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ABSTRACT
In this paper, we develop a new remotely testable setup based on Altera Cyclone III field-programmable gate array. The setup

is part of the European project EDIV I DEin which our department participates. The setup is prepared for an educational purposes
in the field of the reconfigurable devices. The setup uses Nios II soft core processor with reconfigurable coprocessor for the digital
filtration. The design of the coprocessor is provided in VHDL which can by modified by the end user. The Nios processor programmed
in C language ensures an interface between the coprocessor and EDIV I DEproject servers. The complete setup uses a Nios II Cyclone
III embedded evaluation kit board with additional debug and monitoring interfaces for EDIV I DEproject infrastructure. Besides the
VHDL design and C implementation, we created a web interface for the remote testing and debugging of the end user designs.
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1. INTRODUCTION

Education in the field of reconfigurable systems requires
various elements. Lectors need software (development en-
vironment, simulation tools) and hardware equipment such
as evaluation boards for each student. These requirements
are often hard to achieve due to price, time and location of
the lectures. One of the method to provide all the tools to
students is usage of a remote setups. Students can have ac-
cess to software and hardware at any time and from every
place with the Internet connection.

We aim to provide students online access to toolchain
and evaluation board. User of the remote setup provides
design codes. After synthesis, they can test the design on
the evaluation board using web interface with online video
stream, control buttons and indicators. The remote system
is part of EDIV I DEproject [1] in which we participate.

We develop a novel system in the field of a univer-
sity education focused on hardware design in a combina-
tion with a soft processor. Previously published and used
educational remote setups [2–4] are mainly focused only
on the hardware design. We added a functionality of the
soft processor in the remote setup for educational purposes
which shows students a possibility in interoperability be-
tween software and hardware design.

The paper is organized as follows. Brief information
about EDIV I DEproject is provided in section 2. The archi-
tecture of the remote setups are discussed in section 3. We
give information about Nios II [5] setup with Finite Impulse
Response (FIR) filter coprocessor and its web interface in
section 4. Section 5 contains experimental results of our
setup. We conclude the paper in section 6

2. EDIV I DEPROJECT

The project’s main goal is to create and maintain a net-
work of remotely accessible Field Programmable Gate Ar-
ray (FPGA) setups shown in Fig. 1. Setups grant students
who do not have direct access to the hardware an opportu-
nity to test their designs on a real hardware using remote
access. The access is provided using an unified web inter-

face which enables students to check the device status and
control the device using a provided controls.

Catholic University Leuven (KHLim), University of
Oslo (UiO), Technical University of Kosice (TUKE) and
University College Bonn-Rhein-Sieg (H-BRS) participate
in the project. Each university provides four FPGA based
setups. Two simple setups with easy to understand prin-
ciples and two advanced setups with more complex solu-
tions for exercises. Each setup is provided with exercises
(usually 4-5 exercises) which are sequenced from the sim-
plest to the most complex. Our simple setups teach students
about Finite State Machines (FSMs) and linear feedback
shift registers. Topics of the two advanced setups are Nios
II with True Random Number Generator (TRNG) coproces-
sor [6] and Nios II with FIR filtration coprocessor which is
the topic of this paper.

LabSetup

FPGA
UART

Central
Server

Student

VirtualPrivate
Network

www.edivide.eu

WWW

Control Video
stream

Other/ Feedback

USB

Local TUKE
Server

Altera

LabSetup

FPGA
UART

USB

Local KHLim
Server

Xilinx

LabSetup

FPGA
UART

USB

Local UiO
Server

Xilinx

LabSetup

FPGA
UART

USB

Local H-BRS
Server

Xilinx

Fig. 1 : Architecture of distributed EDIV I DElaboratory

3. REMOTE SETUPS ARCHITECTURE

Each university is responsible for the local server se-
tups, available FPGA hardware and development tools for
the selected hardware. At our university we provide sup-
port for Altera FPGA by using Altera Quartus development
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tools [7]. Other partners in the project are using Xilinx FP-
GAs and development tools. We use Altera Nios II Cyclone
III evaluation kit [8] as a common hardware platform for all
EDIV I DEsetups developed by our university. The Altera
Nios II Kit includes full featured FPGA starter board and
LCD multimedia card as shown in Fig. 2.

We use Altera Cyclone III EP3C25F324 FPGA [9]
available on the starter board in all developed TUKE se-
tups. The Altera EP3C25 contains 24,624 Logic Elements
(LEs), 608,256 RAM bits, 66 18× 18 bit embedded hard-
ware multipliers and 4 Phase Locked Loops (PLLs) and all
these resources are available for our designs. Our com-
munication with local server uses defined Universal Asyn-
chronous Receiver/Transmitter (UART) channels shown in
Fig. 3 These channels were defined as basic unified commu-
nication channels for all projects developed by EDIV I DE
partners.
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Fig. 2 : Structure of Altera Nios II Cyclone III evaluation
kit and its embedded components
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Fig. 3 : Basic Input/Output and Debug interfaces defined
as basic communication channels for all EDIV I DEprojects

As standard communication and debug channels we use
64-bit data and control packets in both directions. For
TUKE designs we use additional available channels: 800×
480 LCD screen and audio codec monitored by USB cam-
era with microphone. We implemented interface to these
channels as custom logic implemented in VHSIC Hardware
Description Language (VHDL) [10] and controlled by a set
of FSMs. A block diagram of available interfaces and ad-
ditional hardware resources (pushbuttons, LEDs, oscillator,
...) is shown in Fig. 4.

Clear separation of these interfaces from our setups al-
lows us to develop students’ setups independently from
hardware interfaces and/or optimize hardware interfaces

(e.g. increase drivers resolution) in the future. In the next
section we describe our second advanced setup combina-
tion of Nios II soft core with our implementation of FIR
filter coprocesor.
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Fig. 4 : Interfaces and hardware components available for
developed TUKE setups

4. ESSENTIAL PARTS OF THE NIOS II SETUP
WITH FIR FILTRATION COPROCESSOR

The setup is designed to filter a real-time audio as well
as digital signal samples received from a user via the In-
ternet. Firstly, users must provide their design in VHDL
code. After the synthesis takes place and the configuration
is loaded to the FPGA board, the setup can be remotely
tested. When filtering the real-time audio the user can set
coefficients of the filter on the fly. When filtering digital
signal samples the user can set coefficients, initial state of
a delay line and send data samples to fulfill (1). The setup
will then return filtered data which will be sent to the user.

y(n) = h0x(n)+h1x(n−1)+ · · ·+hNx(n−N)

=
N

∑
i=0

hix(n− i)
(1)

where y(n) are output samples, x(n) are input samples, hi
are coefficients of the FIR filter and N is order of the filter.

We prepared 4 exercises for students using our setup.

Demo exercise is prepared as a fully functional filter im-
plementation. Students should get familiar with an
FIR filter design [11] on an FPGA.

Symmetric FIR filter implementation. Student’s task
here is to implement their own implementation of a
symmetric FIR filter.

Anti-symmetric filter implementation. Similarly to the
second exercise the task here is to implement an anti-
symmetric FIR filter.
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N-band audio equalizer. The task here is to implement an
N-band audio equalizer. It’s goal is to point out one
of the main uses of the FIR filters and performance
of FPGA circuits.

In all exercises, students can upload a custom set of co-
efficients to the filter and use all capabilities of the setup.
This provides students with a set of function to test their
hardware implementation.

4.1. Nios II soft core processor

Nios II soft core processor is an embedded 32-bit pro-
cessor architecture developed by Altera for use in FPGA
circuits. The processor is responsible for handling commu-
nication between the server and the FPGA board. It also
routes received data to appropriate peripherals according to
the selected mode. There are several modes of operation:

Audio loopback mode: Nios receives data from an audio
codec input and routes it back to the audio codec out-
put not changing it in the process.

Audio filter mode: receiving data from the codec and
sending back filtered data to the codec output.

Raw data filter mode: Nios receives all data from a serial
line and sends it back also to the serial line. In this
mode it is possible to set the initial state of the FIR
filter delay line.

The Nios processor is also connected to an off-chip
memory which is situated on the evaluation board besides
FPGA (Fig. 5). The memory provides enough space for in-
put and output data buffers for 96,000 signal samples. This
amount is enough for 2 seconds of audio samples with a
48 kHz sampling rate.
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Fig. 5 : Block diagram of EDIV I DEsetup with Nios II soft
core and custom FIR filter coprocesor in Altera FPGA

4.2. FPGA based FIR filtering coprocessor

The setup provides student with an interface to the Nios
II soft core processor as shown in the Fig. 6. Using this

interface the student should implement a digital FIR filter.
The interface provides 16-bit data input and output buses
and 16-bit bus for coefficients input. It also provides the
student with a FPGA embedded RAM blocks [12] for coef-
ficients and data samples storage. Each of embedded RAM
blocks is capable to store 1,024 16-bit values. This pro-
vides an interface suitable for filters with 1,024 FIR coeffi-
cients.

The Nios processor along with the FIR filter are clocked
by a 50 MHz clock. The audio sampling frequency of the
audio codec is 48 kHz which allows the maximum of 1,041
cycles for filtering and overhead during the filtering process
as show in (2).

NmaxCycles =
fclock

fs
=

50×106

48×103 = 1,041.6 cycles (2)

Our demo exercise implements a sequential FIR filter
using the interface. The filter uses 16-bit fixed point arith-
metics in 1.15 fractional format. The filter is controlled by
a FSM, shown in Fig. 7, governing all operations. It uses
RAM memory blocks for coefficients and data storage as
depicted in Fig. 6. The demo exercise implements a gen-
eral FIR filter based on (1) for the Nth order FIR filter.
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Filter

Fig. 6 : Block diagram of the digital FIR filter coprocessor

Embedded RAM blocks used for coefficients and data
storage can store 1,024 values each. That provides enough
storage for implementing a 1,023rd order FIR filter when
the implementation directly matches (1).

The filtering process is controlled by the FSM as shown
in Fig. 6. Fig. 7 shows internal states and possible transi-
tions between them.

The reset signal is asynchronous and immediately puts
the filter to a RESET state. In this state all internal
registers are reinitialized with zeros. FSM then goes to
RAM CLR WRITE state, which writes zero value to the
sample memory. In RAM CLR INC state the memory ad-
dress counter is incremented to erase next address. After
whole memory is erased FSM goes into IDLE state. In
IDLE state it waits for the input sample ready signal. Af-
ter receiving the signal it goes into the WRITE SAMPLE
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state. In the WRITE SAMPLE state, the FSM writes the
input sample into the samples memory. After the sample
is written, the filtering process can start. The initialization
phase of the filter is done during the START FILTER state.
During this phase, the FSM waits for the memory to fin-
ish writing of the sample. In the FILTER state, the filter-
ing is performed. FSM sweeps through both memories and
multiplies samples with appropriate coefficients. After it
reaches the end of the memories, it changes the state to FIN-
ISH FILTER. The FINISH FILTER state compensates for
the delay of the output registers of the memories. Similarly
the FINISH MAC state compensates for the delay of the
MAC unit registers. After FINISH MAC state, all samples
are processed and the accumulator holds the output value.
The FSM goes into the FINISH state, when it puts the 16-
bit output value from the accumulator to the output register
and triggers the output sample enable signal.
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Fig. 7 : State diagram of the FIR filter’s FSM

It is a known fact that linear-phase FIR filters posses a
symmetry in their impulse response. There are two types
of this symmetry. The first one is symmetric impulse re-
sponse (3) and the second is anti-symmetric impulse re-
sponse (4) [13].

hi = hN−1−i (3)

hi =−hN−1−i (4)

Two of student exercises are focused on symmetric and
anti-symmetric filter implementations. Exploiting a sym-
metry of the impulse response may reduce memory require-
ments of the whole design because only half of coefficients
need to be stored. This means that it is theoretically possi-
ble to implement a filter with 2,048 coefficients with our

setup using the embedded RAM blocks with 1,024 ele-
ments. The time constraints are taken into consideration
because of the maximal number of clock cycles available
for the filtering is 1,041 as shown in (2).

Fig. 8 : Printscreen of the web interface used with the sec-
ond advanced setup.

4.3. Web interface for the FIR filter design testing

Web interface is used by students to control the design
they developed. We developed two main parts of the inter-
face - back-end and front-end. Printscreen of the front-end
is in Fig. 8. In the front-end, video stream is in the upper left
corner. It allows students to visually control the board. The
text output is located in the lower left corner. It is used to in-
form the user about current processes in the design. Audio
data filtration panel takes place in the upper right corner.
It consists of activation button, signaling LED, switch for
enabling FIR filtration, part for FIR coefficients upload and
audio player with various sound samples. Raw digital data
filtration panel takes place in the lower right corner. It con-
sists of activation button, part for upload (FIR coefficients,
delay line and input data), button to start the filtration and
LED signaling busy state. Start and Stop buttons on the
bottom are only for debug purposes. They are not available
in the final version of the interface.

Second part of the web interface was the back-end. Part
of the back-end was provided by EDIV I DEproject and
setup specific features was developed as a part of this work.
The setup specific back-end consists of PHP script, CSS
and JavaScript files. We created the functions which are
uploading and processing the data files from the student.
The functions forms packages for FPGA controlling and it
sends data packages to the design. They also receive data
from the board, process it and provide the filtered data to
the end user.

5. EXPERIMENTAL RESULTS

5.1. FPGA resources used

Table 1 shows the FPGA resources used by all elements
of the setup. We used 56% of the LEs and 76% of the em-
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bedded RAM bits. The rest of the resources is available for
the students’ design in submitted VHDL codes.

Table 1: FPGA resource usage

LEs Memory bits
FIR 268 32,768
Nios cca 10,000 295,904
Total used 13,825 459,744
Total available 24,624 608,256

PLLs DSP blocks
FIR 0 2
Nios 1 0
Total used 2 2
Total available 2 132

5.2. Sound card characteristics
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Fig. 9 : Characteristics of inputs of the sound cards when
driven from the internal card

While everything was working correctly in simulations,
we noticed a problem when testing on a real hardware. We
noticed that the audio signal at the output of the FPGA
board seems filtered even if the FIR filter is not working.
After further investigation of this issue we found out that the
problem is the external USB sound card used on the server.

Since the server does not have an internal sound card, we
need to use the external device to provide the sound sup-
port. We decided to confirm this issue by testing it on a
computer with an internal sound card so we directly inter-
connected inputs and outputs of both cards. We then used
the white noise to determine the frequency characteristics
of both cards.
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Fig. 10 : Characteristics of inputs of the sound cards when
driven from the external card

The graphs in Fig. 9 and 10 show that the external sound
card has an output filter with much lower cutoff frequency
than the internal card. This affects every signal that is repro-
duced by the external sound card on the server. The input
of the external card also does not have a filter which can
suppress the DC component of the input signal.

Issues presented here are connected with the sound card
used and can be suppressed only by choosing different
hardware. This type of problem is hard to foresee, because
characteristics of the input and output filters of the sound
cards are not always public. Problems like this are also
strongly dependent on the hardware and do not occur in
simulations. That is one of the reasons, why testing with a
real hardware is essential in the development process and
in education. Students themselves will be aware of the fact
that the simulation and hardware testing can behave differ-
ently.
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6. CONCLUSION

In this paper we created the remote setup for Nios II pro-
cessor using FIR filter coprocessor. We include this setup
as second advanced setup for EDIV I DEproject. We devel-
oped software for Nios II soft core processor, design of the
FIR filter coprocessor, exercises for the students which will
use this setup for education purposes and web interface for
controlling and debugging the design. We provide FPGA
resource usage for our setup and we measured sound card
characteristics of the external sound card used on the lo-
cal server. The setup allows students to design their own
VHDL implementations of the FIR filter (e.g. a parallel
FIR filtration). In the future work we will prepare Infinite
Impulse Response (IIR) filtration coprocessor in order to
allow students IIR filter testing.
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