
64 Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013, 64–69, DOI: 10.15546/aeei-2013-0051

CATEGORICAL SEMANTICS OF REFERENCE DATA TYPE

Daniel MIHÁLYI, Miloš LUKÁČ, Valerie NOVITZKÁ
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of Košice,

Letná 9, 042 00 Košice, Slovak Republic, tel. +421 55 602 3175, e-mail: Daniel.Mihalyi@tuke.sk, Milos.Lukac@student.tuke.sk,
Valerie.Novitzka@tuke.sk

ABSTRACT
Reference types are very useful structures enabling handling with dynamic memory. In this paper we extend categorical model of

type system with reference data type. We illustrate our approach on simple functional programming language T-NBL extended with
reference type. After constructing parametric algebraic specification we construct categorical model of reference type and we show
how our results can be implemented in functional programming language Ocaml.

Keywords: reference data type, algebraic specification, categorical model, functional programming

1. INTRODUCTION

Programming languages deal with various data struc-
tures that can be classified and identified by their types. A
type is defined [10] as a collection of data with the same
structure, from basic types, e.g. integers, reals, booleans
to Church’s types as records, variants, etc. Together with
types there should be defined a set of operations between
them. There are many programming languages that support
also reference data types. A reference [13] is a value defin-
ing an access point to particular memory location and it is
frequently called indirect addressing. Operations over ref-
erence type enable to allocate some memory space for data,
to extract (dereference) data stored in this location and to
write (assign) a new value to a referenced location. Usage
of reference types increases flexibility of used memory, it
enables to work with data structures with dynamic length,
e.g. linked lists, etc.

Our paper presents a new approach of categorical mod-
eling of reference types. As a basis we use a simple
Typed Number-Boolean Language (T-NBL) [13]. We ex-
tend known algebraic specification of this language by ref-
erence type and its operational specifications together with
new equational axioms. Then we construct a model of this
algebraic specification as a category of type representations
where we concern mostly on modeling reference type oper-
ations.

2. T-NBL DEFINITION

As a basic language in this paper we use typed Num-
ber Boolean Language (T-NBL) as a simple functional lan-
guage based on evaluation of arithmetic expressions. Its
definition follows the language of boolean and arithmetic
expressions from [13]. In this section we introduce syntax
of T-NBL.

We consider only two basic types in T-NBL: Bool of
boolean values and Int of integer numbers.

T ::= Bool | Int (1)

A program is a term constructed by using the following

production rule:

t ::= true | false | 0 | succ t | pred t | iszero t |

| if t then t else t | (t)
(2)

The first three alternatives (true, false, 0) are constants.
The next three (succ t, pred t, iszero t) are terms con-
structed by means of unary operations successor, predeces-
sor and testing operation, respectively. The following term
(if t then t else t) is conditional term and the last alter-
native expresses bracketing of terms.

T-NBL has boolean and numerical values

v ::= true | false | nv

nv ::= 0 | succ nv | pred nv
(3)

We note that this simple language has no variables, there-
fore numerical values can be expressed only by using finite
number of applications succ and/or pred operations.

3. ALGEBRAIC SPECIFICATION OF T-NBL EX-
TENDED BY REFERENCE TYPE.

We extend the syntax of T-NBL with reference type and
its operations. We add new type Re f (T) into production
rule for types:

T ::= . . . | Re f (T) (4)

We need to add also new forms of terms:

t ::= . . . | alloc t | !t | assign t t | Null (5)

The operation alloc serves for allocation of a memory cell,
! serves for dereferencing and assign serves for modifica-
tion of allocated value. Null is empty reference.

In computer science, namely in algebraic specifications,
types can be specified using algebraic specification of ab-
stract data types [7]. An algebraic specification consists of

ISSN 1335-8243 (print) © 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013 65

a many-typed signature and a set of equational axioms. An
algebraic specification is a tuple

Spec = (Σ,E) (6)

where

Σ = (T ,F). (7)

In this notation

• T is a finite set of types names σ ,τ,υ ...,

• F is a finite set of operational specifications in the
form

f : σ1, ...,σn→ τ (8)

where σ1, ...,σn are input types and τ is an output
type, for n ∈ N,

• E is a finite set of equational logic axioms
e1,e2, . . . ,en. They express properties of operational
specifications.

In T-NBL we have two types: Bool and Int. Algebraic
specifications for these types are well known from litera-
ture [7, 14, 15]. Let ΣInt and ΣBool be the signatures of the
types Int and Bool, respectively. In this section we con-
struct the algebraic specification for reference type. First,
we must introduce a special new type Unit with single value
unit. This type has no operations, it is an elementary type
with signature

ΣUnit = (
T = {Unit} ,
F = /0)

(9)

Now we can construct signature for reference type as
parametrized signature. Let T be a type of T-NBL. The sig-
nature of reference type has the following form

Σ = (ΣT ,ΣRe f (T)) (10)

where ΣT is a signature of parameter T and ΣRe f (T) has the
form

ΣRe f (T) = (
T = {Re f (T)} ,
F = {

alloc : T → Re f (T),
! : Re f (T)→ T,
assign : (Re f (T))T →Unit
null :→ Re f (T),

}
)

(11)

Three operations can be applied on reference type. The first
one is alloc that reserves a memory space for a value of type
T . The second operation ! enables to obtain a value stored

in referenced memory space and the third one assign serves
for assigning a new value to referenced memory space. The
notation (Re f (T))T is an abbreviation of the function type
T →Re f (T). We note that the output type of this operation
is Unit. null is a special constant expressing unassigned
memory location.

Axioms for reference type are conditional equations in
the form of i f − then expressions. Let r,s : Re f (T) be
the variables of reference type Re f (T). Let the variables
u : T,v : T be of a type T . Then we can form the following
conditional equations for reference data type

E = {
u =!(alloc u)
v =!assign(alloc u,v)
i f (r = alloc u) and (r = s) then !s = u
i f (r = alloc u) and (s = alloc r) then !s = u
i f (r = null) then !r = ”error”
i f (r = null) then assign(r,v) = ”error”

}
(12)

The first equation expresses relation between alocation
and dereferentiation. The second equation expresses rela-
tion between assigning and dereferencing. The following
two conditional equations denote the known property of
aliasing and reference composition, respectively. The last
two conditional equations illustrate errors arising from an
attempt to dereference unallocated memory and to modify
a value of unallocated memory.

4. CATEGORICAL MODEL OF T-NBL EXTENDED
BY REFERENCE TYPE.

To construct a model of our algebraic specification we
have to assign to type names their representations and to op-
erational specifications their actual operations. According
to [7] heterogeneous algebras are not suitable for program-
ming languages with reference types. We construct a model
for T-NBL as a category T NBLRe f T (Σ) over the signature
Σ. This category has as category objects type representa-
tions and as category morphisms real operations over Σ.

First of all, we have to assign type representations as
sets of values to basic type names in Σ

Int 7→ I
Bool 7→ B
Unit 7→ {∗}

(13)

where I is the set of integer numbers, B is the set of boolean
values. We represent the type name Unit as a singleton {∗}.
This object is also the terminal object of our category. Ini-
tial object of this category is empty set /0, i.e. empty type.

A representation of reference type name Re f (T) is not
so simple. Assume that T denotes a type representation of
any particular type from T-NBL. It is not enough to assign
to reference type name only a set R of possible references
(some abstract memory addresses)

Re f (T) 7→ R (14)

ISSN 1335-8243 (print) © 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

66 Categorical Semantics of Reference Data Type

because every reference should be bounded to some con-
crete language type. Binding can be represented by binary
products between the object R and particular object T to-
gether with corresponding projections. For instance, R× I
expresses the type representation of references pointing to
integers together with two projections π1 and π2. Similarly,
we construct the binary products R×B, R×U, R×R and
R× /0 for other types of our language. Based on [2], if a
category has binary products and terminal object it has fi-
nite products. Therefore we consider that our category has
finite products including empty product denoted by single-
ton {∗}.

To handle with references of different types in unified
way we use coproducts of objects. For example, the object
B+ I is a coproduct of boolean and integer type represen-
tations. An element of this coproduct type is either integer
number or boolean value according to their origins defined
by coprojections κ1,κ2. Based on [4], if a category has bi-
nary coproducts and initial object, it has finite coproducts.
Therefore we assign to reference type name Re f (T) the fol-
lowing coproducts

Re f (T) 7→ (R×I)+(R×B)+(R×U)+(R×R)+(R× /0)
(15)

Using distributive laws

(Z×X)+(Z×Y)∼= Z× (X +Y)
(X× /0)∼= /0 (16)

where X ,Y and Z are category objects, we can write

Re f (T) 7→ R×T (17)

where

T= B+ I+U+R+ /0 (18)

We have to assign representations to the operational
specification of the signature Σ in (10). To model the op-
eration assign we need that our category has exponent ob-
jects. Because objects of our category are sets, from [1] the
category T NBLRe f T (Σ) has exponent objects, i.e. for any
objects X and Y it has an object Y X as a set of morphisms
from X to Y .

According to discussion above our categorical model
has finite products and finite coproducts, exponential ob-
jects together with distributive property (16). This model is
illustrated in Fig. 1.

Now we can construct operations over Σ as cate-
gory morphisms. The operations of predecessor/successor
(pred/succ) are modeled as endomorphisms

JpredK : I→ I
JsuccK : I→ I (19)

where

JpredK(i) = i−1
JsuccK(i) = i+1 (20)

for i ∈ I. The operation JiszeroK is a morphism from I to B,
where

JiszeroK : I→ B (21)

JiszeroK(i) =
{

true, if i = 0
f alse, otherwise (22)

The conditional operation Ji f K is modeled as the morphism

Ji f K : B×T×T→ T (23)

and defined by

Ji f K(Jt1K,Jt2K,Jt3K) =
{

Jt2K, if Jt1K = true
Jt3K, if Jt1K = f alse (24)

where JtiK, for i = 1, . . . ,3 are values of corresponding
terms, Jt1K ∈ B and Jt2K,Jt3K are values of the coproduct
object T (from (18)) constructed by the same coprojection.

Now we model operations for reference type specifica-
tions introduced in (11). Let JtK be a value of a term t of a
type T .

The operation alloc is modeled as a morphism

JallocK : T→ R×T (25)

defined by

JallocK(JtK) = 〈r,JtK〉 (26)

where JallocK(JtK) assigns to a value JtK an element 〈r,JtK〉
of product type R×T. This morphism binds a value JtK
with abstract location r.

The operation ! is modeled as a morphism

J!K : R×T→ T (27)

defined by

J!K(〈r,JtK〉) = JtK (28)

where J!K takes as an argument abstract location with it’s
value 〈r,JtK〉 and returns the value JtK stored there.

We model the operation assign as a morphism to final
object

JassignK : (R×T)T→{∗} (29)

defined by

JassignK(JtK 7→ 〈r,JtK〉) = ∗ (30)

This operation modifies a value stored on a location r by
the value of JtK. The result ∗ of this operation raises that
the modification of this value was successful.

ISSN 1335-8243 (print) © 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013 67

Fig. 1 Categorical model T-NBL+Ref

5. BEHAVIOR OF REFERENCE TYPE IN FUNC-
TIONAL LANGUAGE

Reference type is often used in many programming lan-
guages in various programming paradigms. In this section
we illustrate behavior of reference type in functional object
oriented language Ocaml [11]. In this paper we use Ocaml
interpreter enabling immediate execution of particular pro-
gram and rapid response. First, we declare the reference
type as:

type ’a pointer = Null | Pointer of ’a ref;;

In this program line we declare the possible forms of ref-
erence type: empty reference (Null) or some address in
computer memory.

In the following lines we define three operations on ref-
erence according to signature in (11).

let (!) = function

| Null -> invalid_arg "Attempt to

dereference the null pointer"

| Pointer r -> !r;;

let assign p v =

match p with

| Null -> invalid_arg "Attempt to

assign the null pointer"

| Pointer r -> r := v;;

let alloc x = Pointer (ref x);;

First of these operations is !, dereference, that returns
a content of a memory cell. The operation assign modi-
fies a content of it. The last operation alloc reserves new
memory cell and it stores the value of x into this place.

The following program lines show the properties of ref-
erence type defined in (12). The symbol ”#” in the front
of a line denotes input to the interpreter and its response is
denoted by the symbol ”-” in the front of the line.

1 # let u = alloc 5 in !u;;

2 - : int = 5

3 #

4 # let u = alloc 5 in let v = 6 in assign u v; !u;;

5 - : int = 6

6 #

7 # let r = alloc 5 in let t = r in !t;;

8 - : int = 5

9 #

10 # let r = alloc 5;;

11 val r : int pointer = Pointer {contents = 5}

12 # let t = alloc r;;

13 val t : int pointer pointer = Pointer {contents

ISSN 1335-8243 (print) © 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

68 Categorical Semantics of Reference Data Type

= Pointer {contents = 5}}

14 # !t;;

15 - : int pointer = Pointer {contents = 5}

16 #

17 # alloc Null;;

18 - : ’_a pointer pointer

= Pointer {contents = Null}

19 #

20 # !Null;;

21 Exception: Invalid_argument "Attempt

to dereference the null pointer".

22 #

23 # assign Null 1;;

24 Exception: Invalid_argument "Attempt

to assign the null pointer".

25 #

Line 1 corresponds to the first axiom in (12) defining re-
lation between allocating and dereferencing. Line 4 shows
how an allocated value can be modified by assign opera-
tion. Line 7 corresponds with the third axiom about alias-
ing. The lines from 10 to 15 express composition of refer-
ences. The remaining lines illustrate error situations arising
in an attempt to dereference empty reference Null and in
assigning new value to empty reference.

All the terms interpreted above by Ocaml are modeled
as path, morphism compositions, in our category model of
the language T-NBL+Ref in Fig. 1.

6. CONCLUSION

Reference types are often used in various paradigms of
programming. In our paper we present how references can
be modelled as a category. First, we extend a simple typed
language T-NBL with reference type, then we construct al-
gebraic specification as parametric signature together with
conditional equational axioms. We construct categorical
model of so extended T-NBL using distributive category of
types. In the last section we illustrate conditional equational
axioms of the algebraic specification of extended T-NBL on
examples in functional programming language Ocaml. Our
results can serve for generalization our approach to model
typed lambda-calculus extended with reference types in cat-
egorical terms.

ACKNOWLEDGEMENT

This paper was supported by two projects:
Slovak Research and Development Agency under the con-
tract No. APVV-0008-10 ”Modelling, simulation and
implementation of GPGPU-enabled architectures of high-
throughput network security tools.”

Agency of the Ministry of Education, Science, Research

and Sport of the Slovak Re-
public for Structural Founds
of EU, Project ITMS code
26110230093: BIP4

REFERENCES

[1] AWODEY, S.: Category Theory, Oxford Logic
Guides, OUP Oxford, 2010, ISBN 9780199587360.

[2] BARR, M. – WELLS, Ch.: Category Theory for Com-
puting Science, Prentice Hall International (UK) Ltd.,
1990, ISBN 0-13-120486-6.

[3] BIRD, R. – WALDER, P.: Introduction to Functional
Programming, Programming Research Group, Oxford
University, Department of Computer Science, Univer-
sity of Glasgow, 1988.

[4] BLUTE, R. – SCOTT, P.: Category Theory for Linear
Logicians, Linear Logic Summer School, Cambridge
University Press, 2003.

[5] CHAILLOUX, E. – MANOURY, P. - PAGANO,
B.: Developing Applications with Objective Caml,
O’REILLY, Paris, 2000.

[6] CROLE, R. L.: Categories for Types, Cambridge Uni-
versity Press, 1993, ISBN 9780521457019.

[7] EHRIG, H. – MAHR, B.: Fundamentals of Alge-
braic Specification 1: Equations and Initial Seman-
tics, Springer-Verlag, New York, 1985, ISBN 3-540-
13718-1.

[8] GIBBONS, J.: Conditionals in Distributive Cat-
egories, Technical report CMS-TR-97-01, School
of Computing and Mathematical Sciences, Oxford
Brookes University, 1996.

[9] MIHÁLYI, D. – NOVITZKÁ, V.: Princı́py duality
medzi konštruovanı́m a správanı́m programov, Equi-
libria, Košice, 2010. ISBN 978-80-89284-58-0.

[10] NOVITZKÁ, V.: Church’s Types in Logical Reason-
ing on Programming, Acta Electrotechnica at Infor-
matica 6, No. 2 (2006) 27–31.

[11] LEROY, X. et al: The OCaml System Release 4.01,
Documentation and Users Manual, 2013 http://

caml.inria.fr/pub/docs/manual-ocaml/.

[12] NOVITZKÁ, V. – SLODIČÁK, V.: Kategorické
štruktúry a ich aplikácie v informatike, Equilibria,
Košice, 2010, ISBN 978-80-89284-67-2.

[13] PIERCE, B. C.: Types and Programming Languages,
The MIT Press, 2002, ISBN 0-262-16209-1.

[14] SANNELLA, D. – TARLECKI A.: Essential Con-
cepts of Algebraic Specification and Program De-
velopment, Formal Aspects of Computing 9, No. 3
(1997) 229–269

[15] WIRSING, M.: Algebraic Specification, In (Jan van
Leeuwen, ed.) Handbook of Theoretical Computer
Science, Elsevier, 1990, pp. 675–788.

Received November 12, 2013, accepted December 24, 2013

BIOGRAPHY

Miloš Lukáč defended his M.Sc. thesis in 2013. He is
concerned with type theory, category theory and functional
programming.

ISSN 1335-8243 (print) © 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

http://caml.inria.fr/pub/docs/manual-ocaml/
http://caml.inria.fr/pub/docs/manual-ocaml/

Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013 69

Daniel Mihályi has worked as a researcher at the Depart-
ment of Computers and Informatics of the Faculty of Elec-
trical Engineering and Informatics at Technical University
in Košice and later as Assistant Professor. In 2009 he de-
fended PhD. Thesis ”Duality Between Formal Description
of Program Construction and Program Behaviour”. The
main area of his research includes applications of category
theory in informatics and using source-based logical sys-
tems for formal description of program systems behavior.

Valerie Novitzká defended her PhD. Thesis ”On Seman-
tics of Specification Languages” at Hungarian Academy of
Sciences in 1989. She has worked at Department of Com-
puters and Informatics since 1998, firstly as Assistent Pro-
fessor, from 2004 as Associated Professor and since 2008
as Full Professor. Her research area covers category theory,
categorical logic, type theory, classical and linear logic and
theoretical foundations of program development.

ISSN 1335-8243 (print) © 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

