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ABSTRACT
A GI/M/1-type queueing system with finite buffer capacity and AQM-type packet dropping is investigated. Even when the buffer

is not saturated an incoming packet can be dropped (lost) with probability dependent on the instanteneous queue size. The system of
integral equations for time-dependent queue-size distribution conditioned by the number of packets present in the system initially is
built using the embedded Markov chain approach. The solution of the corresponding system written for Laplace transforms is found
using the linear algebra. Numerical examples, in which different-type dropping functions are investigated in some network-motivated
traffic scenarios, are attached as well.
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1. PRELIMINARIES

The phenomenon of packet losses is a typical one in
packet-oriented networks like e.g. the Internet. Obviously,
due to finite capacities of IP routers’ buffers, the queue of
packets waiting for processing can not be unbounded. In
consequence, during the buffer overflow period all the in-
coming packets are naturally lost (Tail Drop algorithm).
Unfortunately, such a policy has different disadvantages.
For example, it is difficult to stabilize the arrival intensity
on the proper level and hence many retransmissions are nec-
essary. The Active Queue Management (AQM), in the con-
trast to Passive Queue Management (PQM), based on the
idea of Tail Drop, allows for dropping the arriving pack-
ets even when the buffer is not completely saturated. The
dropping probability can depend on the mean or instan-
teneous queue size. In consequence the reduction of the
buffer queue length is being obtained in two diffrent ways:

• by immediate deleting the incoming packet via drop-
ping function (short-term reduction);

• by decreasing the intensity of arrivals as a reaction
of the source host for packet dropping, according to
TCP/IP protocol requirements (long-term reduction).

In [8] the first model with AQM-type packet dropping was
introduced, with a linear dropping function. Looking for
the mathematical description of the packet dropping func-
tion being optimal with respect to one or more criteria, re-
sulted in many papers in which some other shapes of drop-
ping functions were proposed and investigated. The idea
of random exponential marking of packets which should be
dropped (REM-type dropping) can be found in [3] and [15].
In [16] a doubly-linear (broken line) dropping function is
considered and in [7] a modification of the classical RED
algorithm towards traffic conditions adaptation (ARED-
type dropping) can be found. Despite the fact that differ-
ent AQM-type queueing models were proposed, they were
not investigated analitycally sufficiently well. A compact-
form representation for the stationary queue-size distribu-
tion in the system with packet dropping and Poisson ar-
rivals was obtained in [5]. A direct approach to the study of
the M/G/1-type finite-buffer queue with packet dropping

can be found in [13]. In [9] the steady-state characteris-
tics of the AQM-type finite-buffer M/M/1 system with sin-
gle and batch arrivals were derived, namely probability dis-
tributions of the queue-size, number of consecutively lost
packets and time between two successive packets accepted
for service. The results from [9] were generalized in [18]
and [19] for the model with Poisson input stream in which
the arriving packets have generally distributed volumes and
the total volume of the system is finite. The case of the
multi-server system with AQM was analyzed in [20] and
the compact-form representation for the stationary queue-
size distribution was obtained there.

In this article an algebraic method for computing time-
dependent queue-size distribution in the finite-buffer model
with general-type independent input stream and packet
dropping is proposed. There are at least two main moti-
vations for such a study. The first one is that in the litera-
ture the results concerning models with AQM are obtained
mainly for the equilibrium. The next is that they are of-
ten restricted to the case of Poisson (or compound Poisson)
arrival process.

Transient results for the finite GI/M/1-type queueing
models can be found e.g. in [10], [11] and [14]. Compact-
form formulae for the non-stationary queue-size distribu-
tion for some infinite-buffer models were obtained e.g. in
[4] and [12].

The remaining part of the paper is organized as fol-
lows. In the next Section 2 the system of integral equa-
tions for the time-dependent queue-size distributions, con-
ditioned by the number of packets at t = 0, is obtained, us-
ing the approach based on the idea of embedded Markov
chain and the law of total probability. The solution of the
corresponding system built for the Laplace transforms is
found in algebraic form in Section 3. Numerical examples
are contained in the last Section 4, where different drop-
ping scenarios (analytical formulae for dropping functions)
are considered.
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2. SYSTEM OF EQUATIONS FOR TIME-
DEPENDENT QUEUE-SIZE DISTRIBUTION

Let us take into consideration a finite-buffer queue-
ing model with general-type independent input stream, de-
scribed by the distribution function F(·) of interarrival
times, and exponentially distributed service times with
mean µ−1. The capacity of the buffer queue equals K− 1,
so the number of packets in the system is bounded by K
(we have K− 1 places in the buffer and one place in ser-
vice). The arriving process of incoming packets is con-
trolled via the general-type dropping function d(·) that for
fixed n takes on the value d(n) = dn being the probability
that the entering packet finding the system in state n will be
dropped. Evidently, d0 ≥ 0 and dK = 1.

Define the conditional queue-size distribution in the
system as follows:

qn(t,m) = P{X(t) = m |X(0) = n}, (1)

where 0≤m,n≤K and X(t) stands for the number of pack-
ets present in the system at time t.

It is easy to note that if the system begins the operation
being empty (X(0) = 0), then the following integral equa-
tion holds true:

q0(t,m) =
∫ t

0

[
(1−d0)q1(t− x,m)

+d0q0(t− x,m)
]
dF(x)+

(
1−F(t)

)
δm,0, (2)

where δi, j denotes the Kronecker delta function.
Let us comment (2) briefly. Indeed, if the first packet

enters at time x < t then the system continues the opera-
tions beginning with time x with exactly one packet present
with probability 1− d0 (if the arriving packet will be “ac-
cepted” for service), or being still empty with probability
d0 (if the arriving packet will be dropped). Of course, if the
first arrival occurs after t the random event {X(t) = m} is
equivalent to {m = 0}.

Investigate now the case of the buffer being non-empty
and non-saturated primarily. By virtue of the fact that the
arrival epochs are Markov moments in the GI/M/1-type
queue, and using the continuous version of the law of total
probability with respect to the first arrival moment, we get
the following system of Volterra-type integral equations:

qn(t,m)

=
∫ t

0

[
n−1

∑
k=0

(µx)k

k!
e−µx

(
(1−dn−k)qn−k+1(t− x,m)

+dn−kqn−k(t− x,m)
)

+
∞

∑
k=n

(µx)k

k!
e−µx

(
(1−d0)q1(t− x,m)

+d0q0(t− x,m)
)]

dF(x)

+
(
1−F(t)

)
e−µt

(
I{n≥ m≥ 1} (µt)n−m

(n−m)!
+δm,0

∞

∑
k=n

(µt)k

k!

)
,

(3)

where 1 ≤ n ≤ K− 1 and I{A} is the indicator of the ran-
dom event A.

The first summand on the right side of (3) relates to the
situation in which the first arrival occurs at time x < t and,
simultaneously, the buffer is not empty before x. The sec-
ond summand describes the situation in which before x < t
the queue empties, so at x the system “renews” the opera-
tion being empty or with one packet present, in dependence
on the dropping or acceptance of the packet arriving at time
x, respectively. Finally, the last summand on the right side
of (3) presents the situation in which there are any arrivals
before instant t, at which the queue length is measured.

Note that in the case of buffer being saturated (n = K)
initially, we have

qK(t,m)

=
∫ t

0

[
e−µxqK(t− x,m)

+
K−1

∑
k=1

(µx)k

k!
e−µx

(
(1−dK−k)qK−k+1(t− x,m)

+dK−kqK−k(t− x,m)
)

+
∞

∑
k=K

(µx)k

k!
e−µx

(
(1−d0)q1(t− x,m)

+d0q0(t− x,m)
)]

dF(x)

+
(
1−F(t)

)
e−µt

(
I{m≥ 1} (µt)K−m

(K−m)!
+δm,0

∞

∑
k=K

(µt)k

k!

)
.

(4)

In fact, the right side of the equation (4) differs from (3) by
the sum taken from k = 1, and the component e−µxqK(t−
x,m) standing under the integral. Indeed, if the first depar-
ture occurs after the first arrival moment x, then the epoch x
is “inside” the buffer overflow period, so the packet incom-
ing at x is lost.

3. CORRESPONDING SYSTEM FOR LAPLACE
TRANSFORMS

In this section we derive the corresponding system of
equations for Laplace transforms of conditional queue-size
distributions, write it in a matrix form and next find the rep-
resentation for solution.

Introduce firstly the following notations:

q̃n(s,m) =
∫

∞

0
e−stqn(t,m)dt, (5)

θk(s) =
∫

∞

0
e−(s+µ)t (µt)k

k!
dF(t), (6)

f (s) =
∫

∞

0
e−stdF(t), (7)

σn(s,m) =
∫

∞

0
e−(s+µ)t(1−F(t)

)( (µt)n−m

(n−m)!
I{n≥ m≥ 1}

+δm,0

∞

∑
k=n

(µt)k

k!

)
, (8)
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where Re(s)> 0.
Applying (5)–(8) in the system (2)–(4) gives

q̃0(s,m) =
[
(1−d0)q̃1(s,m)

+d0q̃0(s,m)
]

f (s)+
1− f (s)

s
δm,0, (9)

q̃n(s,m) =
n−1

∑
k=0

θk(s)
[
(1−dn−k)q̃n−k+1(s,m)

+dn−kq̃n−k(s,m)
]
+

∞

∑
k=n

θk(s)
[
(1−d0)q̃1(s,m)

+d0q̃0(s,m)
]
+σn(s,m), (10)

where 1≤ n≤ K−1, and besides

q̃K(s,m) = f (s+µ)q̃K(s,m)

+
K−1

∑
k=1

θk(s)
[
(1−dK−k)q̃K−k+1(s,m)

+dn−kq̃K−k(s,m)
]
+

∞

∑
k=K

θk(s)
[
(1−d0)q̃1(s,m)

+d0q̃0(s,m)
]
+σK(s,m). (11)

The equations of the system (9)–(11) can be rewritten in
the matrix form. Let A(s) be the matrix of coefficients with
K + 1 rows and K + 1 columns, and with successive ele-
ments defined as follows (it will be convenient for us to
number successive rows and columns beginning with 0 in-
stead of 1):

a0,0(s) = 1−d0 f (s),

a0,1(s) = (d0−1) f (s),

a0, j(s) = 0, (12)

for 2≤ j ≤ K, and

ai,0(s) = d0

∞

∑
k=i

θk(s), 1≤ i≤ K, (13)

ai,1(s) = d1θi−1(s)+(1−d0)
∞

∑
k=i

θk(s)−δi,1,

1≤ i≤ K, (14)
ai, j(s) = (1−d j−1)θi− j+1(s)+d jθi− j(s)−δi, j,

1≤ i≤ K, 2≤ j ≤min{i,K−1}, (15)
ai,i+1(s) = (1−di)θ0(s), 1≤ i≤ K−1, (16)
aK,K(s) = (1−dK−1)θ1(s)+ f (s+µ)−1, (17)
ai, j(s) = 0, otherwise. (18)

Next, let us define the (K +1)×1 matrix B(s,m) as

B(s,m)

=
[
s−1(1− f (s)

)
δm,0,−σ1(s,m), ...,−σK(s,m)

]T
. (19)

Finally, let Q(s,m) be the (K+1)×1 column of unknowns
i.e.

Q(s,m) =
[
q̃0(s,m), q̃1(s,m), ..., q̃K(s,m)

]T
. (20)

From the definition (1) it follows that the solution of the
system (9)–(11) exists and is unique, so the following theo-
rem is true: Theorem 1. The representation for the column

Q(s,m) with entries being Laplace transforms of the con-
ditional transient queue-size distributions in the GI/M/1-
type queueing system with total capacity K can be found
from the formula

Q(s,m) = A−1(s)B(s,m), (21)

where 0≤ m≤ K, and the matrices A(s) and B(s,m) were
defined in (12)–(18) and (19) respectively.

Remark. From the representation (21), for a completely
determined particular model, it is possible to obtain the
steady-state distribution qm by using the well-known Taube-
rian theorem i.e.

qm = lim
s↓0

sq̃n(s,m), (22)

where n can be chosen arbitrarily from 0 to K, due to the
fact that the stationary probability does not depend on the
initial condition of the system.

4. NUMERICAL EXAMPLES

In this section we investigate the influence on the analyt-
ical shape of a dropping function on transient and stationary
queue-size distribution on a certain network-motivated ex-
ample. Consider a stream of packets of average sizes 800 B
arrive at the IP router with rate 120 Mb/s, and the through-
put of the output link equals 100 Mb/s, so the system is
overloaded (ρ = 1.2). Assume that K = 6 and that inter-
arrival times have Erlang distributions with two degrees of
freedom and with parameter λ . From the traffic character-
istics it follows that

λ = 37500, µ = 15625.

Define the following RED linear dropping function:

dn =

 0, n≤ 1,
0.2(n−1), 1 < n < 2,

1, n≥ 2.
(23)

In Fig. 1 we present time-dependent conditional distri-
butions

P{X(t) = 1 |X(0) = n}

for three different initial buffer states: n = 0,3 and 6. To in-
vert the right side of the formula (21) we use the algorithm
of numerical Laplace transform inversion introduced in [2],
based on Bromwich integral and Euler’s summation of the
alternating series. As it is easy to observe, all the charac-
teristics stabilize at the stationary probability q1 after about
0.0006 [s] (0.6 [ms]).
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Fig. 1 Time-dependent probabilities P{X(t) = 1 |X(0) = n} for
RED dropping function and different n′s

For the GRED-type dropping function, defined as fol-
lows:

dn =


0, n≤ 1,

0.2(n−1), 1 < n≤ 2,
0.4n−0.6, 2 < n < 4,

1, n≥ 4,

(24)

the results are presented in Fig. 2. Let us note that shapes
of the corresponding distributions are similar (for RED and
GRED types), however, of course, the stationary probabili-
ties are different (they depend on the dropping function es-
sentially).
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Fig. 2 Time-dependent probabilities P{X(t) = 1 |X(0) = n} for
GRED dropping function and different n′s

Analyze now the dependence of the time-dependent
probability

P{X(0.01) = 3 |X(0) = 1}

on the analytical form of RED and GRED-type dropping
functions for three different values of the traffic load ρ of
the system. Assume, as previously, that the throughput of
the output link equals 100 MB/s (we have µ = 15625) and
take the same buffer capacity (i.e. K = 6). Consider three
different arrival rates of packets: 100, 120 and 140 Mb/s.
Assuming that interarrival times have Erlang distributions
with two degrees of freedom and with parameter λ we get,
successively,

λ1 = 31250, λ2 = 37500, λ3 = 43750.

Define the following family of RED-type dropping func-
tions:

d( j)
n =


0, n≤ 1,

0.2(n−1)
j , 1 < n < j+1,
1, n≥ j+1.

(25)

where j = 1, ...,5.
In Table 1 we present the results of the experiment. Note

that the greater traffic load ρ, the greater probability that
the system is “half-saturated” (X(0.01) = 3). Evidently, for
successive RED functions (for j = 1, ...,5) the proper prob-
abilities decrease because the possibility of higher values of
the queue size increases (the minimal queue size at which a
packet can be physically dropped increases).

Table 1 Time-dependent probabilities P{X(0.01) = 3 |X(0) = 1}
for RED-type packet dropping

Dropping function ρ = 1 ρ = 1.2 ρ = 1.4

RED-1 0.208198 0.285295 0.355553

RED-2 0.202148 0.248568 0.275993

RED-3 0.182720 0.200814 0.196934

RED-4 0.165368 0.162107 0.139443

RED-5 0.162630 0.156327 0.132085

One can make a similar observation for the following
set of GRED-type dropping functions:

d( j)
n =


0, n≤ 1,

0.2n−0.2, 1 < n≤ 2,
0.8(n−2)

j +0.2, 2 < n < j+2,
1, n≥ j+2.

(26)

where j = 1, ...,4.
In Table 2 we give transient probabilities P{X(0.01) =

3 |X(0) = 1} for the same three levels of the traffic load
(ρ = 1,1.2 and 1.4).

Table 2 Time-dependent probabilities P{X(0.01) = 3 |X(0) = 1}
for GRED-type packet dropping

Dropping function ρ = 1 ρ = 1.2 ρ = 1.4

GRED-1 0.208198 0.285295 0.355553

GRED-2 0.196057 0.256561 0.303277

GRED-3 0.188118 0.237794 0.269480

GRED-4 0.182573 0.224057 0.244528

Lastly, let us take into consideration the stationary
queue-size distribution qm (m = 0, ...,6) in dependence on
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parameters of REM-type packet dropping. Introduce the
following set of REM dropping functions:

d( j)
n =

{
0, n≤ j,

en− j−1
e6− j−1 , j < n.

(27)

for j = 1, ...,5.
Steady-state probabilities are given in Table 3 and vi-

sualized in Fig. 3 and Fig. 4, where cases of j = 1 and
j = 5 (being, in fact, the classical Tail Drop algorithm) are
presented, respectively.

Table 3 Stationary queue-size distribution for REM-type packet dropping

Queue size k REM-1 REM-2 REM-3 REM-4 REM-5

0 0.040694 0.039586 0.037770 0.035188 0.032172

1 0.103805 0.101010 0.096399 0.089821 0.082128

2 0.131646 0.128248 0.122490 0.114189 0.104440

3 0.163702 0.162023 0.155184 0.144929 0.132693

4 0.193612 0.194577 0.194528 0.182859 0.168043

5 0.201008 0.204939 0.213301 0.225791 0.210341

6 0.142578 0.147293 0.159032 0.187384 0.252047

QUEUE SIZE
0 1 2 3 4 5 6

0.00

0.05

0.10

0.15

0.20

PROBABILITY HREM-1L

Fig. 3 Stationary queue-size distribution for REM-type dropping
function ( j = 1)
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Fig. 4 Stationary queue-size distribution for REM-type dropping
function ( j = 5 – Tail Drop)

Let us observe that in the case of j = 1, in which the
probability of dropping increases beginning with n = 1, the
probability of buffer saturation is visibly lower as in the
case of classical Tail Drop algorithm ( j = 5), in which the
packet is dropped only when the buffer is saturated.

5. CONCLUSIONS

In the paper a finite-buffer queueing model with gen-
eral independent input stream of packets is investigated.
The arrival process is controlled by an AQM-type drop-
ping function deleting the incoming packets with probabil-
ity depending on the queue size at the pre-arrival epoch.
The idea of embedded Markov chain and the continuous
law of total probability are applied to construct the system
of Volterra-type integral equations for conditional queue-
size distribution. The solution of the corresponding sys-
tem written for Laplace transforms is obtained via linear al-
gebraic approach. Network-motivated numerical examples
with different dropping functions are attached as well.
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