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ABSTRACT
Programming languages evolve as the need for higher abstraction level increases. To satisfy these needs, languages introduce new

features, which are usually additional elements, but many times these are not orthogonal to the existing ones. The C++ programming
language is planned with backward compatibility kept in mind between particular releases. However, some of the new features intro-
duced by C++11, like move semantics or multi-threading required the change of the standard library API and this leads to deviation
in the meaning of existing programs. In this article we draw the attention on some of these semantic changes and provide a tool for
automatically detecting them.
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1. INTRODUCTION

Programming languages are human made artefacts; they
are created to solve certain problems in a certain time in a
certain environment. They are rarely perfect in their first
version, it is typical that they change frequently and signif-
icantly in their early period as experiences are accumulated
and developers face new problems. Although such changes
are inconvenient, they are usually manageable as the ex-
isting code base written in a relatively new programming
language is typically not huge.

Mature languages change less frequently. For main-
stream languages such changes should be planned in a very
careful way to avoid the invalidation of the existing large
code base. Therefore, the modifications are typically back-
ward compatible, i.e. the earlier written code should com-
pile with the new version of the compiler and the mean-
ing of the old code should not change. This is a major re-
quirement as it is unrealistic that the maintainers of a large
code base execute a full code review on the source to detect
whether certain code parts are affected by the changes [1].

If the evolution of the language requires backward in-
compatible changes, the usual procedure is the following:
first, the affected language element becomes deprecated,
i.e. it exists in the current language version but not sug-
gested to use it. Deprecated language elements are eas-
ily recognizable as the compiler emits diagnostic messages
over them. Maintainers should change the source code as
soon as possible to eliminate the usage of deprecated ele-
ments. Later, the element can be officially removed from
the language and referring it should cause syntax error.

The most serious problems related to language evolu-
tion come from situations where the syntax of the old lan-
guage version remains valid in the new version but the se-
mantics i.e. the meaning of the source code changes. In
such cases no compiler diagnostics are produced, nothing
warns the maintainers for the dangerous difference. The
source code is recompiled with the new compiler version
supporting the new language version without error mes-
sages or even warnings. When the program will be exe-
cuted, however, one can recognize a completely different
result. To catch such situations is very dubious even when

an almost full regression test coverage exists. Naturally,
mainstream languages try to avoid such backward incom-
patible semantic changes. However, even with the best in-
tentions, such situations happen regularly.

The C++ programming language [2, 3] is a favourite
choice of implementation when performance (maximizing
the speed of the program, minimizing memory consump-
tion or power supply) is among the major decision crite-
ria. Large systems in telecommunications, aeronautics or
other high speed programming areas are frequently written
in C++. In such systems object oriented and generic pro-
gramming features are mixed in a highly complex way.

The C++ programming language has a long history. The
language originated in C and one of the early design goals
of C++ was to provide some sort of backward compatibil-
ity with C [1]. Although this concept became less important
later, it helped C++ to reach the critical amount of develop-
ers with the reuse of old C libraries. C++ as a safer C added
mostly new features to C which did not interfere with ex-
isting language structures. The standardization process of
the language in the second part of the 90s led to the first
international C++ standard, frequently referred as C++98.

In the next few years some of the shortages and bugs
of that standard has been revealed and a new version of the
standard (often mentioned as C++03) issued mainly as a
correction of the original standard. This version contained
only minor changes and had no drastic effect on existing
C++ systems.

Since the standardization, the popularity of C++ has
been continuously increasing. Millions of code lines have
been written in large software systems in various applica-
tion areas. That means, we have now a large amount of
legacy code with all the maintenance issues connected with
them. Regarding this large code base any change in the
core language or in the standard library requires a special
attention.

A few important features, however, was left out from
C++03 [4]. Library elements like hash tables [5] and smart
pointers [6] among others were supposed to be selected part
of the planned next standard referred as C++0X. However,
some of the proposed changes was affected the core lan-
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guage, like move semantics [7, 8]. As the new standard,
called C++11 has been implemented in more and more
compilers, people attracted by the new features started to
use these features, believing that the semantics of old exist-
ing code will not change.

Unfortunately, recently we identified a number of seri-
ous defects in backward compatibility between current and
previous C++ standards. This means, that the recompila-
tion of the previously written code using a new C++ com-
piler (using the new standard) may change the program be-
haviour without any compiler diagnostic messages. Need-
less to say, that such changes in program semantics can be
extremely dangerous and in a large code base they are al-
most impossible to catch by manual inspection (like code
review). Whether regression tests can capture the problems
is also questionable.

In this paper we propose a tool support to detect such
backward incompatibilities in C++. The basic idea is to
parse the source code using different standards, and then
compare the generated abstract syntax trees (AST), and re-
porting significant differences.

We implemented a proof of concept prototype tool
to demonstrate our idea. The tool is able to compare
C++98/03/11/14 versions of a program and detects pars-
ing differences. The prototype tool is implemented using
the LLVM/Clang compiler infrastructure and is available
for tests.

This paper is organized as follows. We demonstrate the
most important changes that may cause backward incom-
patibilities between programs compiled in different C++
standard versions and give examples for such situations in
Section 2. We describe the Clang compiler infrastructure as
the basis of our solution in Section 3. Our prototype tool is
introduced in Section 4. In Section 5 we overview our re-
sults produced by our tool. A possible alternative solution
is discussed in Section 6 and compared to our method. The
paper concludes in Section 7.

2. MAJOR CHANGES IN C++11/14

A software quality has several aspects such as perfor-
mance, low memory usage, portability, safety, robustness,
and so on. Some of these aspects may be contradictory, for
example a program can be faster if the computed data is
cached, but in this case more memory is needed. If the val-
ues are computed over and over without storing the results,
the program needs less memory but the performance de-
creases. The programming languages have to choose which
aspects to support, and which not. In many cases, where
in doubt, ADA chooses safety, Java chooses portability and
C++ chooses runtime performance. Along the development
of a programming languages their primary principles are al-
ways kept in mind, and the new features also intend to serve
them.

Object-oriented languages are designed to give pro-
grammers the possibility of creating new types in the form
of classes. Such types may be constructed from other com-
plex types in a recursive manner and copying their raw
bytes may not be the proper copy semantics. For such cases
programmers in C++ may define copy constructor for ini-

tialization and the operator= for assignment. These spe-
cial member functions are usually implemented using the
already defined copy operations of subobjects or the explicit
copy instructions decided by the programmer. When no
user defined copy constructor or assignment operator have
been provided the default memberwise copy operations will
be applied.

C++ was designed using value semantic, i.e. every ob-
ject owns its memory location uniquely [9]. Although,
this rule can be violated using pointers and the address-
of operator, by default C++ assignment copies the object
to a new location. For user defined types the programmer
can define his own copy constructor and assignment opera-
tor. While this behaviour is very convenient when we want
to encapsulate the implementation of classes and building
higher abstractions, it may also be a cause of serious per-
formance issues. In case of complex classes, like matri-
ces, vectors, lists, a single assignment may cascade down
to a huge number of byte-level copies. This phenomenon
exists for the containers of the C++ standard library too.
Temporary objects created during the evaluation of expres-
sions are also critical performance bottlenecks. The used
new and delete operators, the overhead of the extra loops
and memory access are costly operations.

Todd Veldhuizen investigated this issue, and suggested
C++ expression templates [10] and template metaprogram-
ming [11, 12] as a solution. The basic idea is to avoid
the creation of temporaries, and unnecessary copies, but
“steal” the resources of the operands, i.e. move the own-
ership of the data representation between assigned objects.
Such move operations can be implemented library-based,
like the Boost.Move library [13] with overloading the orig-
inal copy operations. Library-based solutions, however,
lack to distinguish objects which are destroyable, i.e. their
resources can be safely moved out. To distinguish non-
destroyable objects from possible sources of move opera-
tions, i.e. those which can be destroyed language support is
required.

The C++11 standard has introduced a new reference
type: the rvalue reference [2, 3] and change the core lan-
guage to enable move semantics. In the source code, the
rvalue references have a new syntax && to yield reference to
destroyable objects. Using this syntax, constructors, copy
constructors and assignment operators can be overloaded
with multiple types. Constructors and assignment opera-
tors with rvalue parameters are called move constructor and
move assignment. The move constructor and move assign-
ment changes the ownership of the data representation of
the argument object, and set it to an empty but valid (de-
stroyable) state [14].

To understand move semantics let us take a look at the
following example:

Vector a, b, c, d;

d = a + b + c;

When a + b evaluates, a temporary object (t) is cre-
ated to store the result. In the next step t + c is evaluated
which produces another object. The disadvantage is obvi-
ous. For computing the result of each sum, a newly created
object is needed for storing the result. These are tempo-
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rary objects which are deallocated as soon as the summa-
tion ends. Allocation and deallocation of large objects is
expensive. It would be much more efficient if these tem-
porary objects could be reused between the operations, and
this can be expected from a language of which the superior
philosophy is the support of performance.

The problem comes from that before C++11 standard
it was not possible to distinguish between temporary ob-
jects and long-term objects. In C++11 not only the type
of an expression is important but the category as well. Be-
sides typical lvalue and rvalue categories the xvalue has ap-
peared that indicates the values of which the resources can
be reused, or to use standard terminology, can be moved
from. For sake of simplicity let us suppose that a Vector

is represented by an array of elements and by their num-
ber. Moving from a Vector object to another means that
only the pointer indicating the first element’s location of
the source Vector’s array is copied to the target Vector’s
inner representation, not every elements of the array. The
rule is that the source object from which we move has to re-
main destructible, since the destruction of an object cannot
be prevented even if it is a temporary object.

Returning to the example of summation, the implemen-
tation of the operator+ could be improved so if it has a
temporary object as first parameter then instead of creating
a new result object the resources of the temporary object
would be reused. The C++11 standard introduces the con-
cept of right value reference which matches the temporary
objects (i.e. the objects which cannot be reached by name
or made explicitly right value reference by std::move()

function. A right value reference for type T is written T&&.

Vector operator+(Vector&& l, const Vector& r);

3. TECHNICAL BACKGROUND

In this article we are dealing with the semantic changes
of our C++ programs between the different standard ver-
sions. Since many semantic differences are mostly raised
by introducing new language elements or by modification
of the Standard Template Library (STL) which is an inte-
gral part of C++ language, these changes come with the
change of Abstract Syntax Tree (AST). Here we are con-
sidering a simple tree data structure which is equipped with
information carrying the meaning of our programs, so the
differences can be checked algorithmically.

C++ is a relatively complex language. The complicated
syntax should denote differences between names declared
in different namespaces or other contexts. Overloading res-
olution – especially when speaking about argument depen-
dent lookup (ADL) – and scope resolution use highly elab-
orated algorithms. Template instantiations, template spe-
cialisations and SFINAE rules are also unobvious. There is
no surprise that only a few C++ compilers conform to the
recent standards.

Clang is a C++ compiler which is considered as the most
compatible one to the standard. It was intentionally de-
signed as a set of reusable libraries with well defined API
to allow programmers to handle the different parts of com-
pilation. In each step of compilation (lexical analysis, pre-
processing, compilation, optimization, code generation) the

various representations of the source code arise [15]. In this
article we conclude our results about the semantic changes
of a program based on the abstract syntax tree (AST), thus
in this section we take a closer look at Clang abstract syntax
tree representation.

The abstract word suggests that the tree does not keep
every single character of the source, but only the meaning-
ful elements of the programming language. For example
the node which belongs to a for loop has four children: a
declaration statement to introduce the loop variable, a log-
ical expression as loop condition, an iteration expression
and the body. Note that the parentheses and the semicolons
in the loop header are excluded.

In the AST there are different type of nodes such as
ForStmt, FunctionDecl, BinaryOperator, etc. These
types are organised to an inheritance hierarchy which has
three roots: Decl, Stmt and Type. Since the fundamental
part of build process is compilation of translation units, the
type of the root node is TranslationUnitDecl.

One way of using the Clang AST is to visit its nodes
[16]. The visitor design pattern can be used to reach
every node of the tree and perform some action when
the process comes to a given type of node. Clang com-
piler provides a very efficient way of tree traversal by
RecursiveASTVisitor template class. Our visitor class
has to inherit from this template class of which the template
parameter is our class itself. The reason of this is that with
this solution our class also becomes an AST visitor by the
inheritance, but we do not have to pay for virtual function
calls every time when running the given visitor function for
the next AST node.

Each node type has a corresponding visitor function
which is called exactly the same as the node type pre-
fixed by “Visit”. This means that when the depth-first
traversal provided by RecursiveASTVisitor reaches a
function declaration then VisitFunctionDecl() func-
tion is run. As mentioned above, this isn’t a virtual
function, so appending override keyword at the end
of this function generates a compiler error. One may
notice that by visiting a function declaration not only
VisitFunctionDecl runs but VisitDeclaratorDecl,
VisitValueDecl, VisitNamedDecl and VisitDecl too.
This happens because besides these visitor functions
the various node types also have a “Traverse...”
method of which the default behaviour is to call the
“WalkUpFrom...” function, that calls the correspond-
ing visitors along the inheritance hierarchy. Just like
“Visit...” and “WalkUpFrom...”, “Traverse...” can
also be rewritten but in this case the parent’s traverse
method has to be called explicitly to do the walk up. De-
tailed documentation of RecursiveASTVisitor (in Doxy-
gen format) can be found in [17].

A visitor function is passed a pointer to the visited AST
node. This allows us to perform arbitrary node-based oper-
ation. Via this pointer it is possible to reach any information
about the node which could be queried during the compila-
tion phase, like the position of the language element in the
source code, the callee of a function call, the then and else
branches of an IfStmt, etc.
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‘-FunctionDecl 0x2eff420 <line:7:1, line:10:1> line:7:5 main ’int (void)’

‘-CompoundStmt 0x2f12380 <line:8:1, line:10:1>

‘-DeclStmt 0x2f12368 <line:9:3, col:23>

‘-VarDecl 0x2eff948 <col:3, col:22> col:18 v ’std::vector<C>’:’class std::vector<class C, class std::allocator<class C> >’ callinit

‘-ExprWithCleanups 0x2f12350 <col:18, col:22> ’std::vector<C>’:’class std::vector<class C, class std::allocator<class C> >’

‘-CXXConstructExpr 0x2f12308 <col:18, col:22> ’std::vector<C>’:’class std::vector<class C, class std::allocator<class C> >’

’void (size_type, const value_type &, const allocator_type &)’

|-ImplicitCastExpr 0x2f11ae8 <col:20> ’size_type’:’unsigned long’ <IntegralCast>

| ‘-IntegerLiteral 0x2eff9a8 <col:20> ’int’ 10

|-CXXDefaultArgExpr 0x2f11f08 <<invalid sloc>> ’const value_type’:’const class C’ lvalue

‘-CXXDefaultArgExpr 0x2f122e0 <<invalid sloc>> ’const allocator_type’:’const class std::allocator<class C>’ lvalue

‘-FunctionDecl 0x2f12890 <line:7:1, line:10:1> line:7:5 main ’int (void)’

‘-CompoundStmt 0x2f4f0b8 <line:8:1, line:10:1>

‘-DeclStmt 0x2f4f0a0 <line:9:3, col:23>

‘-VarDecl 0x2f12da8 <col:3, col:22> col:18 v ’std::vector<C>’:’class std::vector<class C, class std::allocator<class C> >’ callinit

‘-ExprWithCleanups 0x2f4f088 <col:18, col:22> ’std::vector<C>’:’class std::vector<class C, class std::allocator<class C> >’

‘-CXXConstructExpr 0x2f4f048 <col:18, col:22> ’std::vector<C>’:’class std::vector<class C, class std::allocator<class C> >’

’void (size_type, const allocator_type &)’

|-ImplicitCastExpr 0x2f4ef68 <col:20> ’size_type’:’unsigned long’ <IntegralCast>

| ‘-IntegerLiteral 0x2f12e08 <col:20> ’int’ 10

‘-CXXDefaultArgExpr 0x2f4f020 <<invalid sloc>> ’const allocator_type’:’const class std::allocator<class C>’ lvalue

Fig. 1 AST dumps of main() functions generated by Clang

4. OUR CONTRIBUTION

Static analysis tools gain more and more popularity.
The reason is that they can find a high number of possi-
ble dangerous program constructs with a relatively low ef-
fort. Compared to the various testing approaches they do
not require a high runtime coverage or manual work on de-
velopment test cases.

Static analysis methods vary on complexity and preci-
sion level [18]. Some of them convert the source code
to normal form and perform a simple regular expression
matching on it to find given patterns. This is suitable only
for the simplest cases. Other tools perform pattern match-
ing directly on the AST. This method can take semantic de-
tails into account. There are even more sophisticated tech-
niques that rely on program dependency graphs [19] or with
symbolic execution which interprets the code thus provid-
ing dynamic information on the program behaviour [20].
The question arises as to whether it would be enough to use
such tools to look for the specific cases where semantics
change from a standard version to another. The disadvan-
tage of this approach is that these tools can notice only those
type of changes which they are prepared for. Our solution
should discover every difference as it examines every que-
riable information about the syntax trees.

When we decided to create a prototype program to de-
tect semantic differences between different programming
language versions we had to choose between the options
above. We have to decide a trade-off between the com-
pleteness of the analysis and the performance restrictions,
i.e. our tool should be applicable for large legacy code base
of million lines of C++ code. Based on these constraints we
have chosen the AST-based solution.

Our prototype is written in standard C++ applying fea-
tures of C++11. The program uses the Clang compiler as
a library for building the AST. This is done by filling all
the visitor functions to dump the nodes of the AST to a
database. For this purpose we use SQLite database for sake
of simplicity.

The tree structure itself can be stored in a tradi-
tional way in the database as parent-child pairs. Dur-
ing the tree traversal we can extract this information by
the TraverseDecl() and TraverseStmt() functions of
RecursiveASTVisitor class. In these methods the cur-

rently traversed node is placed on the top of a stack data
structure to keep the invariant that the visited nodes after
the placement are the descendants of this node. After the
traversal of the subtree under the top element, the node is
removed.

In the Clang compiler all nodes are identified by the ob-
ject of the node itself, so a pointer to the node uniquely de-
termines the given entity. This cannot be used as ID in our
case, since every run of the program may place the nodes to
different locations in the memory, not to mention that com-
piling the same source code with different standards may
result completely different trees. Fortunately identifying
the nodes is not necessary, since we are only taking into
account the tree structure and the descriptive information
belonging to the nodes. We say that two nodes are uniform
if every information that we can observe about it completely
match. Thus it is not important to know whether the corre-
sponding nodes are identical, it is enough if their properties
are the same. For this reason the database contains a ta-
ble in which the properties of a node are stored. Besides
the usual ID column, this table has three other fields for the
node ID, the property name and the property value. During
the visiting process when reaching a node we store every
information that can be queried about it by getter functions.
The getter function name is stored as the property name and
the returned value is stored as the property value. These
values are like the mangled name or the parameter list of
a function declaration, or the loop condition and iteration
expression of a for loop.

By running the program for example in C++98 and
C++11 mode, the whole syntax trees are persisted in a
database. The last thing to do is to compare them. For com-
parison we use a simple depth-first search. We iterate the
two trees in parallel from the root belonging to the Trans-
lation Unit kind node, and in each step we select the prop-
erties of the current node. If any difference is found then
iteration stops and the incidence is being reported. Fig-
ure 1 shows the ASTs of the main() function of the ex-
ample demonstrating the semantic differences of vector
construction with initial elements, using C++03 and C++11
respectively.
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5. RESULTS

In this section we summarize the results we experienced
while testing a number of C++ sources. We found various
possible regression patterns, some of them may cause seri-
ous changes in the program semantics.

The first thing that our tool detected was about standard
library supplements. The standard library is an integral part
of modern programming languages, which makes its usage
easier. The release of a new version affects the standard
library as well: new elements appear or vanish, and the ex-
isting ones change. In C++ these changes are controlled by
cplusplus macro. This is a macro token which contains

version information about the current compiler and when
used in a library, this defines in the preprocessing phase
which parts of the library file should be included in the fi-
nal program code. This way it is possible in C++ to condi-
tionally compile specific parts of the program. For example
if the compilation is done in C++11 then cplusplus is
automatically set to 201103L. Source code written between
#if cplusplus >= 201103L and #endif are parts of
the program only if this condition evaluates true. Among
others this makes function overloads on newly introduced
long long int type visible. Of course this does not lead
to any program fails, because until C++11 this type was not
available.

Some more advantageous changes happen based on
move semantics. If a class is created for demonstrative rea-
sons with default and copy constructor, assignment operator
and destructor with a message print to the standard output,
then we can inspect what happens when a temporary object
of this type is inserted to an empty map by operator[].
Until C++11 this operation invoked default and copy con-
structors twice, copy assignment once and the destructor
four times. Their order differs in GCC and Clang, but the
number of invocations is the same. Compiling the same
program in C++11 mode the output shows two default con-
structor and a copy assignment invocation. Note that no
compiler generated move operations occur in this case, be-
cause the standard states that move constructor and move
assignment operator is not generated when user defined
copy operations are present. However we can now imple-
ment move constructor and assignment in which case copy
assignment is replaced by move assignment [14].

These changes are not necessarily risky. In those cases
where programmers don’t rely on side effects, global and
static variables, then using less constructors and using
move operations instead of copy just makes the code faster.
Strings, vectors, sets, maps, etc. work automatically much
faster when the program is compiled in C++11 mode or
above. However, we can present examples where turning
on C++11 compatibility the program shows off observable
differences as the semantics changes.

There are some types which do not support copy opera-
tions, such as std::ifstream or std::thread. However,
moving them is possible. Say we want to create a thread
pool, a simple vector of threads. std::vector<T> has a
constructor which enables allocation of n objects of type T.
Until C++11 this constructor has expected the number of
elements n, and an object of type const T& with a default

constructed default value, and an allocator (this latter one is
not important for now). This constructor copies n instances
of the second parameter. Move semantics has motivated the
C++ standard committee to reconsider this constructor as it
is not suitable for creating n instances of those types which
do not provide copy operations. Thus the signature of the
constructors has changed: there is a new constructor func-
tion with exactly one parameter: the number of elements.
This function instantiates n default constructed objects and
places them into the vector. If one needs objects other than
default constructed then he or she has to use the constructor
with two parameters where the second one does not have
any default value. This copies the passed object to the n
places.

Consider the following code snippet:

struct S {

S() : i(++counter) {}

static int counter;

int i;

};

int S::counter = 0;

int main() {

std::vector<S> v(5);

for (std::size_t x=0; x<v.size(); ++x)

std::cout << v[x].i;

}

The program above has different semantics in C++11
and pre-C++11 versions. The output of the former one is
12345 while the latter one prints 11111. Before C++11 a
single object of type S has been created by the default pa-
rameter of the constructor, and this instance has been copied
n times into the vector. From C++11 the constructor with
one parameter has been invoked and it is implemented to
call the default constructor of type S for n element of the
vector.

One might criticise the designer of the class S as the
copy and the move operation behave differently. However,
there are situations where this is the required behaviour.
Also, in practical code, side effects can happen in copy and
move operations (like related actions for persistence). Even
if this design would be considered questionable, this kind of
construct occurs in real world applications. As the change
happened outside of the user written code (in the imple-
mentation of the standard library), it will be very hard to
detect by manual inspection. Therefore this kind of seman-
tic changes are considered extremely harmful.

There are also some curiosities around the preproces-
sor. One can define macro tokens which can be considered
roughly as textual replacement operations. Each occurrence
of these in the source code is replaced at the very beginning
of the compilation process. Macros form a sub-language
which does not handle types or values. The syntax of this is
#define <from> <to>. For example we could define u8

to "abc":

#define u8 "abc"

std::cout << u8"xyz";

In the second line the "u8" is substituted by "abc" and
this forms a string concatenation. The result is that abcxyz
is printed to the output. In C++11 "u8" has a special mean-
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ing. Writing this in front of a string literal that will consid-
ered to be an UTF-8 encoded character sequence.

Introduction of user defined literals can lead to similar
problems. In case of "hello" x the x can be defined as
a macro as above or there might be an operator"" x()

which has different meaning.
We can also provide an example which differs in its per-

formance:

A f(int i) {

A x, y;

if (i > 1) return x;

else return y;

}

int main(int argc, char *argv[]) {

A z = f(argc);

}

The standard states that if a function returns an auto-
matic variable of which the type equals the return type of
the function, then the compiler may apply a so called re-
turn value optimization (RVO) [21]. In that case the re-
turning object can be created on the stack at the place of
the function invocation, and the copy construction can be
omitted even if it has any side effects. However in some
cases like the example above the compiler cannot predict
which local object has to be created at the place of function
call and in this case the compiler cannot avoid the creation
and copy of the given local variable. From C++11 instead
of calling copy constructor, the compiler considers the re-
turn statement as if an implicit std::move() were placed
around the returned object thus moving it to its target.

The above-mentioned behavioural changes affect the
modification of the syntax tree. In case of introduced new
types like long long int the AST is obviously extended
with the function overloads of which the signature contains
this type. The appearance of move semantics introduces
a new value category, the right value references. Function
overload on this is allowed in the language. In the UTF-
8 example two different string literals are generated, and
these are also observable in the AST. Our tool is able de-
tect all these differences, so it is possible to report semantic
changes to the users.

We note that in some cases the reports may be false pos-
itive. For example in the general case it is not appropriate to
rely on side effects in the implementation of a constructor.
In the example where the potential semantic change was
caused by the changing of std::vector’s constructor our
tool gives a false report if there is no semantic difference in
the two cases.

Theoretically, a possibility for false positives comes
from changed internal data structures or algoithms. These
cases, however, can be considered as false positive cases
only when the observable behavior is exactly the same,
only the implementation has changed. In practice, we have
not experienced such cases. The reason is that the com-
plexity of the C++ programs – especially in multithreaded
environment – discourages developers to execute such mod-
ifications.

The compilation of C++ programs contain the step of
building the abstract syntax tree – the fundamental task
of our utility. However, our tool does not include time

consuming steps like dataflow analysis, code optimization,
code generation and linking. On the other hand, our tool
has a full walk-through of the AST. Overall, these factors
are in ballance. Our tool runs roughly as long as a normal
compilation process.

6. RELATED WORK

An alternative solution for the problem discussed in this
paper would be to use static analysis design rule checkers.
Design rule violation detection is an emerging technique to
improve the quality of large scale software and reduce the
implementation – testing – bug fixing cycle.

Tools for design rule violation detection for C++ code
exist in a growing number but their power are different. The
most simple checkers using simple pattern matching using
regular expressions on the canonical format of the source
code. Such tools, like [22] are popular since they are rel-
atively fast and new rules can be implemented in an easy
way just defining the required new regular expression [23].
However, as regular expressions are context-free languages,
the theoretical detection power of these tools are limited.

As an example, suppose, that we want detect the im-
proper usage of the sizeof operator, e.g. when we applied
sizeof(ptr) for a pointer instead of the object itself, like
sizeof(*ptr). This is likely a bug as pointers in a cer-
tain platform have fixed size independently of the pointed
object. We might detect specific patterns in the code, like
sizeof(&x), but in the generic case of sizeof(x) we can
not investigate the type of the x the argument, since that de-
pends on the declaration, which is placed somewhere else
in the code.

More complex tools are working on the abstract syntax
tree [24]. These tools can walk on the AST as our solution
does it, can refer to the point of definition of the program
elements, and can recognize their types. The major prob-
lem with this approach is that they require to implement all
the possible design rules to check. This is not only a giant
work, there is also a theoretical problem: how can we detect
the backward incompatibilities caused by issues that we are
not aware yet?

We think our approach as superior over the design rule
violation detection since we do not have to specify in ad-
vance which kind of problems we are looking for. We sim-
ply compare the two versions of the program and anywhere
we find a difference we report.

7. CONCLUSION

In this paper we warn for the danger of backward in-
compatible changes in mainstream programming languages
and suggested a tool-based solution for C++ legacy code
base. In recent C++ standard, C++11 and C++14 there are
some changes both in the core language and in the standard
library when such situations can occur.

We discussed the details of programming language evo-
lution from the viewpoint of the backward compatibility be-
tween different language versions. We identified a specially
harmful situation when the earlier written code is recom-
piled in the new language standard with the new compiler
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version without compiler diagnostics, but its semantic, i.e.
the program behaviour changes. Such situations are very
hard to detect manually, especially in the case of recompi-
lation of a large legacy code base.

The C++ programming language is among the most
popular programming languages where large legacy code
base has been developed for decades. Recent major evolu-
tionary steps caused extensive changes both in the core lan-
guage and in the standard library. Unfortunately some of
them break the backward compatibility. We explored such
cases related to the move semantics and other language fea-
tures. To assist the automatic detection of these kind of
problems we suggested tool support.

We developed a proof of concept to validate our idea.
The tool is based on the open source LLVM/Clang infras-
tructure, which is a reusable library supporting – among
others – to parse the source code and travel the resulted ab-
stract syntax tree. We parse the same source using different
compiler version settings (according to different language
versions) and compare the ASTs. Any semantic differences
should materilaize in a difference between these trees. We
report these differences using a pretty printing function re-

ferring the differences in a usef-friendly form.
For all static analysis tools there is the possibility for

false positive findings. Our tool is not an exception. How-
ever, in practice we experienced low level of false posi-
tives – a result likely reflects the defensive approach of the
C++ language designers. The tool has no run-time overhead
compared to the normal compilation process.

We believe that our tool gives a major help for those de-
velopers, who are maintaining large legacy C++ code base.
As such code bases are continuously developing, the new
features are implemented and compiled using new compiler
versions if and only if we can ensure that the earlier written
code – if will be compiled – will keep its semantic, i.e. it
will behave like compiled in the earlier compiler versions.
Our tool can help to prove this.
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University in Budapest. He started his PhD study in the
field of programming languages and paradigms in 2015.
His main research area is programming languages evolution
and the modern features of the multiparadigm languages.
He participate in the teaching of programmer students at
B.Sc. level.

Norbert Pataki was born on 26. 2. 1982. He received his
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