
Acta Electrotechnica et Informatica, Vol. 16, No. 3, 2016, 41–47, DOI: 10.15546/aeei-2016-0022 41

THE PROBLEM OF MALWARE PACKING AND ITS OCCURRENCE
IN HARMLESS SOFTWARE

Jana ŠŤASTNÁ, Martin TOMÁŠEK
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic,
E-mail: {jana.stastna, martin.tomasek}@tuke.sk

ABSTRACT
Analysis of software behaviour and its other properties is largely used as a method for uncovering malicious features in software,

especially in cases of unknown malware. Traditional malware signatures can be circumvented, e.g. by obfuscation, therefore in our
endeavour to formulate malware behavioural signatures we study behaviour and various properties detectable in malware. However,
in this article we present different point of view on this issue. In our experiments we analyse a set of freely available software that is
harmless and compare data extracted from analysis with malicious programs. In this article we focus on results related to so-called
packing and show that this typical malware feature may be present in harmless software as well.

Keywords: malicious software, non-malicious software, packing, bytes distribution, malware indicators

1. INTRODUCTION

As malware detection techniques advanced, malware
writers improved concealing harmful code with encryption,
mutation and packing. Although analysts know about these
techniques, they still seem efficient in defeating detection
systems based on malware signatures. Since traditional sig-
natures are constructed from syntactical form of malicious
programs and, as Moser et al. mention in their work [1],
this form is relatively easy to modify while preserving se-
mantics of the program, malware creators have opportunity
to create large number of malware variants which will not
be immediately detected. Methods of malware obfuscation,
e.g. encryption, dead-code insertion, register reassignment,
subroutine reordering, instruction substitution, code trans-
position, which are described in [2], complicate static anal-
ysis and detection of malware, and in some cases, according
to Moser et al. [1] and Landi [3], make it even impossible.

Malware signatures have still very important role in
malware detection, although their effectiveness on mali-
cious samples concealed by techniques that alter syntac-
tic form of a program is questionable. What is more, with
rapidly growing number of new malware samples the ex-
traction of signatures requires a lot of precious time. Grif-
fin et al. addressed this problem and presented a system
for automated generation of malware signatures [4]. An
interesting part of their work describes features which they
analysed in malicious programs. Concerning syntactic form
of a program authors mention patterns emerging in opera-
tional code which may represent precursors of non-standard
or suspicious behaviour of the program:

• Constant values like IP addresses, email addresses,

• access to memory with unusual offset,

• local function calls, non-library function calls, con-
text of a function call and used parameters,

• suspicious mathematical operations which may indi-
cate obfuscation.

These patterns are used for refining potential malware sig-
natures through, as they call it, code interestingness check.

In our research they served as an inspiration for search-
ing malicious features in programs and looking for patterns
which could be employed as indicators of malicious inten-
tions.

The specific feature addressed in this article is known
among malware researchers as packing. Packing employs
compression for reduction of programs size, combined
with encryption to obstruct programs reverse-engineering,
signature-based detection and static analysis [5]. Unfortu-
nately, software packers are popular among malware writ-
ers [6].

We analysed a set of harmless programs available on the
internet for free and in our observations we aimed at fea-
tures related to packing. Our goal was to figure out whether
typical malware feature like packing, which is considered
as an indicator of suspicious or even dangerous files, is a
sufficient malware marker on its own or it is not, since we
assume that it occurs in harmless software as well. Our first
results of the research were published in conference arti-
cles [7], [8], and this article extends presented results with
another findings concerning the issue.

In summary, we try to answer the following questions:

1. Does harmless software present typically malicious
feature, specifically packing, just like malicious soft-
ware?

2. Can we distinguish malicious usage of packer from
the harmless one by analysing several program’s fea-
tures on the syntactic level?

2. METHODS

As a very interesting approach to malicious software
analysis we consider a system called REMnux [9], which is
a collection of tools for static and dynamic malware anal-
ysis, installed on Linux distribution derived from Ubuntu.
The large amount and diversity of utilities and analytic pro-
grams are a major advantage of REMnux. We used several
tools from REMnux distribution in our experiments which
allowed static analysis of our prepared set of programs.

ISSN 1335-8243 (print) c© 2016 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



42 The Problem of Malware Packing and its Occurrence in Harmless Software

Even if dynamic analysis compared with static analy-
sis indicates smaller issues with malware obfuscation, static
analysis allows to detect malicious features which seem to
occur randomly during program execution or in specific ex-
ecution environment. What is more, nature of tools pur-
posed for static analysis enables us to automate the analytic
process for large amount of experimental samples. This ap-
proach is therefore less time consuming in comparison with
dynamic analysis, which requires execution of each sample
for adequate amount of time.

2.1. Experimental tools

Tools for static analysis of Portable Executable files1

used in the experiment have a form of a terminal appli-
cation, which accepts arguments that modify settings and
set input and output of analysis. This allowed us to create
helper programs for automation of large number of sam-
ples’ analysis.

From various analytic tools we chose for the experiment
the following:

UPX is a file packing tool for executable files [10]. It
allows us to check whether a tested file is packed or not
and to unpack files that are packed. As a book by Davis et
al. states [11], numerous computer viruses use specifically
UPX packer, therefore detection of UPX packer in analysed
sample arises suspicion.

Bytehist and Charcount examine byte usage for all
types of files. Charcount tool outputs number of occur-
rences of program’s byte-codes in a range of hexadecimal
values 0x00 - 0xFF [12], Bytehist outputs histograms of
these occurrences [13]. Histograms of PE files are gen-
erated with respect to sections of the program. The main
histogram is produced for the whole program and sub-
histograms are generated corresponding to program’s sec-
tions. These histograms reveal anomalies in distribution
of bytes for each section - uniform distribution of byte-
codes indicates that the file is compressed, encrypted or
packed. Uniformity in distribution is normal for ordinary
compressed archives like .zip or .rar, however, in case of
PE files section it suggests packing for the purpose of code
obfuscation.

Densityscout determines density of an analysed file.
Description of this tool explains that malware and good-
ware usually have contrasting densities. While goodware
tends to have density higher than 1000 (in CHI mode, for
files bigger than 100kB), suspicious packed files gain den-
sity value below 100 [14]. No explanation is mentioned for
values in the interval <100, 1000>, so we expect that they
correspond to ambiguous cases.

Virustotal is an online malware analysis service. To
evaluate properties extracted from the tested set of pro-
grams we needed to collect frequent characteristics of mali-
cious behaviour. For security reasons and to obtain desired
data within a short time we decided to perform the analysis
of malware not by ourselves but to use analytic results from
a reliable and independent source. Many online services
for malware analysis provide access to database of already
analysed samples via web interface. We examined several

of them, considering amount of analysed samples and qual-
ity of data they offered. Huge amount of files from thou-
sands of users - various sources - were tested in this man-
ner. We needed as many types of data as possible to under-
stand characteristic malware behaviour, also for purposes
outside of the scope of this experiment. Analysis offered
by VirusTotal [15] met our requirements. Reports generated
after analysis contain various types of information. Worth
mentioning are e.g. scan results form over 50 anti-virus
solutions which in our case helped to check whether exper-
imental files are truly harmless. Reports state also detec-
tion of packers, information from PE header, PE sections,
dll imports and exports and in case of PE file analysis, be-
havioural information describe operations performed by dy-
namically analysed program, e.g. opening, reading, editing
or deleting a file, launching new processes, creating mu-
texes, executing a shell command.

2.2. The experimental set of programs

The set of experimental samples consisted of freely
available utility software, e.g. for deleting temporary files,
broken links removal, duplicate files search, tasks man-
agement, memory optimization or personal files encryp-
tion. We targeted this specific group of software because of
operations that these programs are designated to perform.
We assume that software which legitimately accesses reg-
istry entries, processes, file system, etc., may be a promis-
ing target for malware writers which create malicious im-
itations of the original harmless software. With this in
mind, it would be interesting to compare analysis results
of harmless system maintenance tools and their fake mali-
cious counterparts. Our experimental set consisted of 100
harmless programs and 100 samples which were verified
as malicious. We did not succeed in obtaining malicious
versions of all harmless samples, but regardless of that we
preserved domain of selected malicious samples in system
maintenance.

3. RESULTS

The experiment was performed in two stages: First we
analysed the harmless set of programs and evaluated results.
After that we proceeded with examining features of mali-
cious samples.

3.1. Harmless samples

Analysis revealed that among 100 samples only 19 were
not packed by any known packing tool. The other 81 sam-
ples were packed by 15 different packers, e.g. UPX which
is preferred by numerous computer viruses [11], PECom-
pact, PecBundle, INNO, ASPack, PE-Patch. Many samples
were modified with several packers simultaneously - multi-
ple layers of packing were applied.

Detecting a packer which is often employed by malware
does not necessarily mean that the sample is malicious. A
closer look at distribution of bytes in analysed samples un-
covered further differences between samples. Distribution

1Portable Executable files are often shortly denoted as PE files.

ISSN 1335-8243 (print) c© 2016 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 16, No. 3, 2016 43

of bytes in basic applications that are not packed, com-
pressed or encrypted, is typically uneven, it exhibits several
fluctuations which are well visible. On the contrary, mini-
mal or no fluctuations (uniformly distributed bytes) are con-
sidered as anomalies and suggest that the sample was mod-
ified with a packer, encryption or compression engine. Fig.
1 contains graphs of bytes distribution from several sam-
ples. Specifically samples 1, 2, 4 and 6 represent typical
packed programs.

ASCII characters in hexadecimal code

N
um

be
r o

f o
cc

ur
re

nc
es

 in
 fi

le

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
Sample 6 Sample 7 Sample 8 Sample 9 Sample 10

0x
01

0x
90

0x
0E

0x
1B 0x

28
0x

35
0x

42
0x

4F
0x

5C 0x
69

0x
76

0x
83

0x
9D

0x
AA

0x
B7

0x
C4

0x
D1

0x
DE

0x
EB

0x
F8

10

100

1k

10k

100k

Fig. 1 Distribution of bytes for 10 selected samples from
analysed set. They illustrate difference between uniform (in this
context anomalous) bytes distribution and distribution with high

fluctuations.

Distributions of bytes obtained from samples by ana-
lytic tool Charcount were divided into 5 categories2 based
on intensity of fluctuations in distribution. Categories 1 and
2 represent samples with uniform or almost uniform bytes
distribution and are related to usage of packers. On the
other hand, category 5 represents samples with numerous
significant fluctuations typical for normal programs. Al-
though only 19 samples were not packed according to the
first analysis above, 60 samples indicate bytes distribution
of normal (not packed) programs (Fig. 2).

Amount of samples

6087169

Category 1 Category 2 Category 3 Category 4 Category 5

0 10 20 30 40 50 60 70 80 90 100

Fig. 2 Number of samples in categories of bytes distribution.

More detailed look into a PE file can uncover which
section of the file is packed, if any. Analytic tool Byte-
hist creates several images with histograms of bytes us-
ages. The first corresponds to the sample as a whole file.

In case of a PE file the other histograms correspond to its
sections, typically .text, .bss, .rdata, .data, .idata,
.reloc. If Bytehist detects some content even after the last
section, it is presented as a section .rest. Examination of
results from Bytehist showed that only 12 of 100 samples
contained no data after the last ordinary section. For the
rest of samples, the amount of bytes in .rest varied. His-
tograms of sections also indicate percentage of the original
program’s size contained in the section. Only 19 samples
contained .rest section under 50% of the program’s size
and 90% or more of program’s bytes was present in more
than a half of samples. This unusual distribution of bytes
across sections, or rather behind common sections, is sus-
picious. Furthermore, if section .rest exhibits uniform
distribution, it suggests some hidden feature in the sample.
Only 3 programs indicated data in section .rest with un-
even distribution.

An interesting observation we made recently is that
samples which had majority of program’s contents in the
.rest section also showed abnormally uniform distribu-
tion of bytes in this section (Fig. 3), presented as entropy
by analytic service VirusTotal.

Harmless samples

Entropy of .rest section in %
Percentage of file in .rest section
Number of detected sections
Number of packers detected
Density of file * 10^3

1 7310 19 28 37 46 55 64 82 91 10
0

0.1

1

10

100

Fig. 3 Entropy of samples’ .rest section compared with
percentage of file in this section. Entropy is converted to

percentage range - 100% is equivalent to maximal entropy = 8.

Concerning data obtained from Densityscout tool, 21
harmless samples resulted with density typical for obfus-
cated files, i.e. below 100. Surprising is, that 6 samples
from mentioned 21 were not detected as packed, not even
by one packer. Number of detected packers is well visible
in Fig. 4 where density is set to transparent color for bet-
ter readability. On the other hand, from 27 samples having
density of typically normal, not obfuscated files, above den-
sity 1000, 14 were detected as packed with at least 1 packer
(Fig. 5). We deduce that these contradicting results are

2Details about categories and criteria of sample’s placement into particular category are described in the article [7].

ISSN 1335-8243 (print) c© 2016 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



44 The Problem of Malware Packing and its Occurrence in Harmless Software

caused by various degrees of protection provided by pack-
ers. While low level of protection may only compress size
of the file, high level of protection affects file’s density.

Calculation of entropy and its usage in malware re-
search is described e.g. by Mueller [16], Desnos and Erra

[17]. Entropy reaches values from interval <0, 8>and the
higher is the value, the more randomly are bytes distributed
in the file, like when its syntactic structure is modified by
encryption and compression.

Harmless samples

Entropy of .rest section in % Percentage of file in .rest section
Number of detected sections Number of packers detected Density of file * 10^3

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97
0.1

1

10

100

Fig. 4 Summary of results obtained from analysis of 100 harmless programs. Entropy is converted to percentage range - 100% is
equivalent to maximal entropy = 8. Density is set to transparent color for better readability.

Harmless samples

Entropy of .rest section in % Percentage of file in .rest section
Number of detected sections Number of packers detected Density of file * 10^3

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97
0.01

0.1

1

10

100

Fig. 5 Complete summary of results obtained from analysis of 100 harmless programs. Original density values were divided by 103

because of high variance of values.

3.2. Malicious samples

When comparing results of malicious samples’ analysis
with data obtained from harmless samples so far [7], we can
state that the most used packer among both experimental

sets remains the same - INNO. What changed dramatically
is the amount of samples detected as packed - only 36 were
revealed to be packed by at least one packer (Fig. 6).

ISSN 1335-8243 (print) c© 2016 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 16, No. 3, 2016 45

A
m

ou
nt

 o
f s

am
pl

es

14
11

8 7
4 2 2 1 1 1 1 1 1

64

IN
NO

NSIS UPX

ap
pen

ded

Arm
ad

illo
 v1.7

1

BobSo
ft M

ini D
elp

hi
UTF8 7z

ASP
rotec

t v
1.2

3 R
C1

AutoIt
CAB

em
bed

ded

Enigma

No pack
er 

dete
cte

d
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

Fig. 6 Types and numbers of packers detected in malicious
samples.

Concerning data after the last program’s section, this
feature manifested in much fewer malicious samples than
in the set of harmless samples. Still, the relation between
percentage of file in the .rest section and entropy of this
section seems to be retained (Fig. 7). From summarised
results (Fig. 8) it seems that malicious usage of packers
is harder to detect even for specialised tools and analytic
services. Since many packer detectors, like PEiD used by
VirusTotal service, employ signatures to recognise known
packers, custom malware packers remain unnoticed.

Malicious samples

Entropy of .rest section in %
Percentage of file in .rest section
Number of detected sections
Number of packers detected

1 7310 19 28 37 46 55 64 82 91 10
0

0.01

1

100

0.0001

Fig. 7 Entropy of malicious sample’s .rest section compared
with percentage of file in this section. Entropy is converted to

percentage range - 100% is equivalent to maximal entropy = 8.

Also .rest section, which hides potentially malicious
parts of a program, occurs less in samples which are mod-
ified by undetectable packer or do not employ this kind of
concealing at all. Despite these results several anomalies
emerged. One sample was packed repeatedly by the same
packer - in 46 layers. Another 2 samples which were report-
edly not packed had section names corresponding to UPX
packer. Also unnamed or strangely named sections with
high entropy appeared in several samples.

Malicious samples

Entropy of .rest section in % Percentage of file in .rest section
Number of detected sections Number of packers detected

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97
0.001

0.01

0.1

1

10

100

Fig. 8 Complete summary of results obtained from analysis of 100 malicious programs.

ISSN 1335-8243 (print) c© 2016 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



46 The Problem of Malware Packing and its Occurrence in Harmless Software

4. CHANGING TRENDS IN PACKING

Shadowserver provides useful statistics aimed at, but
not limited to, malware packers [18]. According to their
packer statistics in April for last 60 days3 the most preva-
lent packer among malware was Allaple with 3 867 583
occurrences, followed by UPX All Versions with 312 444
samples and ASPack v2.12 with 161 888 packed samples
(Fig. 9).

Allaple_Polymorphic_Packer vna UPX All_Versions ASPack v2.12
UPX V2.9-3.X NullSoft_PiMP_SFX vna Inno_Setup v2.0.1
NullSoft_NSIS Generic Unknown_33 InstallShield v2000
Swizzor_test vna

Fig. 9 Shadowserver packers statistics - 10 mostly used packers
in April 2016.

Allaple_Polymorphic_Packer vna NsPack All_Versions
UPX All_Versions UPX V2.9-3.X ASPack v2.12
NullSoft_PiMP_SFX vna Inno_Setup v2.0.1 Swizzor_test vna
NullSoft_NSIS Generic ASPack vna

Fig. 10 Shadowserver packers statistics - 10 mostly used
packers in June 2016.

Two months later packers’ trends changed and accord-
ing to Shadowserver statistics in June4 another packer made
it into top 10 chart - NsPack as the second most popular
packer with 1 075 382 occurrences (Fig. 10). We can see
that ASPack v2.12 and UPX V2.9-3.X switched positions in
the chart and Swizzor test vna gained popularity.

With these bi-monthly statistics we can monitor current
trends in packers’ usage. It seems that malware writers re-
considered their selection, as relying to Allaple became too
obvious as a choice for hiding malicious code. We may ex-
pect that malware creators will change their packing strate-
gies from time to time, but since many new malicious sam-
ples are only updated versions of existing threads, also their
hiding strategies are not completely random and follow cer-
tain trends.

5. CONCLUSION

A packer is the first barrier that malware analyst needs
to overcome in order to ascertain whether a program per-
forms any malicious actions.

Concerning questions presented in the Introduction, we
conclude that harmless and malicious software evidently
share suspicious features like packing, program’s code in
unusual .rest section and uniform distribution of bytes.
Although harmless software does indeed present packing,
the symptoms related to it are less concealed in compari-
son with malicious software. From results we obtained it
seems that malicious usage of a packer is not easily recog-
nisable from syntactic form of a program. This leads us to a
conclusion that assumptions about typical malware features
are not always reliable. In case of packing, it should not
be considered an indicator of maliciousness yet, since it is
linked with both malicious and harmless software. Unless
the purpose of packing the sample is known, solid conclu-
sions can not be made. If analytic tools which can detect
unknown custom packers are not available, we can not state
that some sample is (not) packed for sure.

To distinguish malware from harmless software, we
need to get underneath the protective packed layer of pro-
grams. As several anomalies suggested, which we ob-
served when processing malware analysis data, number
of program’s sections, their names and entropy may indi-
cate potential use of unknown custom packer or another
kind of malicious obfuscation. Since packers are purposely
designed to inhibit reverse engineering and techniques of
static analysis, we need to execute the analysed program in
a controlled environment in order to extract unpacked pro-
gram’s instructions.

According to research of Jacob et al. [19], detection of
packed malware solely by static analysis is possible in case
when analysed samples are similar, re-packed, re-encrypted
variants of already recognised malware. However, to cover
samples which do not match the case of Jacob’s et al. work,
combination of static and dynamic analysis is necessary.

3Data obtained 30/4/2016.
4Data obtained 27/6/2016.

ISSN 1335-8243 (print) c© 2016 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 16, No. 3, 2016 47

ACKNOWLEDGEMENT

This work has been supported by Grant No. FEI-2015-
18: Coalgebraic models of component systems.

REFERENCES

[1] MOSER, A. et al.: Limits of Static Analysis for Mal-
ware Detection, Twenty-Third Annual Computer Se-
curity Applications Conference (ACSAC 2007), 421–
430, IEEE (2007).

[2] YOU, I. – YIM, K.: Malware Obfuscation Tech-
niques: A Brief Survey. 2010 International Confer-
ence on Broadband, Wireless Computing, Communi-
cation and Applications, 297–300, IEEE (2010).

[3] LANDI, W.: Undecidability of static analysis, ACM
Lett. Program. Lang. Syst. 1, No. 4 (1992) 323–337.

[4] GRIFFIN, K. et al.: Automatic Generation of String
Signatures for Malware Detection, Recent Advances
in Intrusion Detection, ser. LNCS 5758, 101–120,
Springer Berlin Heidelberg (2009).

[5] JOSSE, S.: Secure and advanced unpacking using
computer emulation, Journal in Computer Virology 3,
No. 3 (2007) 221–236.

[6] GUO, F. – FERRIE, P. – CHIUEH, T.:A study of
the packer problem and its solutions, Recent Ad-
vances in Intrusion Detection, ser. LNCS 5230, 98–
115, Springer Berlin Heidelberg (2008).

[7] ŠŤASTNÁ, J. – TOMÁŠEK, M.: Exploring malware
behaviour for improvement of malware signatures,
2015 IEEE 13th International Scientific Conference
on Informatics, 275–280, IEEE (2015).

[8] ŠŤASTNÁ, J.: Searching for Malware Markers -
Packing and Harmless Software, 16th Scientific Con-
ference of Young Researchers, 232–233 (2016).

[9] ZELTSER, L.: REMnux: A free Linux Toolkit for
Reverse-Engineering and Analyzing Malware (2016).
https://remnux.org/

[10] OBERHUMER, M.– MOLNÁR, L. – REISER, J. F.:
Ultimate Packer for eXecutables (2013). http://upx.

sourceforge.net/.

[11] DAVIS, M. – BODMER, S. – LeMASTERS, A.: Hack-
ing exposed malware & rootkits, McGraw Hill, New York
(2010).

[12] AURIEMMA, L.: MYTOOLZ - Charcount. http://

aluigi.altervista.org/mytoolz/charcount.zip

[13] WOJNER, C.: Bytehist - CERT.at (2015). https://www.
cert.at/downloads/software/bytehist_en.html

[14] WOJNER, C.: DensityScout - CERT.at (2013).
https://www.cert.at/downloads/software/

densityscout_en.html

[15] VIRUSTOTAL: Advanced features & tools (2016). https:
//www.virustotal.com/en/documentation/

[16] MUELLER, L.: File Entropy explained (2013).
http://www.forensickb.com/2013/03/

file-entropy-explained.html

[17] DESNOS, A. – ERRA, R.: Descriptional Entropy: Appli-
cation to Security Software Analysis, Advanced Infocomm
Technology: 5th IEEE International Conference, ICAIT
2012, 225–230, Springer Berlin Heidelberg (2013).

[18] Shadowserver Foundation: Packer Statistics (2016).
https://www.shadowserver.org/wiki/pmwiki.php/

Stats/PackerStatistics

[19] GRÉGOIRE, J. et al.:A Static, Packer-Agnostic Filter to De-
tect Similar Malware Samples, Detection of Intrusions and
Malware, and Vulnerability Assessment, ser. LNCS 7591,
102–122, Springer Berlin Heidelberg (2013).

Received July 4, 2016, accepted September 13, 2016

BIOGRAPHIES

Jana Št’astná is a PhD student at the department of Com-
puters and Informatics of the Faculty of Electrical Engi-
neering and Informatics at Technical University of Košice.
In 2014 she graduated (MSc) with distinction in the field of
Informatics. Her scientific research is centred on malicious
software behaviour.

Martin Tomášek received the master degree in computer
science in 1998 and PhD degree in software and infor-
mation systems in 2005 both at the Faculty of Electrical
Engineering and Informatics of the Technical University
of Košice, Slovakia. Currently he is an associate profes-
sor at the Department of Computers and Informatics of
the Faculty of Electrical Engineering and Informatics of
the Technical University of Košice, Slovakia. His research
interests include multi-agent systems, distributed systems,
component-based systems, and concurrency theory.

ISSN 1335-8243 (print) c© 2016 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

https://remnux.org/
http://upx.sourceforge.net/
http://upx.sourceforge.net/
http://aluigi.altervista.org/mytoolz/charcount.zip
http://aluigi.altervista.org/mytoolz/charcount.zip
https://www.cert.at/downloads/software/bytehist_en.html
https://www.cert.at/downloads/software/bytehist_en.html
https://www.cert.at/downloads/software/densityscout_en.html
https://www.cert.at/downloads/software/densityscout_en.html
https://www.virustotal.com/en/documentation/
https://www.virustotal.com/en/documentation/
http://www.forensickb.com/2013/03/file-entropy-explained.html
http://www.forensickb.com/2013/03/file-entropy-explained.html
 https://www.shadowserver.org/wiki/pmwiki.php/Stats/PackerStatistics
 https://www.shadowserver.org/wiki/pmwiki.php/Stats/PackerStatistics

