in standard Java code.
ArchJava [2] is used for expressing software architectural
structure thus it provides the confirmation for implementa-
tion of the specified architecture at every stage of the soft-
ware lifecycle.

In [5], Bidinger et al. have presented the Dream frame-
work, i.e. a domain specific type system for messages and
components that manage messages. Dream components [7]
are standard Fractal components which allow Dream com-
ponents to exchange messages that are encapsulated Java
objects.

COMPO [28] is a language which extends a reflective
programming language, building an executable meta-model
which allows introspection and intercession. It can be said
that COMPO is an operational prototype for developing
completely component-based applications.

Rouvoy and Merle have presented an abstract compo-
nent model as an annotation framework which assembles
the basic concepts of the abstract component model [26].
Fabresse et al. stress five requirements that have to be sat-
isfied to support Component-Oriented Programming [10]:
decoupling, adaptability, unplanned connections, encapsu-

ISSN 1335-8243 (print) c© 2017 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



4 An Analysis of Some Aspects of Component-Based Programming for Selecting Appropriate Categorical Structures as their Models

lation and uniformity, which they have achieved in new
Component-Oriented Language, the extension of Simple
Component Language (SCL) [11].

Granström in [14] introduces the notion of world map
and shows that worlds and world maps form a category with
arbitrary products. The construction of the category is car-
ried out entirely in type theory and directly implementable
in dependently typed programming languages. After re-
placing the notion of world map with the standard notion
of component, he gets a rigorous paradigm for component-
based development.

3. COMPONENT ORIENTED PROGRAMMING

Component oriented programming (COP) is a tech-
nique of developing software applications by combining
pre-existing and new components [14]. Software compo-
nents are self-contained, self-describing packages of func-
tionality containing definitions of types that expose both be-
havior and data. There are a number of important reasons
why COP is important. It provides a higher level of abstrac-
tion. There are an increasingly large number of reusable
component libraries that assist in the development of appli-
cations for various domains.

There are three major goals of COP [30, 32]:

• Conquering complexity: COP provides an effective
way to deal with the complexity of software: divide
and conquer.

• Managing change: the user requirements change,
specifications change, personnel change, budget
changes, technology changes, and so on. Compo-
nents are easy to adapt to new and changing require-
ments.

• Reuse: software reuse allows to design and imple-
ment something once and to use it over and over
again in different contexts. This will realize large
productivity gains, taking advantage of best-in-class
solutions, the consequent improved quality, and so
forth.

COP supports highest level of software reuse because
it allows various kinds of reuse including white box, gray
box and black box reuse. White box reuse means that the
source of a software component is made available and can
be studied, reused, adapted, or modified. Black box reuse is
based on the principle of information hiding. The interface
specifies the services a client may request from a compo-
nent. The component provides the implementation of the

interface that the clients rely on. As long as the interfaces
remain unchanged, components can be changed internally
without affecting clients. Gray box reuse is somewhere be-
tween white box reuse and black box reuse.

COP provides a manageable solution to deal with the
complexity of software, the constant change of systems,
and the problems of software reuse. COP is now the
paradigm for developing large software systems [30, 32].

3.1. Software Component

The software component can be defined as an indepen-
dent part, self-deployable computer code with well-defined
functionality which can be stacked with other components
via the interface. The component is a program or collection
of programs that can be compiled and execute. It is inde-
pendent so as to provide a coherent functionality. It is self-
deployable and it can be stacked with other components so
they can be reused as a unit in different contexts. Integra-
tion, thus joining portion together is done through the in-
terface component, which means that the implementation
of the internal component is typically hidden from the user.
The component technologies that meet these definitions in-
clude Java and Enterprise Java Beans (first mentioned by
Sun Microsystems), the COM (Component Object Model),
DCOM (Distributed Component Object Model), and .NET
components from Microsoft Corporation, CORBA (Com-
mon Object Request Broker Architecture) [32].

The component technology field is currently dominated
by three players: Microsoft (D)COM, OMG CORBA, and
Java. When comparing these technologies with respect to
attributes such as distribution, mobility, language and plat-
form independence, that there are many differences as listed
in Table 1. First of all, notice that component technol-
ogy does not automatically mean distribution. For example,
JavaBeans and Microsoft COM do not support distribution
(denoted by − in Table 1). Secondly, whereas language in-
dependence seemed to be of importance in the pre-Java era
(denoted by ∗ in Table 1), that is for (D)COM and CORBA,
it is not so for the Java-based solutions. Finally, platform
independence (denoted by ∗) is hard to achieve. But, fortu-
nately, it is on the agenda of all three technologies, includ-
ing (D)COM.

It is worth mentioning that the three major technologies
have a rather different origin. Microsoft (D)COM is pri-
marily a desktop technology, with Office as its killer appli-
cation, whereas CORBA originated from the need to have
an enterprise-wide solution for distributed objects. Java is a
special case. It started as a Web-based language, but rapidly
took position in the desktop and enterprise world as well.

Table 1 Technology comparison

distribution mobility language platform
COM – – * –

DCOM + – * +/–
CORBA + – * *

JAVA/Beans – classes Java *
Java/RMI + classes Java *
Voyager + objects Java *

ISSN 1335-8243 (print) c© 2017 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 17, No. 2, 2017 5

3.2. Component versus Object

The concepts component and object are often used in-
terchangeably. Both components and objects are making
their services available via well-defined interfaces, have en-
capsulation properties, are considered to improve the reuse
of software, are considered to alleviate the software evo-
lution phase, are thought of being natural abstractions of
real-world entities, and a real-world entity can be modeled
or implemented using either notion.

Their main conceptual differences according to [24, 6]

are presented in Table 2. Software components are units
of composition with contractually specified interfaces and
context dependencies only. Software component can be de-
ployed independently, is subject to composition by third
parties. A system built up from components is more ro-
bust, is more flexible, has a shorter development time and
the foremost advantage is reuse of software.

An object is abstraction from a real-world entity, with
associated items of information and a set of specific oper-
ations. An object has a unique and invariant identifier, a
class to which it belongs, a state that has a certain value.

Table 2 The conceptual difference

Objects Components
describe / implement real-world entities (and their hierarchies) describe / implement services of real-world entities

mathematical modelling approach to software engineering approach to software
partition the state space partition the service space

Regarding component oriented programming there is a
new component oriented language based on Java which is
called BoxScript.

BoxScript supports two main properties of component
oriented programming compositionality and flexibility. De-
sign of BoxScript seeks to address the needs of teachers
and students for a clean and simple language. The lan-
guage builds upon an existing programming language with
which students are likely to be familiar. A component in
BoxScript is called a box which is a black box entity, its in-
ternal details is strongly encapsulated, its interface is only
exposing to the outside. A group of boxes can be composed
to form a larger box that provides some higher-level func-
tionality. The units of code needed to build a box are a box
description, interfaces and their implementations, configu-
ration information, and box manager code.

There are two types of interfaces in BoxScript, a pro-
vided interface and a required interface. A provided in-
terface describes the operations that a box implements and
other boxes may use. A required interface describes the op-
erations that the box requires and that must be implemented
by another box. A box has to have at least one provided in-
terface. Required interface is not necessary. BoxScript uses
Java classes to implement the interfaces. BoxScript defines
two types of boxes. An abstract box serves as an abstract
type for which no implementation is provided. It describes
the provided and required interfaces but does not implement
the provided interfaces. A concrete box provides imple-
mentation that delivers concrete functions. Concrete box
can be atomic or compound. A basic element in BoxScript
is an atomic box that doesn’t contain any other boxes. A
compound box is composed from atomic boxes or other
compound boxes [19, 20].

3.3. Categorical Approach

Category theory is the mathematical theory of structures
used also in theoretical computer science. The advantage
of categories is, that they enable to model components for

different program systems. Category theory is the mathe-
matical basis for a unified description of component-based
techniques for the various modeling techniques because it
allows the formulation of basic concepts independently of
the particular formalism.

A software-engineering approach to components is
well-known and nowadays also widely used. But the formal
model of component systems has not been defined uniquely.
One of the fruitful approaches is to define a formal model
within categorical structures. The first use of category the-
ory for the purpose of large scale system construction seems
to be Goguen [13]. However, in that work, components are
objects of the category and morphisms of the category rep-
resent communication between components. Moreover, the
idea of considering a component as a morphism between
interfaces can be found in a PhD thesis due to Barbosa [3].

Category theory enables efficient way of demonstrating
results. The main evidence can be performed at an ab-
stract level, the specification of a large number of results
obtained in the small effort [17, 23]. Category theory pro-
vides more possibilities for modeling component base pro-
gram systems [23, 16]. If we are interesting in component
composition then it is suitable to model component inter-
faces as category objects. In the case of modeling inter-
actions as category morphisms we have two possibilities:
either we can construct category morphisms as mappings
expressing functionality of interactions, but then we can
use only quasi-category where the composition of two mor-
phisms need not be uniquely defined. Or we can model
them as relations which lead to relational categories. The
latter approach is not obvious and it requires deeper analy-
sis.

If we are interesting in modeling observable behavior
of component program systems, it is suitable to use coal-
gebras [3], where polynomial endofuctor is constructed to
model behavior of a system step by step. This endofunc-
tor is constructed over category of states. In this category
we consider morphisms as transitions (transition relations)

ISSN 1335-8243 (print) c© 2017 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

among states.



6 An Analysis of Some Aspects of Component-Based Programming for Selecting Appropriate Categorical Structures as their Models

4. INTERFACE

A component is often characterized as a black box with
only visible part called interface. Components in COP
communicate with each other via interfaces. A component
has multiple interfaces which are sets of operations, called
methods. Sometimes interfaces are grouped to make ports
which become points of interactions.

Each component will provide and require pre-specified
services from other components; hence, the notion of com-
ponent interfaces becomes an important issue of concern.
Interfaces are the mechanisms by which information is
passed between two communicating components. A com-
ponent may either directly provide an interface or imple-
ment objects that, if made available to clients, provide in-
terfaces. The interface is used as the contract between the
component and the client. It provides the services that the
component is ready to provide them to clients. Interface
specification therefore describes information needed for the
important elements of the component model. The compo-
nent model defines the components that make up the inter-
face as well as semantics, the importance of these elements.
Usually the part of the interface include names of methods,
parameters of methods and valid types of parameters [30].

4.1. Model-View-Controller

Model-View-Controller (MVC) is the name of a
methodology or design pattern for successfully and effi-
ciently relating the user interface to underlying data models.

• Model: represents the structure of data in the appli-
cation, as well as application-specific operations on
those data.

• View: renders the contents of a model. It specifies
exactly how the model data should be presented.

• Controller: translates user actions and user input into
application function calls on the model and selects
the appropriate view based on user preferences and
model state.

MVC is used to create a component model of some
product (picture). Basic classes are ProductModel, Pro-
ductView and ProductController. ProductModel defines a
product, it means product name, product ID and product
count. ProductController connects model and view. Pro-
ductView provides product information. There are two
interfaces: ViewControllerInterface and ModelController-
Interface.
We define interface I =< T,M > where T is name of type
and M is name of method.

ModelControllerInter f ace =< T,M >
T = string, int,void
M = getName : string

getProductID : string
getProductCount : int
setName(String) : void
setProductID(String) : void
setProductCount(Int) : void

IgetName = Istring+
T : string
M : name : ProductModel −→ string
IsetName = Istring+
T : string
M : name : ProductModel −→ 1

In the same way we defined other methods and types.
In Fig. 1 is specific MVC model with categories Pro-
ductView, ProductModel and ProductController. Interfaces
ViewControllerInterface and ModelControllerInterface are
arrows f ,g (methods).

ProductView

A

ProductModel

B

ProductController

C

f g

Fig. 1 Categories in MVC model

4.2. Contract

A useful way to view interface specifications is as con-
tracts acting between a client of an interface and a provider
of an implementation of the interface. The contract states
what the client needs to do to use the interface. It also
states what the provider has to implement to meet the ser-
vices promised by the interface. On the level of an individ-
ual operation of an interface, there is a particularly popular
contractual specification method. The two sides of the con-
tract can be captured by specifying pre-and postconditions
for the operation. The client has to establish the precondi-
tion before calling the operation, and the provider can rely
on the precondition being met whenever the operation is
called. The provider has to establish the postcondition be-
fore returning to the client and the client can rely on the
postcondition being met whenever the call to the operation
returns.

ISSN 1335-8243 (print) c© 2017 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 17, No. 2, 2017 7

In Fig. 2 is a component A and a component B, an inter-
face I, a contract C1 and a contract C2. Component A sends
data to component B and Component B sends data to com-
ponent A. Both components communicate with interface I.
Component A receives only integer data type and compo-
nent B receives only data which its value is more than zero.
Because of these conditions we use contract. Contract C1
receive all data from A but sends only number more than
zero to interface I. Contract C2 receives all data a sends
integer data to interface I.

We define interface I = 〈T,M,C〉 where T is name of
type, M is name of method and C is name of contract.

getNumber = 〈T,M,C〉
T = int
M = number : Component A−→ int
C = if isNumber : int then

getNumber : Component B
else exception

getNumber = 〈T,M,C〉
T = int
M = number : Component B−→ int
C = if isMoreT hanZero : int then

getNumber : Component A
else exception

I

A B

C1 C2

Fig. 2 Contracts in component model

4.3. Contracts and Dependencies

To be a system composed from components health,
some additional information for successful composition is
needed. This information is known as

• contracts and

• context dependencies.

Contracts create a common basis for successful compo-
sition and interactions between components in a program
system. The basic conditions stated by contracts involve:

• correlations between ports constructing data and the
ports extracting these data;

• requirements to the ports of other components that
should be satisfied for making given component
working;

Contracts can be considered as specifications of non-
functional requirements. Their role is to state obligations
for achieving desirable behavior of components in program
systems [31, 21]. The first formal specification of con-
tracts follows from algebraic specifications of abstract data
types, i.e. signatures and axioms formulated in some logical
system extended with some constraints specific for given
component. Among simple examples of contracts we can
list component interoperability, pre- and postconditions of
Hoare’s logic, invariants, etc. [15, 18, 22].

A contract is a pair

(A,G)

where A is a specification of assumptions and G is a speci-
fication of guarantees.

• Assumptions contain requirements on environment of
a component and

• guarantees formulate what provide a components if
assumptions are satisfied.

Both specifications of assumptions and guarantees can
be formulated in some specification theory. If we consider
for a component its assumption specification A and its guar-
antee specification G as abstract data type, we can say that
A <: G, i.e. assumption specification is ”subtype” of guar-
antee specification [9]. Composition of two components
leads to working system if all assumptions and guarantees
of both components are satisfied. Contracts for interaction
between two composed components are illustrated in Fig.
3.

interface 1

assumptions 1

interface 2

interaction contract

assumptions 2

guaranties 1

guaranties 2

Fig. 3 Interaction contract

The mostly used specification methods for specifying
interaction contracts are:

• trace-based specifications [4] where assumption and
guarantees are specified as sets of runs and

• modal contracts [25] based on modal may- and must-
transitions.

ISSN 1335-8243 (print) c© 2017 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



8 An Analysis of Some Aspects of Component-Based Programming for Selecting Appropriate Categorical Structures as their Models

Contracts are not enough for successful and work-
ing composition of components. Another information is
needed: context dependencies. Dependency can be char-
acterized as follows: if a component C1 uses a component
C2, we say that C1 depends on C2. Dependencies formulate
conditions for reusing and upgrading components. An en-
vironment consisting of a set of components together with
their context dependencies is called repository. Context de-
pendencies involve:

• composition context dependencies - requirements on
environment for successful composition;

• deployment context dependencies - possible plat-
forms (hardware and software) where component can
work.

Due to different application domains there are many
ways how to build program systems from components.
Most of the components can be considered as data struc-
tures with explicit or implicit data types, subprograms, col-
lections of subprograms, etc. One component can require
some modification in another one. This relation between
new and existing components is one of the forms of de-
pendencies. A simple example of dependencies between
components is e.g. in [33]. Let C1 and C2 be components
with corresponding explicitly typed data structures. Au-
thors classify known and frequently occurred context de-
pendencies as:

• data dependencies: a value in C1 can influence data
of C2, or data of C1 can be used for computing in C2;

• type dependencies: type definitions and their changes
in C1 can influence data types in C2;

• subprogram dependencies: executing some proce-
dure or function of component C1 by calling with data
from C2 causes this kind of dependencies;

• source file dependencies: if some source file serves
as a common source for both components C1 and C2
in program system;

• source location relationships,

• time and space dependencies, and many others.

Deployment context dependencies express hardware
and software platform for successful deploying of compo-
nents. Here belong hardware architectures, operating sys-
tems and their versions, representations of built-in data, etc.
Deployment context dependencies become important in im-
plementation process and we will think they are hardly for-
malizable.

In newer literature, e.g. in [1] dependencies are classi-
fied into two groups:

• positive dependencies,

• negative dependencies called conflicts.

Components relationships are described by dependency
graph, i.e. oriented graph where nodes are components and
oriented edges express dependencies or conflicts. A sys-
tem is said to be healthy when all components have their
dependencies satisfied and all conflicts unsatisfied.

From the previous analysis of dependencies follows that
dependencies can be described by first order formulae in
some appropriate logical system.

After this short analyzing and classifying of contracts
and dependencies we can extend the definition of com-
ponents with the following part: A software component
is a unit of composition with contractually specified ac-
cess points and explicit context dependencies. Contracts
and composition context dependencies are stable parts in
component-based programming and they seem to be the
first adepts for rigorous formalization.

5. THE NEXT GOALS

The aim of our research is to formulate formal frame-
work for specifying and modeling component program sys-
tems. This idea we presented in [29]. Because of com-
plexity of this problem, it would be reasonable to construct
this framework hierarchically with three layers illustrated
in Fig. 4.

1

2

3

interfaces

contracts

dependencies

Fig. 4 Proposed layers for formal framework

The layer 1 concerns with interfaces and interactions be-
tween components. An interface can be specified using al-
gebraic specification consisting from signature and axioms.
A signature contains

• typed ports;

• specifications of operations.

Axioms can be written as obvious in equational logic
or in predicate linear logic. First layer component system
then can be modeled as a category of interfaces, where ob-
jects are representations of interfaces (Σ-algebras) and mor-
phisms are interactions between components.

The role of second layer is to consider also contracts.
There are two possibilities:

• to extend specifications of interfaces by assumptions
and guarantees or

• to formulate them by formulae in predicate linear
logic.

ISSN 1335-8243 (print) c© 2017 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 17, No. 2, 2017 9

Both solutions enable to protect ”subtype” relation bet-
ween assumptions and guarantees. This layer can restrict
possible interactions between components to satisfy con-
tracts.

On the third layer dependencies will be introduced. De-
pendencies we would like to formulate as predicates of
other formulae in predicate linear logic and model in an
appropriate category.

Our preliminary idea how particular layers are intercon-
nected is to use some functors or natural transformations
with suitable properties.

6. CONCLUSION

The size and complexity of software systems is grow-
ing as well as the demands of customers, component-based
programming is the appropriate way to deal with this prob-
lem. When creating a system of components it is important
in their proper interaction, and hence its description plays
an essential role. After deeper analysis we can say that cat-
egory theory provides an efficient way to describe connect-
ing components and thus improve the quality of software.
In our next research we want to focus on classification of
categories that will be used in construction of formal model
of component system.

ACKNOWLEDGEMENT

This work has been supported by Grant No. 002TUKE-
4/2017: Innovative didactic methods of education process
at university and their importance in increasing education
mastership of teachers and development of students compe-
tences.

REFERENCES

[1] ABATE, P. – BOENDER, J. – Di COSMO, R. – ZAC-
CHIROLI, S.: Strong dependencies between software
components, Tech. rep.0002, 7th Framework Pro-
gramme fp7-ict-2007, Universitè Paris Diderot, 2009.

[2] ALDRICH, J. – CHAMBERS, C. – NOTKIN, D.: Ar-
chitectural Reasoning in ArchJava, In: Proceedings
of the 16th European Conference on Object-Oriented
Programming (London, UK, UK, 2002), ECOOP ’02,
Springer-Verlag, pp. 334–367.

[3] BARBOSA, L.: Components as coalgebras, PhD
thesis, Departamento de Informática, Escola de En-
genharia, Universidade do Minho, 2001.

[4] BENVENISTR, A. – CAILLAUD, B. – FERRARI, A.
– MANGERUCA, L. – PASSERONE, R. – SOFRO-
NIS, C.: Formal methods for components and objects,
Springer-Verlag, Berlin, Heidelberg, 2008, Multiple
Viewpoint Contract-Based Specification and Design,
pp. 200–225.

[5] BIDINGER, P. – LECLERCQ, M. – QUÉMA, V. –
SCHMITT, A. – STEFANI, J.-B.: Dream types:
A domain specific type system for component-based
message-oriented middleware, SIGSOFT Software
Engineering Notes, Vol. 31, No. 2 (Sept 2005).

[6] BOSCH, J. – SZYPERSKI, C. – WECK, W.:
Component-Oriented Programming, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2002, pp. 70–78.

[7] BRUNETON, E. – COUPAYE, T. – LECLERCQ, M.
– QUÉMA, V. – STEFANI, J.-B.: An Open Compo-
nent Model and Its Support in Java, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004, pp. 7–22.

[8] CHEN, X. – HE, J. – LIU, Z. – ZHAN, N.: A model of
component-based programming, In: Proceedings of
the 2007 International Conference on Fundamentals
of Software Engineering (Berlin, Heidelberg, 2007),
FSEN’07, Springer-Verlag, pp. 191–206.

[9] ENSELME, D. – FLORIN, G. – LEGOND-AUBRY,
F.: Design by contracts: Analysis of hidden depen-
dencies in component based applications, Journal of
Object Technology, Vol. 3, No. 4 (2004), pp. 23–45.

[10] FABRESSE, L. – BOURAQADI, N. – DONY, C.:
Component-oriented programming: From require-
ments to language support, In Marcus Denker and
Gabriela Arevalo editors, Proceedings of the 4th
Smalltalks’2010 Conference (2010).

[11] FABRESSE, L. – DONY, C. – HUCHARD, M.:
Foundations of a simple and unified component-
oriented language, Computer Languages, Systems and
Structures, Vol. 34, No. 2-3 (July 2008), pp. 130–149.

[12] GALINEC, D. – STEINGARTNER, W. A look at ob-
serve, orient, decide and act feedback loop, pattern-
based strategy and network enabled capability for or-
ganizations adapting to change, In: Acta Electrotech-
nica et Informatica, Vol. 13, No. 2 (2013).

[13] GOGUEN, J.: Categorical foundations for general
systems theory, In: Advances in Cybernetics and
System Research (1973), Transcripta Books, pp. 121–
130.

[14] GRANSTRÖM, J.: A new paradigm for component-
based development, Journal of Software, Vol. 7, No.
5 (May 2012).

[15] HAN, J.: An approach to software component speci-
fication, In Proceedings of 1999 International Work-
shop on Component Based Software Engineering (Los
Angeles, USA, 1999).

[16] KNIGHTEN, R. L.: Notes on category theory, 2007.

[17] KOSTECKI, R. P.: An introduction to topos theory,
Tech. rep., Institute of Theoretical Physics, University
of Warsaw, 2011.

[18] KOZACZYNSKI, W.: Composite nature of com-
ponent, In: International Workshop on Component-
Based Software Engineering (1999), pp. 73–77.

[19] LIU, Y. – CUNNINGHAM, H. C.: Boxscript: A
component-oriented language for teaching, In: Pro-
ceedings of the 43rd Annual Southeast Regional Con-
ference - Volume 1 (New York, NY, USA, 2005),
ACM-SE 43, ACM, pp. 349–354.

[20] LIU, Y. – CUNNINGHAM, H. C.: Java in the box:
implementing the boxscript component language, In:
Proceedings of the 45th Annual Southeast Regional

ISSN 1335-8243 (print) c© 2017 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



10An Analysis of Some Aspects of Component-Based Programming for Selecting Appropriate Categorical Structures as their Models

Conference, 2007, Winston-Salem, North Carolina,
USA, March 23-24, 2007 (2007), pp. 47–52.

[21] MESSABIHI, M. – ANDRÉ, P. – ATTIOGBÉ, C.:
Multilevel contracts for trusted components, In: The
7th International Conference on Software Engineer-
ing Advances (2012), ICSEA, pp. 71–85.

[22] MEYER, B.: Applying design by contract, Computer,
Vol. 25, No. 10 (2002), pp. 40–51.

[23] NOVITZKÁ, V. – SLODIČÁK, V.: Categorical
structures and their applications in informatics, Equi-
libria, 2010, (in Slovak).

[24] PETRE, L.: Components vs objects, TUCS Technical
Reports No. 370, Turku Centre for Computer Science,
2000.

[25] RACLET, J.-B. – BADOUEL, E. – BENVENISTE,
A. – CAILLAUD, B. – LEGAY, A. – PASSERONE,
R.: A modal interface theory for component-based
design, Fundam. Inf., Vol. 108, No. 1-2 (2011), pp.
119–149.

[26] ROUVOY, R. – MERLE, P.: Leveraging component-
oriented programming with attribute-oriented pro-
gramming, In: 11th International ECOOP Work-
shop on Component-Oriented Programming (2003),
WCOP’06, pp. 10–18.

[27] SECO, J. – SILVA, R. – PIRIQUITO, M.: Com-
ponentJ: A component-based programming language
with dynamic reconfiguration, Computer Science and
Information Systems, Vol. 5, No. 2 (2008), pp. 63–86.

[28] SPACEK, P. – DONY, C. – TIBERMACINE, C.:
A component-based meta-level architecture and pro-
totypical implementation of a reflective component-
based programming and modeling language, In:
Proceedings of the 17th International ACM Sigsoft
Symposium on Component-based Software Engineer-
ing (New York, NY, USA, 2014), CBSE’14, ACM,
pp. 13–22.

[29] STEINGARTNER, W. – NOVITZKÁ, V. –
BENČKOVÁ, M. – PRAZŇÁK, P.: Considera-
tions and ideas in component programming - towards
to formal specification, In: Central European
Conference on Information and Intelligent Systems
(2014), CECIIS, pp. 332–339.

[30] SZYPERSKI, C.: Component Software beyond
Object- Oriented Programming, ACM press, New
York, USA, 2005.

[31] URTING, D. – BAELEN, S. V. – HOLVOET, T. –
BERBERS, Y.: Embedded software development:
Components and contracts, 2001.

[32] WANG, A. J. A. – QIAN, K.: Component-Oriented
Programming, Wiley-Interscience, 2005.

[33] WILDE, N.: Program dependencies, Tech. report
SEI-CM-26, Carnegie Mellon, 1990.

Received February 19, 2017, accepted May 30, 2017

BIOGRAPHIES

William Steingartner works as Assistant Professor of In-
formatics at the Department of Computers and Informatics
of the Faculty of Electrical Engineering and Informatics,
Technical University of Košice, Slovakia. He defended his
Ph.D. thesis ”The Rôle of Toposes in Informatics” in 2008.
His main fields of research are semantics of programming
languages, category theory, compilers, data structures and
recursion theory. He also works with software engineering.

Davorka Radaković works as teaching assistant at Depart-
ment of Mathematics and Informatics, Faculty of Sciences,
University of Novi Sad. She received her Diploma degree
in Mathematics at Faculty of Sciences, University of Novi
Sad, Serbia, in 2001 and become Magister of Computer
Sciences from the same University in 2010 with thesis ”A
modular extensible platform for dynamic geometry”. Her
scientific research is focusing a development of a platform
for dynamic geometry.

Valerie Novitzká works as a Full Professor of Informatics
at the Department of Computers and Informatics of the Fac-
ulty of Electrical Engineering and Informatics, Technical
University of Košice, Slovakia. Her fields of research in-
clude semantics of programming languages, non-classical
logical systems and their applications in computing science.
She also works with type theory and behavioral modeling
of large program systems based on categories.

Mohamed Ali M. Eldojali is a Ph.D. student at the Depart-
ment of Computers and Informatics of the Faculty of Elec-
trical Engineering and Informatics, Technical University of
Košice, Slovakia. His main field of research covers Coal-
gebraic Models for Component Based Program Systems.

ISSN 1335-8243 (print) c© 2017 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk


