
Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013, 79–84, DOI: 10.15546/aeei-2013-0053 79

BENCHMARK-BASED OPTIMIZATION OF COMPUTATIONAL CAPACITY
DISTRIBUTION IN A CLIENT-SERVER WEB APPLICATION

Zsigmond MÁRIÁS∗, Ádám TARCSI,∗∗, Tibor NIKOVITS∗∗∗, Zoltán HALASSY∗∗∗∗
∗Faculty of Informatics, Eötvös Loránd University (ELTE), H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary,

tel.: +3630 389 5535, e-mail: zmarias@inf.elte.hu
∗∗Faculty of Informatics, Eötvös Loránd University (ELTE), H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary,

tel.: +361 372 2500/1816, e-mail: ade@inf.elte.hu
∗∗∗Faculty of Informatics, Eötvös Loránd University (ELTE), H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary, tel.

+361 372 2500/8475, e-mail: nikovits@inf.elte.hu
∗∗∗∗LogiNet Systems Kft., H-1221 Budapest, Vihar u. 5/D, tel. +3620 415 3638, e-mail: zhalassy@loginet.hu

ABSTRACT
There is a common task in web applications when the content of a database table or the result of a query has to be listed on the

client side. In traditional implementation the requested amount of data needed for the page is queried and created on the server and is
sent to the client. Then, at every interaction a new http request is sent to the server and the database layer generates a new data set to
be displayed.

Modern web applications can rely on the higher computing power of the client computers. Therefore state-of-the-art applications
can transfer more data to the client where data are handled in an array and frontend Javascript executes filtering, sorting, and paging.
This approach saves server capacities and omits the network communication lag; at the same time the user interface becomes faster
and more responsive.

A backend-frontend solution would be useful that distributes the computational tasks according to the available resources on the
client side. As the data processing capability is not universal to all clients, benchmark logic has to be applied to adjust client specific
data limit.

Keywords: web technologies, web frontend, optimization, benchmark

1. INTRODUCTION

There is a common task in web applications when the
content of a database table or the result of a query has
to be listed on the client side. As the end users of the
software are normal human beings who usually cannot use
large amounts of information at once, the data are shown
in pieces on separate pages. Paging functions are required
to iterate between pages, and as usually users are only in-
terested in a subset of data in a specific order, filtering and
sorting functions are provided for the users.

This is a frequently used function playing an important
role on the user interface and it appears in nearly all web
applications.

1.1. Several examples

An enterprise system often shows data in the form of
lists for the users. Data can be of any kind: invoices, orders,
etc. Users access the data on pages; data can be ordered or
filtered.

A forum or blog software shows a list of comments on
the user interface on pages. User can browse comments and
sort them by relevance or date.

E-commerce software lists the products for the users.
Users can define different filter conditions and sort prod-
ucts by price to find the products that exactly suits them.

An essential function of online banking systems is ac-
count history, where users can browse their activities. The
activities are listed on pages and the list can be filtered to
credit card payments.

As shown, this is a common task which is used in nearly
all web applications.

1.2. Requirements

In this section the requirements and tasks are specified
for the solution with database query examples. The main
objective is to provide a web browsing frontend for a dataset
which contains records of the same type. The following fea-
tures are required:

The frontend shows a certain amount of data at once for
the user that can be understood. This means that the dataset
is divided into pages, and always one page is shown for the
user. If the number of records to show on a page is k, then
the N-th page of the relation R could be queried in the fol-
lowing way:

SELECT * FROM R LIMIT k OFFSET (N−1)∗ k

The frontend provides a function to iterate through the
list of the pages. This means that when the user browses a
certain page, the previous, next, first and last pages are eas-
ily accessible. If the number of records to show on a page
is k, and the N-th page of the relation R is shown, then the
query for the next action would be:

SELECT * FROM R LIMIT k OFFSET N ∗ k

The next feature is filtering the dataset by a certain con-
straint condition. To keep the notation simple, only the
α = A == a condition type is considered in this paper.

However, as the results shown are general, several other
condition types could be introduced such as regular expres-
sions, interval constraints, etc. If the table R is filtered with

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



80 Benchmark-Based Optimization of Computational Capacity Distribution in a Client-Server Web Application

condition X == y, the query could be

SELECT * FROM R WHERE R.X = y

The data can be sorted by a certain field and after this
action, the first page of the result is shown to the user. In
this paper ordering by multiple fields is not considered, but
adding the support of this function does not change the ba-
sis of our solutions. If a table R is sorted by the column X,
the query would be:

SELECT * FROM R ORDER BY X

1.3. Regular solutions

1.3.1. On the server side

The above mentioned task has been acute since the first
web application. In the beginning the web browser running
on the client side was not able to do anything but display the
received html document. It was not used to run any busi-
ness logic control. There were two reasons: the resources
of the client were limited and there was no applicable soft-
ware technology.

This approach executes a listing as the server always
sends one page content of the html document. Any inter-
action on the client side generates and sends HTTP GET
parameters to the server and so it requests the next page.
Below is an example URL of http request which contains a
filter and order command and one page to be displayed.

[...]? f ilterColumnId = 22& f ilterValue = f oo
&orderColumnId = 12&page = 3&show = 20

In turn it becomes a database query which contains the
above conditions.

SELECT * FROM R WHERE col 22=foo ORDER BY
col 12 LIMIT 20 OFFSET 40

Obviously in this model the server executes all the com-
putation in the database layer and in addition at each inter-
action the page is reloaded which causes network overhead
and it spoils the user’s experience.

The up-to-date solution in this context is the same but
the increase of client’s resources and the AJAX[1] technol-
ogy allow doing it without reload of the whole page. The
filter, order and page conditions are transferred in the http
request to the server as earlier but the answer contains only
the live data in JSON or XML format. From computation
distribution’s point of view the solution is the same as it was
earlier.

Two important aspects are improved: the network over-
head is decreased and the user’s experience is also better.

1.3.2. On the client side

The ever growing computation power of client comput-
ers and the evolution of Javascript[2] interpreters allow the
other approach. The vast majority of the computation is

made on the client’s side. The server transfers the whole
data in XML or JSON format to the front-end. The browser
stores data in its memory and a logic written in Javascript
will do computation related to data view.

The ultimate advantage of this approach is the relief of
resources on the server side. The computation load is taken
over to the client side as the database query is implemented
once again in the front-end layer. The disadvantage is in
the substantially smaller power of the client computer and
the program running in the front-end layer is much less op-
timized as that of the server side. Big data set of hundreds
of thousands of records slow down the client in a sensible
extent. So there are well defined cases when the approach
cannot be applied.

2. SUGGESTED SOLUTIONS

In this chapter several solutions of the described effect
will be shown. The common point in the solutions is that
all of them use a combination of the two basic solutions.

2.1. Global threshold

As we saw in the previous chapter, the main problem
is that over a certain amount of data the client computers
cannot store and handle it in the memory. Therefore in the
applications when the developer knows that the amount of
data is relatively small, and in almost every case the clients
will be able to handle it, the second method can be used,
in other occasions the first one. This technique uses one
threshold, which can be hardcoded as described, but also
can be implemented as a system parameter that can be ad-
justed.

2.2. Benchmark based client-level threshold

For the second approach we first have to notice that the
client computers are different and some of them have as
strong computational capacity as the server does, while oth-
ers are really weak. The previous solution ignores this fact
and sets up a really low threshold which suits all client com-
puters. Hence, a lot of computation that could be performed
by clients will still be performed by the server. To use more
of the available capacities a specific threshold has to be set
for each client, which is the limit of the data that a particu-
lar client can handle. For this purpose a kind of benchmark
has to be used to identify this particular value. The whole
solution would work as follows:

When the client makes the first access to the system a
Javascript benchmark is performed on the client and the
result is stored in a cookie value. From this point when-
ever the client starts to browse a data table, depending on
the number of rows in the target database table the first or
second technique will be performed. This also means that
before every action, the server has to perform a counting
action -

SELECT COUNT(*) FROM R WHERE {conditions}

- and depending on the result the limited data or all data
are given to the browser.

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013 81

2.3. Client-based, adaptive threshold

The solution above is fine enough and does the work
much better than the classical solutions, but has a draw-
back. Regarding one client and a database table, the client
is going to save more and more computational capacity un-
til a certain point. This certain point is when the amount
of data exceeds the maximum number set for that client.
Then, the usual approach will work all the time, not saving
any resources from the server. At the first glance this seems
to be a characteristic of the solution that cannot be avoided.
But let us assume:

1. The target database table has [A,B,C,D] columns and
contains N rows. The threshold for the particular
client is T = 0,5∗N.

2. The user queries a whole list, with a filter condition
“A == 1”, the response contains N/3 rows, and the
first page is queried from the database.

3. The user sets up a sort condition on the previous
dataset on B and starts to browse the result, perform-
ing 5 paging actions.

4. Then the user makes one more filter condition,
“C == f oo” for example.

In this example the previous solution would perform
every action by separate queries from the database. But
when the first query (A == 1) was performed, the result
dataset was already small enough to be handled by the
client. Hence, the queries initiated in steps 3 and 4 could
be avoided on the server side. So in this solution if the
browsed database table contains more rows than the client’s
threshold value, but the result dataset of a user query to be
browsed is below it, all data are sent to the client and the
client performs all the queries. As only the queries with fil-
ter constraints can decrease the amount of rows to show, we
can assume that the query contains a logical formula

α = α1∧α2∧α3∧ ...∧αn ,

where αi = Ai == ai .

If the result of such a condition is calculated and given
to the client all further queries that do not broaden the
dataset, are performed on client side.

Paging actions never change the dataset; just show a par-
ticular part of it. Sort actions do not change the dataset ei-
ther, they reorder and show it. Hence, all the calculations
related to these actions can be performed on the client side
on the dataset stored in the client’s memory.

Filter actions do not broaden the dataset as far as
the user only defines further filter constraints in form of
α ′ = α ∧ αn+1 but does not remove any αi from α . If
the user does remove conditions from a query, the calcula-
tions have to be performed on the server side, because the
domain dataset is not available on the client side.

3. ELEMENTS OF THE SOLUTION

3.1. Javascript benchmark systems

A very important part of the proposed solution is the
proper Javascript benchmarking to identify client capaci-
ties. The task is not only to provide a good threshold, but
also to do that relatively fast. During the browser war in
2000’s[3] one of the key points of the competition was to
build the fastest Javascript engine in the browsers. In this
competition Javascript benchmark libraries play a really im-
portant role.

These libraries check the implementation of different
Javascript services and also contain speed check. The nor-
mal use of these libraries is to install different browsers on a
computer, run them and then compare the services available
and the results. For the purpose of the described solution
the most important client factors are the amount of memory
available and the speed of calculations with arrays.

In the browser war mentioned above, almost every
browser developer company created a benchmark suite in
which their browser ranks highest. Some of these solutions
were examined to choose the one that suits best to the solu-
tion.

• Kraken[4] is a Javascript test suite from Mozilla
which focuses on realistic workloads and forward-
looking applications, such as beat detection scripts,
which uses experimental audio APIs, and image pro-
cessing tools application of Gaussian blur or desatu-
ration of a JPG image using Javascript. A computer
with quad-core Core-i7 processor and 8GB ram, run-
ning Chrome version 29.0.1547.62m passes the test
in 1600ms approximately. Kraken source code can
be checked out and altered to run only the important
benchmark test cases, which are the JSON and Stan-
ford test cases.

• Google V8 Benchmark is the Javascript test suite
by Google, used to optimize Google Chrome web
browser. It is superseded by Google’s Octane[5]

benchmark which replaces the V8 benchmark. Ac-
cording to Google, “Octane v.1 consists of 13 tests,
5 new ones and 8 from the original V8 Bench-
mark Suite”. Octane source code can be checked
out and altered to run only the important bench-
mark test cases which are the Regexp, CodeLoad and
Box2DWeb test cases.

• Other benchmark suites that have been examined
were Dromaeo and Sunspider which are also Mozilla
benchmark suites. They perform several tests, and
they run for several minutes on a modern computer.

There were two main points in the selection of the
benchmark solution.

The first point is to measure the performance of proper
use cases. Some benchmarks contain benchmarks of exper-
imental new built-in libraries that have no relation to our
purposes; therefore they have to be avoided.

The second point is that benchmark tests cannot run and
put long and high load on the client. Some seconds run-
time is acceptable but above that the user experiences it.

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



82 Benchmark-Based Optimization of Computational Capacity Distribution in a Client-Server Web Application

However the benchmark has to be run only once, and might
be repeated occasionally. Hence, if the runtime is not ex-
tremely long, it can be seamlessly integrated in the solution
and run in the background.

In the solution Google Octane is used, because the code
can be downloaded and altered to remove the useless test
cases which benchmark Google Chrome specific or irrele-
vant features. This way the results arise quickly and they
are general.

3.2. Software components

The whole solution consists of the following logical
components:

• The backend’s most important function is to han-
dle the database, including the implementations of
database queries that produce datasets according to
the client actions. It produces JSON objects or XML
documents that are sent back to the frontend. It also
produces metadata for the frontend to generate filter
conditions. It consists of database specific queries
and functions written in the actual language of the
backend system - Java, PHP, C#, etc.

• Frontend view is the software module that gener-
ates the tables in html format from the dataset to be
shown. It is written in Javascript, standard solutions
such as jQuery[6] Datatables plugin are an obvious
choice.

• The benchmark module is the Javascript library in-
troduced in the previous chapter that discovers the
client’s computational capacities. This module also
ensures that the results are stored in cookies and up-
dated after a certain period of time if necessary.

• The frontend computations layer is the “backend of
the frontend”, which plays three important roles. It
re-implements all calculations in Javascript that are
available in the database layer. This implementation
is made in Javascript and it mainly contains opera-
tions with Javascript arrays. It decides if a certain
action has to be calculated by the server or the re-
sult can be obtained from the currently available data
stored in the memory. In this feature the previous and
current user actions as expressions are compared and
the currently available dataset is analysed. Depend-
ing on the result of the decision the calculations are
performed by the according software component.

4. SIMULATIONS

A simulation software suite was created to analyse the
possible advantages of the suggested solution. The basic
idea was that when a single server is requested parallel by
multiple clients and the number of requests grows, after a
certain point the server will not be able to fulfil the requests
in acceptable time. In this situation the end user experiences
that the service is out of order.

On the other hand if the dataset given to the client ex-
ceeds its capacities, then the user has the same experience,

although the server is working. The expectation is if the
solution described above is used, then more clients can be
served in acceptable time without giving too much data to
any of them.

4.1. Test parameters

The benchmark is a simulation of parallel requests from
a single server with multiple clients. The simulation param-
eters were:

• Number of clients.

• The minimum and the maximum available memory
of client dedicated to the request.

• The average time a user browses the result before
makes a new request.

• The average skipped requests due to the client caches
the database contents and do not need to query the
server for it.

• The CPU time the server requires to compute an an-
swer.

• The time the client requires to compute an answer
from cached database values.

• The average requests a client makes during a session.

• The number of requests the server can serve paral-
lelly. Extra clients are waiting in the queue in a first-
come-first-served basis, till a processing slot opens
up because a previous client got served.

The benchmark randomizes the start time of requests
between 0 and the average request interval. There is a 5%
error of the CPU time required for a process to be com-
pleted. There is a 5% fuzz on the next request time from
the previous one. The memory size of the clients rolled
randomly, with a uniform distribution.

4.2. Test assumptions

The benchmarks worked with the following assump-
tions:

• The data sent to the client are smaller than a user
would notice with the client’s network bandwidth.

• The clients are equally strong.

• The server serves the clients with equal CPU power
parallelly, does not work on anything else, and 100%
of the power is used when there is work to do.

• If the client has enough memory to fit the database in
it, the server will use 0 CPU power to give the data to
the client.

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013 83

4.3. Test results

On the chart shown in figure 1 three different use cases
can be seen. In the first use case, all clients were set to have
zero memory, which results that all calculations are per-
formed on the server side. On the second use case clients
are generated with random capacities with standard distri-
bution - some of them are almost infinitely powerful, some
of them have no memory and the majority of them fall in be-
tween these values. On the third use case clients are gener-
ated the same way but all data are always sent to the clients.
If the data exceed the limit of a client, then it is considered
to be an unacceptable run.

In the figure it is visible that the number of unacceptable
runs is the highest in the server only solution. The client
only solution has significantly fewer of them, but the solu-
tion proposed in this paper outperforms both techniques.

Fig. 1 Benchmark results

5. CONCLUSION

As shown in section 4 the proposed solution can sig-
nificantly increase the number of parallel requests that can
be handled by a server with certain computational capac-
ity. However, there are some consequences for the solutions

that have to be considered in the future.
The main problem is that for clients with high com-

putational capacities, a lot more data are sent through the
network than actually used. When the network bandwidth
is the bottleneck of a system, this solution should not be
used. But when network bandwidth is high and clients use
datasets for multiple actions, which behaviour is quite nat-
ural in business software, the implementation of the pro-
posed solution can be advantageous.

6. FURTHER WORK

In the future, some enhancements are planned for the
system. The first planned enhancement is a test, for filter
queries with multiple conditions.

If a dataset is too big for a client and a filter condition
A == a ∧ B == b is set by the user, and A == a or
B == b conditions already result a dataset that can be han-
dled by the client, then one of the filter conditions can be
eliminated on the server side. The A == a condition could
be calculated by the server, while B == b on the client
side. Actually, this enhancement does not count a lot but
if we consider that fact that in this case a bigger dataset is
in the client’s memory, and B == b condition is removed or
changed to B== b1, then the client will be able to calculate
that query.

The second enhancement is a promising idea about in-
cluding a subsystem that analyses the user behaviour and
stores which filter conditions are frequently used[7]. In the
previous example the suggestion was to calculate A == a
and let the server calculate B == b condition. It is easy to
see that if B == b is changed less frequently than A == a,
then the profit would be higher if B == b is calculated
on the server side. If a database contains the frequently
used filter conditions, then a decision automatism can be
included.

User behaviour analysis can be also used to identify
which tables are often used for multiple user actions and
which are used for one query at each access. This informa-
tion can also play a role when the system makes a decision
between sending a lot of data to the client or keeping the
computations on the server side.

REFERENCES

[1] GARRETT, J. J.: (18 February 2005).“Ajax: A New
Approach to Web Applications”. AdaptivePath.com.
Retrieved 19 June 2008.

[2] FLANAGAN, D. – FERGUSON, P.: (2006).
JavaScript: The Definitive Guide (5th ed.). O’Reilly
& Associates. ISBN 0-596-10199-6.

[3] ATWOOD, J.: (2007-12-19). “The Great Browser
JavaScript Showdown”. Retrieved 2008-09-06.

[4] “Release the Kraken”. The Mozilla Blog. Retrieved
2013-08-08.

[5] “The Benchmark - Octane - Google Developers”. Re-
trieved 2013-08-08.

[6] JQuery: finding your way through tangled code - E
McCormick, K De Volder - Companion to the 19th
annual ACM , 2004 - dl.acm.org

[7] CHEN, C. – CHEN, M. – SUN, Y. (2002)., PVA: A
Self-Adaptive Personal View Agent. Journal of Intel-
ligent Information Systems, p.173-194, 2002

Received December 1, 2013, accepted December 21, 2013

BIOGRAPHY

Zsigmond Máriás was born on March 13th, 1983. He
graduated (MSc) in 2007 as Program Designer at the de-
partment of Informatics at Eötvös Loránd University, Bu-
dapest. He is the CIO of a IT company and part-time lec-
turer at Eötvös Loránd University. His main fields of in-

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



84 Benchmark-Based Optimization of Computational Capacity Distribution in a Client-Server Web Application

terest are information systems design, petri nets, workflow
modeling, data model design and web applications.

Ádám Tarcsi received an MSc teaching degree of Infor-
matics at Eötvös Loránd University Faculty of Informatics
in 2004. His PhD researches are based in Web Information
Systems. He has experiences in SAP, Web development
and in business analytics. In 2008 he becomes an Assistant
Professor at the Department of Media and Educational In-
formatics. Now he is the Strategic Advisor at ELTE Faculty
of Informatics.

Tibor Nikovits received an MSc degree in mathematics

from Eötvös Loránd University Budapest in 1988 and an
MSc degree in economics from Budapest Economical Uni-
versity in 2003. Since 1997 he is working as a lecturer at the
Information Systems Department of Eötvös Loránd Univer-
sity Budapest. His main fields of interest are database the-
ory, computer networks, information systems, especially fi-
nancial and business related information systems.

Zoltán Halassy was born on February 2nd, 1983. He grad-
uated in 2011 as Program Designer at the department of IT
at Eötvös Loránd University in Budapest. He is a lead de-
veloper of a company where part of his job is to optimize
program codes which handles large datasets.

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk


