
26 Acta Electrotechnica et Informatica, Vol. 16, No. 3, 2016, 26–31, DOI: 10.15546/aeei-2016-0020

EXPLORING CODE PROJECTIONS AS A TOOL FOR CONCERN MANAGEMENT

Ján JUHÁR, Liberios VOKOROKOS
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic,
E-mail: {jan.juhar, liberios.vokorokos}@tuke.sk

ABSTRACT
Comprehending the code is the main activity performed by programmers during programming. Each software system implements

many concerns from the problem domain, but their transformation into a source code makes them scattered and hard to find. For
this reason, many tools and approaches for working with concerns were created. Evolution of Integrated Development Environments
(IDEs) brought a possibility to work with the code on several levels and it became possible to alter the presentation of the code without
changing the code itself. Such presentation is referred to as projection. In this paper we explore possibilities to use projections as a tool
for concern management. We present our categorization of different existing approaches for concern management and of projectional
tools already available in multiple IDEs. We also review research-originated tools that provide code projections. Based on this review
we identify several areas where existing solutions can be improved and propose our concept of configurable projection that can further
facilitate the program comprehension process.

Keywords: program comprehension, integrated development environments, software concerns, projectional editing

1. INTRODUCTION

Program comprehension is a cognitive process that in-
volves source code analysis and retrieval of information
needed to develop or maintain software systems. Many re-
searchers point out that this process tends to take up to a half
of programmers’ time during their work with the source
code [1, 2, 3]. The main source of hindrance programmers
face during this process lies within the wide semantic gap
that is created between the problem domain and the solution
domain. Much information is lost or scattered during the
transformation of programmer’s mental model of the sys-
tem into a source code written in a specific programming
language.

With the intent to narrow the semantic gap, a whole
group of program comprehension tools exists with both an
industrial and a research origins, either as a stand-alone
tools or as parts of an IDE. These are generally considered
as helpful in the process of code comprehension (e.g, as re-
ported by Kosar et al. [1] or Storey [3]). However, as Maalej
et al. observed, many of such IDE tools are left undiscov-
ered even by professional programmers [2], and, similarly
to Damevski et al. [4], they call for context-aware tools in
development environments.

Although IDEs are the most complete toolsets for work-
ing with source code, they do not take into account software
concerns related to a task a programmer is working on. In-
formation and views they provide are extracted from the
entire software project. Another issue is related to the dom-
inant decomposition of the system. A programmer creating
the code is the one who gets to decide on the structure it is
going to have. Other programmers working with the code
later must use this imposed structure, or, if it does not suit
their needs, perform a permanent refactoring (and impose a
new structure) [5].

Mainly these issues drive our work towards exploring
the idea of code projections with connection to a software
concerns management. Thanks to the techniques used by
modern IDEs that employ parsing of the source code and

multi-layered code presentations, it is possible to create
various views that “understand” the code structure [6, 7].
If some supporting tool could provide such views of the
source code that would present its alternative structure ac-
cording to chosen concerns without actually restructuring
the code stored in files, it may be able to assist a program-
mer with comprehension tasks.

2. MANAGING SOFTWARE CONCERNS

Modularization of software systems was initiated by
attempts to improve their flexibility and comprehensibil-
ity and to reduce required development time [8]. Rising
abstraction level of programming languages and new pro-
gramming paradigms were profoundly influential on pro-
grammers’ ability to express their intentions and to sepa-
rate some of the concerns into distinct entities provided by
a particular language.

Every paradigm is, however, designed with focus on
some particular decomposition of concerns (e.g., object-
oriented paradigm abstracts data structures) and other con-
cerns do not fit into it cleanly. This results in two main
symptoms of insufficient modularity or concern separa-
tion [9]: scattering of the code related to a single con-
cern and tangling of one concern’s code with other con-
cerns. And even concern-focused programming paradigms
specifically designed to capture crosscutting concerns, like
Aspect-oriented programming or Language-oriented pro-
gramming, do not address the issue of single dominant de-
composition. This decomposition is a result of a static
source code nature. All of this suggests that languages
alone are not sufficient for concern management.

Another take on this problem is present in various ap-
proaches and tools supporting concern separation. One of
the main goals of these tools is to provide dynamic views of
the system’s structure built atop the static one created with
a language.

The tools take different forms. They are built either as
a stand-alone applications, or as extensions of existing pro-

ISSN 1335-8243 (print) c© 2016 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 16, No. 3, 2016 27

gramming tools (primarily IDEs). Another variable aspect
is in the approach itself used to achieve concern separation
in a code base. We categorize the existing tools into follow-
ing three main categories of approaches:

• model-based approaches,

• remodularizing approaches, and

• explicit metadata approaches.

We characterize these types and give examples in the
following subsections.

2.1. Model-based Approach

The model-based approaches allow to build an external
(with relation to the source code) concern models that con-
nect concerns with related elements of the code base.

As an example of such approach we can present Con-
cern Graphs by Robillard et al. [10]. The approach is de-
signed to capture a main code structure that implements
a concern, while it abstracts some of the implementation
details. A concern graph is created by programmer with
the help of Feature Exploration and Analysis Tool by iter-
atively querying a program model and determining which
program elements belong to the concern implementation.
The main property of the approach is the localization of
scattered code contributing to different concerns in a exter-
nal model.

Robillard et al. conducted a number of case studies that
demonstrated usefulness of Concern Graphs for software
maintenance tasks. However, due to some abstracted de-
tails combined with model granularity at the level of decla-
rations, concerns in highly algorithmic code bases were not
expressed sufficiently.

2.2. Remodularizing Approach

A characteristic feature of a remodularizing approach is
that it uses manual configuration based on structural pat-
terns and naming conventions to set up a tool that performs
code-level remodularization on demand.

An example tool for this category is Stellation, a soft-
ware configuration management (SCM) system for Eclipse
IDE, presented by Chu-Carroll et al. in [11]. In contrast
to most other SCMs that work with the software project at
the file level, it uses a finer granularity. Specifically, for
Java it uses granularity of class methods and fields. One
of the motivations behind such approach is to provide dy-
namic views on the source code. These views are called
virtual source files (VSFs) and are constructed from system
artifacts with a special query language. With this language
a programmer can specify predicates that an artifact must
satisfy to be included in a VSF. The queries are also stored
in the revision control system. This way a programmer with
a detailed knowledge of a concern with scattered code can
prepare a VSF that can help other programmers to com-
prehend it. However, to support external tools, which work

with files, the system must provide exporting and importing
facility.

2.3. Explicit Metadata-based Approach

Approaches classified in this category use metadata
present in the source code to explicitly assign high-level
concepts to program elements.

Annotation of program elements with additional meta-
data that associate these elements with concerns they per-
tain to is the main idea of the Concern annotations ap-
proach [12]. It requires a host programming language that
supports annotating program elements (e.g, as do Java with
annotations or .NET with attributes).

Annotations are typically used as a configuration facil-
ity for various tools. With concern-oriented annotations, the
focus is on program comprehension, as individual annota-
tions represent mapping between high-level concept (pre-
served in annotation’s name) and annotated program ele-
ments. Such concern annotations can be combined with
appropriate tool to achieve on-demand concern separation
by dynamically creating code views based on these annota-
tions.

2.4. The Role of Dynamic Views

We consider the remodularizing approach as the least
practical, because it breaks compatibility with traditional
file-based tools, like compilers or version control systems.
Another drawback is the requirement to configure con-
cerns through structural and naming conventions, which
may present an issue mainly in already existing code that
does not follow such conventions.

On the other hand, dynamically created views possible
with model-based and metadata-based approaches do not
have these issues. The code of a system is not directly mod-
ified in order to display concern-oriented view, as only the
presentation level is changed with the help of an appropri-
ate tool. Moreover, they are able to portray higher-level
concerns present in the system implementation. The gen-
eralized idea of such views, called code projections, is ex-
plored in the next section.

3. UTILIZATION OF PROJECTIONAL TOOLS

The idea behind so-called projectional editing was de-
scribed by Fowler in [6]. He based the notion about this ap-
proach on solutions he named Language Workbenches, like
Intentional Domain Workbench1 or JetBrains Meta Pro-
gramming System2, and also on mainstream modern IDEs,
like JetBrains IntelliJ IDEA.

Projections are well known in software engineering
from graphical modeling tools (e.g., UML or entity-
relational diagrams): users are presented with graphical
representation, or projection, of an underlying structure of
a model they are creating. Projectional editing reuses the
idea and creates an alternative to direct source code edit-
ing with manipulation of a base system definition through
source code projections.

1http://www.intentsoft.com/intentional-technology/intentional-platform/
2https://www.jetbrains.com/mps/

ISSN 1335-8243 (print) c© 2016 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

http://www.intentsoft.com/intentional-technology/intentional-platform/
https://www.jetbrains.com/mps/


28 Exploring Code Projections as a Tool for Concern Management

Fowler recognizes five system representations in a de-
velopment environment that supports code projections.
They are shown in Fig. 1 [6]. Executable (e.g., compiled)
and storage representations are the usual ones. But abstract
representation is used for manipulation and reasoning about
the system definition and can be projected for a programmer
as editable or non-editable (visualization) view.

abstract
representation

editor

editable
representations

storage
representation

executable
representation

project

store

generate
view

visualization
representations

Fig. 1 Multiple system representations in projectional editing

Language Workbenches (LWs) are tools for develop-
ing domain-specific languages with tailored syntaxes and
supporting IDE tools. Projectional LW do not require cre-
ated language grammars to be parsable, because code editor
works directly with an abstract representation of the code—
its abstract syntax tree (AST). The different user experience
and tool interoperability issues of such editors hinder their
wider adoption, but advances are being made in this direc-
tion nonetheless, as reported by Voelter et al. [13].

As our work deals with software concerns and not with
DSLs specifically, we looked more closely at the other cat-
egory of existing projections, that is available in traditional
modern IDEs.

3.1. Projections in Parser-based IDEs

The term “IDE” covers various development tools, but
projections are available in those that use parsers to cre-
ate an abstract code representation and to gain structural
information about the code. This parser-based approach
is present in a significant number of today’s IDEs, like
Eclipse, IntelliJ IDEA, Netbeans or Visual Studio.

For example, IntelliJ IDEA uses custom lexers and
parsers to convert source code into a special form of AST
called Program Source Interface (PSI) tree [7]. PSI tree
preserves even the white spaces used in original source code
so the editor can project the tree in a form that is an exact
representation of the originally parsed source code.

Referring back to the Fowler’s categorization of system
representations, both editable and visualization ones exist
also in parser-based IDEs.

Editable projections are those that augment or alter pre-
sentation layer of the code in IDE editors. We identi-
fied three types of editable projections. First, source code
projections provide projectional features directly in source
code editor. Features like code highlighting, folding or in-
lining belong here. Second, modeling projections project

code as editable diagrams that are kept synchronized with
the code they represent. Advanced example of such projec-
tion is present in IntelliJ IDEA, where a programmer can
display classes as UML class diagrams and edit them (al-
though with some limitations) in this graphical form. And
third type, domain-specific projections, take advantage of
common application structures, conventional configuration
and domain-specific APIs in order to aid in development
with supported frameworks.

As for the visualization projections, their content can-
not be directly altered. They only reflect changes made to
the abstract program representation through some other ed-
itable view. These projections usually provide concentrated
views on some system property. Again, there is the source
code projection type in this category. It includes com-
mon IDE features, like code completion, or more unique
ones, like CodeLens in Visual Studio that provides a quick
overview of a method’s usage throughout a project. The
new is the structure projection type that includes primarily
various views showing tree structure of a project. But not
only at the file level; they may include also classes, their
methods and fields, and even the visibility modifiers.

Apart from these IDE features, there are also tools by
which researchers extend IDEs with another projectional
capabilities. Dvais and Kiczales created Registration-based
abstraction editor [14] for Eclipse to enable creation of new
language construct on the view layer. A functionally similar
concept for language enrichment environment that includes
projectional editing is presented in the work of Chodarev
et al. [15]. It uses pattern recognition to suggest recurring
code patterns that could be abstracted into a new language
constructs. And a whole framework for extending Eclipse
with multi-perspective software visualizations is described
by Carneiro and Neto in [16]. They use a traditional data
visualization process (comprising data collecting, filtering,
and transformation steps) adjusted to the needs for display-
ing various source code dependencies in graphical form,
e.g., treemap3 version of project structure.

3.2. Concern-oriented Projections

The main purpose of projections described in the pre-
vious subsection is to facilitate program comprehension of
implementation-level concerns. As such, their construction
does not require any other information than those obtain-
able from the source code itself. This ensures that tools
using these projections are usable without any additional
effort from a programmer. On the other hand, semantic gap
between problem and solution domains remains wider.

Concern-oriented projections are focused on higher-
level concerns. Such projections require some additional
metadata bound to the source code that capture these con-
cerns. A particular projection can be created with a projec-
tion query specifying relevant concerns or incrementally if
creation of final projection requires multiple actions.

Taking into account different format of concerns, Nosál’
[12] recognizes the following three types of concern-
oriented projections, listed in the order of increasing ab-
straction level:

3Treemap is a 2D visualization of a tree structure using recursively nested rectangles.

ISSN 1335-8243 (print) c© 2016 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 16, No. 3, 2016 29

• Source intrinsic projections that are based on the
analysis of the system’s source code. Most IDE pro-
jections belong here.

• Configuration-based projections that are based ei-
ther on explicit configuration or on code conventions.
These projections can be found in IDEs that provide
specific support for some framework or tool.

• Annotation-based projections that require metadata
explicitly embedded in the source code. Annotations
are created solely for the purpose of building a pro-
jection.

3.3. Editors for Concern-oriented Projections

In the last five years a number of experimental code ed-
itors that can be categorized under concern-oriented pro-
jections were presented in the research community. All
of them break the traditional file-based editor paradigm in
which one editor displays content of a single file.

Sieve Source Code Editor (SSCE) [12] is a tool that
complements the approach of annotation-based projections
with a possibility to build a kind of a virtual file comprising
all the program elements annotated with selected annota-
tions. Experimental evaluation showed that the projection
was beneficial for navigating around an unknown code.

There is also a group of canvas-based editors. Code
Bubbles [17] for Eclipse allows to place editable code frag-
ments (bubbles) onto a 2D pannable canvas. Similar is
the Code Canvas [18] extension for Visual Studio. In case
of both of these tools, bubbles can contain classes or in-
dividual methods and related bubbles are interconnected
with arrows pointing from a method call to its definition.
A simpler approach presents the Patchworks code editor
[19] that restrict the free-form placement of code fragments
into a two-row horizontal strip of positionally fixed editors
(patches). Evaluations of these editors show that program-
mers can leverage their spatial memory for quicker naviga-
tion (which was most obvious for Patchworks where place-
ments of fragments were constrained) and that custom code
layouts help comprehend unfamiliar code.

All these alternative editors try to solve the issue of
organizing working environment for specific task without
the limitations imposed by used storage model. Although
canvas-based solutions still work only with source-intrinsic
information, we can view the layout of code fragments cre-
ated by a programmer as “concern-related metadata”. Prob-
lems however arise when we consider reusing such layout
for other tasks as it has no explicit semantic meaning.

3.4. Areas for Possible Improvements

So far we have presented our review of approaches and
tools that were designed to facilitate program comprehen-
sion through dynamic code views. Considering the overall
usability of these tools we see that there are issues regarding
the following three areas:

• Configurability: it is not possible to configure devel-
opment environment to provide a focused view on a
specific concern or a set of concerns.

• Composability: development environments are miss-
ing an ability to build concern-oriented projections
based on a composition of concern metadata of vari-
ous sources and types.

• Reusability: primarily the projections of canvas-
based editors are built for specific tasks only and are
hard to reuse for different tasks.

The likely cause behind the first two areas is the fact
that the concerned projectional tools were developed in iso-
lation, designed to cope with a particular problem. This is
not a problem of these individual tools, but rather of IDEs
that do not provide common means to work with custom
metadata [5]. On the other hand, the reusability issue is
more specific to the design of canvas-based editors.

Thus, for our next work, we want to focus primarily
on the composability, as we consider it to have a potential
to advance the overall usability of concern-oriented projec-
tions.

4. TOWARDS CONCERN-ORIENTED
DEVELOPMENT ENVIRONMENTS

In our next work we plan to design an IDE plug-in that
will serve two main purposes. First, it will provide a com-
mon platform for working with concerns in some way asso-
ciated with the source code. Here we do not plan to create
a method for extracting concerns, but rather reuse existing
concern extraction methods. And second, it will provide a
projection that will use this platform to create configurable
alternative view of the source code. In the following we
discuss individual aspects of our preliminary concept for
the plug-in.

4.1. Extension of IDE Code Model

In order to process concern-related metadata of various
origins and forms, we will need to transform these metadata
into a universal structure. As IDE is parsing the code into an
AST that is used as a model driving many of its views, we
see as one of the viable options to augment this AST with
the required metadata. In such a design, each AST node
representing an element with associated concerns would re-
ceive a reference to metadata nodes of these concerns.

Considering multiple sources of concern-related meta-
data (e.g., code annotations, structured comments, outputs
of feature location tools, and others), the augmentation can
be performed through a series of steps. In each step a trans-
formation specific to a particular form of metadata can take
place. A projection built upon such augmented code model
could cover multiple projection types recognized by Nosál’.
Moreover, by allowing to configure concern source selec-
tion, a variable concern abstraction level could be achieved.

4.2. A Question of Concern Granularity Level

With regard to the source code projection we plan to
build on the basis of the concern-augmented code model, an
important property is the granularity level of program ele-
ments at which the concerns can be preserved. All the tools
reviewed in section 2 use granularity of declarations (i.e.,

ISSN 1335-8243 (print) c© 2016 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



30 Exploring Code Projections as a Tool for Concern Management

classes, class methods and fields). We also mentioned ex-
periments showing that in some cases it was not sufficient.
Except for some automated feature location tools from the
survey of Dit et al. [20], no finer granularities were used
and we found no studies explicitly evaluating them.

To find out which granularities would be used by pro-
grammers to capture concerns in the code if the used tool
had no granularity restrictions we conducted a case study4

with 5 participants who tagged concerns in a known code
base with our simple tagging tool. Participants C1 and C2
used code written in C language, participants J1 and J2 in
Java, and participant P used Python.

The resulting distribution of concern granularity levels
among tagged code fragments is shown in Fig. 2. We can
see that each participant used a significant amount of tags
covering a statement or a group of consecutive statements
inside methods. And 19 out of 85 identified concerns had
no tags on a coarser level than statement.

Levels of concern granularityT
ag

ge
d 

co
de

 fr
ag

m
en

ts
 (%

)

0

88
.2

11
.8

-1.
1

82
.5

16
.4

-

28
.4 37

.5

28
.8

5.
3

0

36

51
.3

12
.7

12
.2 33

.3 51
.5

3

C1 C2 J1 J2 P

Participants

expression statement method/field class
0

25
50

75
100

Fig. 2 Distribution of concern granularity levels among tagged
fragments

Even though this was only a preliminary study, its re-
sults indicate that the usage of sub-method concern granu-
larities should be considered and further evaluated. On the
other hand, the expression level seems not to be used signif-
icantly enough to outweigh an increased cost of capturing
concerns at this fine level.

4.3. Preserving Context of the Projected Code

SSCE provides a virtual file projection with the gran-
ularity level constrained to elements that can be annotated
in Java. When the projection is constructed, the individual
annotated methods are “sieved” into a single editor. Ad-
ditionally, non-editable markings are added to describe the
code fragment original location (e.g, file, class). Similarly
the canvas-based editors add context headers to each code
fragment. This is important to give a programmer required
context of a code fragment to prevent ambiguity.

In case of projecting at finer, sub-method granularity
levels, the question of the context is even more important. If
we consider a virtual file combining fragments of multiple
methods, an inadequate surrounding context can easily lead
to wrong interpretation of the code by programmers. To
solve this issue, we can see a relatively simple solution in
projecting a whole method with additional highlighting of
related, respectively folding of unrelated code fragments in-
side method bodies. Design of such projection will need to

be thoroughly evaluated for its comprehensibility and use-
fulness.

5. CONCLUDING REMARKS

As we described in the previous section, our next work
in the area of projectional code editing will focus on a de-
sign and evaluation of an editable projection based on the
concept of virtual files.

Regarding the evaluation, we are particularly interested
in finding answers to two research questions. First, will
a projection based on a combination of multiple concern-
related metadata make the program comprehension more
effective than individual methods that created these meta-
data? And second, will a code projection with a sub-method
concern granularity and additional provided context pro-
vide benefits over a projection with coarser granularity?

Answering these questions through experiments with
our proposed projection implementation can provide more
understanding on effectiveness of parser-based projectional
tools for program comprehension tasks.

ACKNOWLEDGEMENT

This work was supported by the Slovak Research and
Development Agency under the contract No. APVV-0008-
10.

REFERENCES

[1] KOSAR, T. – MERNIK, M.: The impact of tools
supported in integrated-development environments on
program comprehension, 3rd International Confer-
ence on Information Technology Interfaces (ITI’11),
2011, pp. 603-608.

[2] MAALEJ, W. – TIARKS, R. – ROEHM, T. –
KOSCHKE, R.: On the Comprehensioin of Program
Comprehension, ACM Transactions on Software En-
gineering and Methodology (TOSEM), 23, No. 4,
2014, pp. 31:1-31:37.

[3] STOREY, M. A.: Theories, Methods and Tools in Pro-
gram Comprehension: Past, Present and Future, IEEE
13th International Workshop on Program Comprehen-
sion (IWPC’05), 2005, pp. 181-191.

[4] DAMEVSKI, K. – SHEPHERD, D. – POLLOCK, L.:
A field study of how developers locate features in
source code, Empirical Software Engineering, 21, No.
2, 2015, pp. 724-747.

[5] NOSÁL’, M. – PORUBÄN, J. – NOSÁL’, M.:
Concern-oriented source code projections, Proceed-
ings of the 2013 Federated Conference on Computer
Science and Information Systems (FedCSIS). 2013,
pp. 1541-1544.

[6] FOWLER, M.: Projectional Editing, 2008,
http://www.martinfowler.com/bliki/
ProjectionalEditing.html.

4More details on the case study can be found in [21].

ISSN 1335-8243 (print) c© 2016 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

http://www.martinfowler.com/bliki/ProjectionalEditing.html
http://www.martinfowler.com/bliki/ProjectionalEditing.html


Acta Electrotechnica et Informatica, Vol. 16, No. 3, 2016 31

[7] JEMEROV, D.: Implementing refactorings in IntelliJ
IDEA, Proceedings of the 2nd Workshop on Refactor-
ing Tools (WRT’08), 2008, pp. 1-2.

[8] PARNAS, D. L.: On the criteria to be used in decom-
posing systems into modules, Communications of the
ACM, 15, No. 2, 1972, pp. 1053-1058.

[9] HANNEMANN, J. – KICZALES, G.: Overcoming
the prevalent decomposition in legacy code, Proceed-
ings of the ICSE Workshop on Advanced Separation
of Concerns, 2001.

[10] ROBILLARD, M. P. – MURPHY, G. C.: Concern
graphs: finding and describing concerns using struc-
tural program dependencies, International Conference
on Software Engineering (ICSE’02), 2002, pp. 406-
416.

[11] CHU-CARROLL, M. C. – WRIGHT, J. – YING, A.
T. T.: Visual separation of concerns through multidi-
mensional program storage, Proceedings of the 2nd
international conference on Aspect-oriented software
development (AOSD’03), 2003, pp. 188-197.

[12] NOSÁL’, M.: Leveraging Program Comprehension
with Concern-oriented Projections, PhD thesis, Tech-
nical University of Košice, 2015.

[13] VOELTER, M. – SIEGMUND, J. – BERGER, T. –
KOLB, B.: Towards User-Friendly Projectional Edi-
tors, Software Language Engineering, Lecture Notes
in Computer Science, Vol. 8706, chap. 3, 2014, pp.
41-61.

[14] DAVIS, S. – KICZALES, G.: Registration-based lan-
guage abstractions, ACM SIGPLAN Notices, 45, No.
10, 2010, pp. 754-773.

[15] CHODAREV, S. – PIETRIKOVÁ, E. – KOLLÁR, J.:
Towards Automated Program Abstraction and Lan-
guage Enrichment, 2nd Symposium on Languages,
Applications and Technologies (SLATE), 2013, pp.
51-64.

[16] CARNEIRO, G. D. F. – NETO, M. G. D.
M.: SourceMiner: Towards an Extensible Multi-
perspective Software Visualization Environment, En-
terprise Information Systems, Lecture Notes in Busi-
ness Information Processing, Vol. 190, 2014, pp. 242-
263.

[17] BRAGDON, A. et al.: Code bubbles: a work-
ing set-based interface for code understanding and

maintenance, Proceedings of the 28th international
conference on Human factors in computing systems
(CHI’10), 2010, pp. 2503-2512.

[18] DELINE, R. – ROWAN, K.: Code Canvas: Zooming
towards Better Development Environments, Proceed-
ings of the 32nd ACM/IEEE International Conference
on Software Engineering (ICSE’10), 2010.

[19] HENLEY, A. Z. – FLEMING, S. D.: The Patch-
works Code Editor: Toward Faster Navigation with
Less Code Arranging and Fewer Navigation Mistakes,
Proceedings of the 32nd annual ACM conference on
Human factors in computing systems (CHI’14), 2014,
pp. 2511-2520.

[20] DIT, B. – REVELLE, M. – GETHERS, M. – POSHY-
VANYK, D.: Feature location in source code: a taxon-
omy and survey, Journal of Software: Evolution and
Process, 25, No. 1, 2013, pp. 53-95.

[21] JUHÁR, J. – VOKOROKOS, L.: Separation of Con-
cerns and Concern Granularity in Source Code, Infor-
matics’2015: IEEE 13th International Conference on
Informatics, 2015, pp. 139-144.

Received July 1, 2016, accepted September 20, 2016

BIOGRAPHIES

Ján Juhár was born in 1989. In 2014 received his MSc.
with distinction at the Department of Computers and Infor-
matics of the Faculty of Electrical Engineering and Infor-
matics at the Technical University of Košice. Currently, he
is PhD student at the Department of Computers and Infor-
matics at the Techincal university of Košice. His research
focuses on program comprehension, programming tools,
and projectional editors.

Liberios Vokorokos was born in 1966 in Greece. In 1991
he received his MSc. with honours at the Department of
Computers and Informatics of the Faculty of Electrical En-
gineering and Informatics at the Technical University of
Košice. He defended his PhD. in the field of program-
ming device and systems in 2000. Since 1995 he has been
working for the Department of Computers and Informat-
ics, Technical University of Košice. In 2005 he was ap-
pointed as Full Professor in Computer Science and Infor-
matics. Currently he holds the position of Dean at the Fac-
ulty of Electrical Engineering and Informatics.

ISSN 1335-8243 (print) c© 2016 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk


