
Acta Electrotechnica et Informatica, Vol. 14, No. 2, 2014, 41–45, DOI: 10.15546/aeei-2014-0016 41

RECONFIGURING THE STRUCTURE OF COMPONENT-BASED SYSTEMS

Martin TOMÁŠEK∗
∗Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of Košice,

Letná 9, 042 00 Košice, Slovak Republic, tel.: +421 55 602 3178, e-mail: martin.tomasek@tuke.sk

ABSTRACT
We introduce component-based system architecture and basic software components. The main goal of this paper is to present a

novel solution for component-based system design in UML language. Any UML diagram of component-based system is automatically
optimized and then reconfigured to satisfy the hierarchical structure of component-based system. This solution is created as a plug-in
for Eclipse IDE and the results of the work are tested in various practical examples.

Keywords: software component, component-based system, reconfiguration

1. INTRODUCTION

Idea, that software should be created from components,
composed with previously developed parts, is not new. This
idea was presented for the first time at NATO conference
about software engineering in 1968 [1]. Component-based
software development approach in software designing is
based on repeated usage of objects that are called software
components. Component-based software engineering was
established because object oriented software design was
not effective in supporting objects reusability. This fail of
object-oriented programing came because class objects are
in general very detailed and specific. Software components
are more abstract than objects and can provided services for
other components, therefore they should exist as separate
entities.

The goal of this paper is to find a solution for design and
optimization of component systems structure followed by
the implementation. Finally, the solution is implemented as
a software design tool and the functionality of this solution
is tested in different use-cases.

2. COMPONENT-BASED SYSTEM

Component-based development or component-based
programing is modular extension of object-oriented pro-
graming. Component-based programing uses all equipment
of object-oriented programing with objects created compo-
nents, which are software units with higher quality level.
The basic principle of component-based programing is in
creation of capable components, which are capable enough
to be able to take responsibility for the implementation of a
set of activities of related applications or computer systems.
Component-based programing is based on a prediction that
software should be created the same way as manufacture
products that are manufactured in mass production belt [2].

Components provide a service without regard to where
the component is executing or its programming language.
A component is an independent executable entity that can
be made up of one or more executable objects. The com-
ponent interface is published and all interactions are per-
formed through the published interface [3].

Component application is made from one or more com-
ponents. Each component is responsible an implementation
of an application operations set. Thus we can say that the

final version of the application may be highly variable and
thus configurable. Because the components are designed on
a modular base, we can create diverse collection of com-
ponents. The modularity of components has advantages
not only for programmers but also for users. Depending
on user’s request, customer can directly influence the final
composition of component applications.

2.1. Properties of Components

Each component must fulfill following features:

• Identification
The component must be clearly identifiable. For
clearly identification of the components contributes
certification of these components and also increasing
the credibility of the component. Component certi-
fication is the process to control that the component
satisfies their specification. Certification means that
someone other except programmer can controls qual-
ity of the component.

• Encapsulation
The component encapsulates all the functionality in-
side. Inside the component there is a set of objects
with delegated responsibilities for implementation of
specific activities. With these objects, components
communicate by means of mechanism of sending and
receiving messages.

• Interface
Components also have their own public access inter-
face and users can use their services. Component in-
terfaces are divided into two groups:

1. Provided interface defines services that are pro-
vided by other components. This interface de-
fines methods of component that can be called
by user. It’s usually component of API.

2. Required interface defines the services that
must be available to enable component to ex-
ecute its activity.

• Preparations for use
The component operates as a ready software element
that provides comprehensive automation of selected

ISSN 1335-8243 (print) c© 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



42 Reconfiguring the Structure of Component-Based Systems

activities. Assuming that the client has an access to
a component, it can immediately start using the ser-
vices provided through its public access interface.

• Reusability
When the component is developed, debugged, tested
and optimized, we can use it as many times as it is
necessary.

• Anonymity of users
The functionality of component is completely sepa-
rated from the application. The component must pro-
vide quality service in a short time for every of re-
questing users.

• Interoperability
Components must be able to cooperate with oth-
ers, even when they are created in various inte-
grated development environments and programming
languages.

2.2. Aggregation and Composition of Components

Some components may create units, which themselves
can become components. Assembling the components to
create a functional system is called composition. This com-
position includes the integration of components with each
other, it also consists of integration with the infrastructure
component. Type composition between components:

• Sequential composition where the composed compo-
nents are executed in sequence. This involves com-
posing the provided interfaces of each component.

• Hierarchical composition where one component calls
services of another. The provided interface of one
component is composed with the required interface
of another one.

• Additive composition where the interfaces of two
components are put together to create a new compo-
nent.

3. RECONFIGURATION OF THE COMPONENTS

One of the main problems of the component-based sys-
tems engineering is to find appropriate notations for de-
scribing the systems. With formalized notation it is pos-

sible to document component-based designs clearly, auto-
mate their analysis and generate system.

The simplest and currently the most widely using model
for the mapping of software components is object model-
ing notation [4]. The most suitable description of object
modeling notation is UML language. This description is
clear for users and allows them the partial support of the
implementation (class generation) in many software prod-
ucts, that support UML language [5].

3.1. Language Describing Component-Based Systems

At first we defined language for component description.
We decided that the best way is to create new language that
describe both component-based system and every compo-
nent in the system. Syntax and semantic of the language is
following:

Syntax Semantic
START begin of component-based

system
END end of component-based

system
COMPONENT begin of component
ENDOFCOMPONENT end of component
NAME unique component name
INPUTTYPE type(s) of input (required)

interfaces of component
OUTPUTTYPE type(s) of output

(provided) interfaces
of component

NEXT name(s) of next component
in component-based system

PACKAGE when are placed in editor
package figure, name of
package which is the
component

FIRSTCOMPONENT when are placed in editor sign
for begin reconfiguration, name
of first component after this
sign

LASTCOMPONENT when are placed in editor sign
for end recofiguation, name of last
component before this sign

Schema of language for component-based system de-
scription is displayed on Fig. 1.

ISSN 1335-8243 (print) c© 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 14, No. 2, 2014 43

Fig. 1 Language describing component-based systems.

3.2. Reconfiguration Algorithm

Algorithm for reconfiguration of components in the
component-based system to satisfy the good hierarchical
structure created by the elements:

1. At the beginning of algorithm the component is
founded. This component does not have next com-
ponent or is marked by end sign.

2. After the element is found, there is a check if pro-
vided interfaces of previous component are in hierar-
chical structure with required interfaces of this com-
ponent.

3. When these interfaces have good hierarchical struc-
ture, this component is removed from next compo-
nent, in every component of the component-based
system.

4. This component is removed from list of components
of component-based system. The next one is found if
there is no next component. This is repeated until all
of the components are verified.

5. At the end, the list is returned with appropriate hier-
archical structure. Java project is created from this
output.

4. TOOL FOR RECONFIGURATION OS
COMPONENT-BASED SYSTEM STRUCTURE

We have created a plug-in for the Eclipse framework
to design and reconfigure component-based system struc-
ture. The tool creates Java project from the design when the
system complies with given hierarchical structure. Type of

the plug-in is multi-page editor view. First page contains
designed component-based systems using graphical UML
components. On the second page there are supported types
for required and provided interfaces. And on the last page
is preview of designed system in the XML language. Ed-
itor on first page contains palette which is divided in four
sections:

1. Selection - This item contains elements for marking
each graphical component.

2. Common - This item contains elements for marking
each graphical component.

3. Entity - This item contains basic graphical elements
for creating component-based system.

4. Relation - This item contains element for connecting
graphical elements.

Modular composition of the plug-in with the entry in the
UML is shown in Fig 2 and consists of:

• Input - Component-based system described with
UML diagrams.

• Source codes and files - Source codes of plug-ins
and pictures used for this plug-in.

• Properties files - In these files there is a definition
of the language syntax for description of component-
based systems and syntax of Java language for gen-
eration of the component project output.

• Eclipse modules - Modules of Eclipse developed en-
vironment that our plug-in needs to work.

ISSN 1335-8243 (print) c© 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



44 Reconfiguring the Structure of Component-Based Systems

• XML serialization/deserialization - The module for
serialization/deserialization of objects in XML lan-
guage used for saving and opening files.

• Output Java project - After successful verification
and optimization the output of the plug-in generates
Java Eclipse project with desired interfaces.

Fig. 2 The composition of the plug-in with UML.

The internal structure of the plug-in (Fig. 3) provid-
ing the reconfiguration to satisfy the hierarchical structure,
consists of the following parts:

• Entrance Control
It checks whether each element in component-based
system contains closed sign of the beginning and end
of the component. Every component-based system
is enclosed by sign for the beginning and end of the
component system.

• Syntax checker
It checks whether component has correct structure,
described types of input and output interfaces and if
it contains the unique name in the component sys-
tems, name and position of the next component in
the component systems.

• Creating components

After input control, the creation of a structures of in-
dividual components in the component systems fol-
lows.

• Finding unused components
In this part we are trying to discover unused compo-
nent. Unused component is component, whose name
is not used as next component name. This control
does not apply on the first component in a system,
that input (required) interfaces are the input interface
of a component system.

• Testing hierarchical structure of component-
based system
After finding unused components, the system creates
a hierarchical structure of components without un-
used components. In this structure it is tested that de-
signed component-based systems complies with orig-
inal structure.

Fig. 3 The internal structure of the plug-in.

ISSN 1335-8243 (print) c© 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 14, No. 2, 2014 45

5. CONCLUSIONS

The tool that has been created is successful in reconfigu-
ration of the component-based systems. It removes unused
components and verifies whether system has good hierar-
chical structure of component system. After successful ver-
ification it is possible to create Java project from the design.
This possibility is default in order, because every program
should have some output. To test the results we used ap-
proach found in [6].

Actual version of program can create project only in
Java language. The plan is to make some changes and add
support for more object-oriented programing languages as
C# and Python.

Next function that can be added is reverse engineering
so that final component-based system does not have to be
drawn in UML.

This program is only for Eclipse, it could be some kind
of disadvantage in the future. So it is good plan to create
plugin for other IDEs.

ACKNOWLEDGEMENT

This work was supported by the Slovak Research and
Development Agency under the contract No. APVV-0008-
10.

REFERENCES

[1] McIIROY, M. D.: Mass produced software com-
ponents. Software engineering, NATO Conference
Garmisch, 1968.

[2] DHAMI, H. P. S.: Composability of Components

in Component-Based Software Development. Interna-
tional Journal of Enterprise Computing and Business
Systems, 2012. Brno, 2008. pp. 24–30.

[3] SOMMERVILLE, I.: Software Engineering (8th Edi-
tion). University of St Andrews, St Andrews, 2007,
pp. 439–461.

[4] LEAVENS, T. G. – SITARAMAN, M.: Foundations
of Component-Based Systems. Cambridge University
Press, 2000, pp. 47–48.

[5] HEINEMAN, G. – CRNKOVIC, I. – SCHMIDT, W.
H. – STAFFORD, A. J. – SZYPERSKI, C. – WALL-
NAU, K.: Component-Based Software Engineering,
8th International Symposium, CBSE 2005.

[6] GAO, Z. J. – TSAO, H. S. J. – WU, Y.: Testing and
Quality Assurance for Component-Based Software,
Artech House Publishers, 2003.

Received January 14, 2014, accepted April 22, 2014

BIOGRAPHY

Martin Tomášek received the master degree in computer
science in 1998 and PhD degree in software and informa-
tion systems in 2005 both at the Faculty of Electrical En-
gineering and Informatics of the Technical University of
Koice, Slovakia. Currently he is an associate professor at
the Department of Computers and Informatics of the Fac-
ulty of Electrical Engineering and Informatics of the Tech-
nical University of Koice, Slovakia. His research interests
include distributed systems, component-based systems, and
concurrency theory.

ISSN 1335-8243 (print) c© 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk


