
Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013, 57–63, DOI: 10.15546/aeei-2013-0050 57

COMPARISON OF DC AND MC/DC CODE COVERAGES

Zalán SZŰGYI, Zoltán PORKOLÁB
Department of Programming Languages and Compilers, Faculty of Informatics, Eötvös Loránd University,

Pázmány Péter sétány 1/C., Hungary, e-mail: lupin,gsd@elte.hu

ABSTRACT
In software development testing plays the most important role to discover bugs and to verify that the product meets its requirements.

This paper focuses on programs written in C++ programming language and analyses two important testing methods, the Decision
Coverage and the more strict Modified Condition / Decision Coverage. We examine how the program characteristics – lines of code,
McCabe metric, the number of the arguments in the decisions, deepness of the nested block – affect the number of necessary test cases
of these testing methods. Choosing test methods is always a compromise between the code correctness and the available resources.
Less strict ones require fewer test cases and consume less resources, however, they may discover fewer errors. Our results may help to
chose between Decision Coverage and Modified Condition / Decision coverage.

Keywords: DC, MC/DC, test, coverage, C++

1. INTRODUCTION

Accurate software testing is mandatory in order to find
the bugs in a software, and to prove that the code is work-
ing properly [16] . Software testing consists of four level of
test processes: unit testing, integration testing, system test-
ing, and acceptance testing [18]. Our paper focuses on unit
testing which verifies the functionality of the source code in
subprogram level. Unit test usually contains a suite of test
cases; one test case verifies one property of a subprogram.
However, in real projects the subprograms can be complex
and usually they need several test cases to fully verify them.

When a test case executes a code snippet of subprogram,
we can say that the test case covers it. The code cover-
age is a measure of the test quality: the higher code cov-
erage provides better tested code. A good test suite aims
to achieve the highest possible code coverage on the target
source code. The exact definition of the code coverage de-
pends on the testing methods. Different security standards
define different requirements on tests. The simple ones re-
quire only that each statement of the program has to be ex-
ecuted at once. However, more strict requirements specify
additional requisites such as all the arguments of the logical
expression need to be tested against true and against false.

During the design of the system architecture, it is essen-
tial to choose a proper testing method. More strict methods
can discover more bugs in a software, however, they require
more test cases too, which, after all, increases the cost of the
project.

This paper focuses on two important and widely used
test methods. The first one is the Decision Coverage (DC),
which is a generally used testing method, and requires that
every decision in a subprogram must be evaluated both as
true and false. However, more secure softwares such as
softwares used in aviation require more strict method to test
them. For this purpose the Modified Condition / Decision
Coverage (MC/DC) method can be a good choice. MC/DC
method assesses the requirements of DC, and additionally
specifies that every argument of the decision must be shown
to independently affect the outcome. Section 2 details these
test methods.

The goal of this paper is to support the system designer

to choose from the previously mentioned two testing meth-
ods. We have compared them by the quantity of the nec-
essary test cases to reach hundred per cent coverage. We
have examined how the number of test cases are affected
by program characteristics such as McCabe metric, maxi-
mum deepness of nested blocks, arity of the most complex
decision in a subprogram, etc. The source of our analysis
is several middle size open source project, written in C++
programming language.

We found that the difference of the number of required
DC and MC/DC test cases is mainly depend on the arity of
the decisions. We may need twice more test cases to cover
MC/DC if most of the subprograms in a project contain
complex decision. In general case, however, we need about
ten per cent more test cases if we apply MC/DC method to
test our program.

The paper is organized as follows: Section 2 details the
most common testing methods including the DC and the
MC/DC. We describes the algorithm to compute the num-
ber of necessary test cases for DC in Section 3 and for
MC/DC in Section 4. The result is detailed in Section 5,
while we discuss the related work in Section 6, and Section
7 concludes our results.

2. TESTING METHODS

A variety of methods exist to test the subprograms of a
project. In this section we detail the most commonly used
ones.

Statement Coverage (SC) requires that each statement
of a subprogram must be invoked at least once. The main
advantage of this method is that it can be applied directly
on object code. However, this method is insensible to some
control structures. Consider the code snippet below:

T* t = 0;

if (condition)

t = new T();

t->method();

One test case – where the variable condition is true
– may provide 100% statement coverage, because all the

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

58 Comparison of DC and MC/DC Code Coverages

statements are invoked. In that case the program works
properly and we may recognize it is faultless. However, in
real applications the condition can be false, which might
cause non-deterministic behaviour or segmentation fault.

Decision Coverage (DC) enhances statement coverage
by requiring that every decision must be evaluated both
as true and as false. Thus the previous problem will be
discovered at testing time. However, this method ignores
branches within boolean expressions, which occur due to
short-circuit operators. Let us consider the boolean expres-
sion A||B. Two test cases (where A == true, B == f alse,
and A == f alse, B == f alse) can satisfy the requirement
of DC, however, the effect of B is not tested. Thus these
test cases cannot distinguish between the decision A||B and
the decision A.

Condition / Decision Coverage (C/DC) requires that all
the arguments in a logical expression must be evaluated
both as true and as false. This method obviously solves
the problem of DC, however, it takes for a huge overhead
due to the increase of arguments in the logical expression
increases the number of required test cases exponentially.

Modified Condition / Decision Coverage (MC/DC) is
derived from the (C/DC) testing method, however, it needs
less test cases to achieve 100 % coverage. This testing
method has three requirements:

1. every statement must be invoked at least once,

2. every decision must be evaluated both as true and as
false,

3. each condition must be shown to independently af-
fect the evaluation of the decision. In the example in
Table 1, the test cases #1 and #2 provide the same in-
put (f alse) for decision B and C. However, decision
A is f als in test case #1 and it is true in test case #2.
The value of the decision in test case #1 is f alse, and
it is true in test case #2. Hence this two test cases
prove that the condition A is independently affect the
result of the decision.

The independence requirement ensures that the effect of
each condition is tested relative to the other conditions.

#1 #2 #3 #4
A F T F F
B F F T F
C F F F T

output F T T T

Table 1 Minimal coverage set of A||B||C

More information on these coverage methods and others
can be found in [12, 13].

3. ANALYSIS OF DC

Our analysis is based on the Clang C++ compiler [1,15].
This tool parses the C++ source code, and build the Abstract
Syntax Tree (AST), which is the input of our analyzer algo-
rithms.

The Decision Coverage requires that every decision
must be evaluated as true and as false at least once. Thus
two test cases are needed. However, one test case can cover
several decisions in a function (e.g.: they are in sequence),
and more than two test cases are needed if a decision con-
tains nested decisions. See the example below:

if(c1)

{

if(c2)

stmt1;

else

stmt2;

}

else

stmt3;

//...

if(c3)

stmt4;

If the condition expressions in the example are indepen-
dent, a test case, which tests the c1 can test the c3 at the
same time. However, the true branch of c1, has a nested
condition c2. It means c1 must be evaluated as true twice,
because two test cases are needed for c2. Thus altogether
we need three test cases to reach 100% decision cover-
age. The test cases, in which c1, c2, c3 are evaluated as
(true, true, true), (true, f alse, f alse) and (f alse,any,any)
are suitable for this.

In our analysis, we consider all the decisions are inde-
pendent. After a human analysis of source code we consider
it does not influence our results in merit.

The algorithm in Table 2 describes the way we compute
the number of necessary test cases for DC.

Require: Start with the topmost block of a function
1: if no decision in block then
2: return 1
3: else
4: ReqTC← 0
5: for all d in decisions in same level do
6: if d is in if statement then
7: trueTC←ComputeDC(truebranch)
8: if false branch exist then
9: f alseTC←ComputeDC(f alsebranch)

10: else
11: f alseTC← 1
12: end if
13: ReqTC←MAX(ReqTC, trueTC+ f alseTC)
14: else if d is in loop statement then
15: TC←ComputeDC(loopbody)
16: ReqTC←MAX(ReqTC,TC)
17: else if d is in switch statement then
18: tmp← 0

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013 59

19: for all c in case branches do
20: tmp← tmp+ComputeDC(c)
21: end for
22: if there was not default branch then
23: tmp← tmp+1
24: end if
25: ReqTC←MAX(ReqTC, tmp)
26: end if
27: end for
28: return ReqTC
29: end if

Table 2 ComputeDC

4. ANALYSIS OF MC/DC

The method to analyze MC / DC coverage has two main
steps. The first one counts how many test cases are needed
to cover the decisions separately. The second step than
checks how these decisions affect each other. For efficiency
reasons we use approximate value for a decisions with more
than 15 conditions. The approximate value, which we use
is the number of arguments plus one. This value comes
from the technical report [12]. Since these huge decisions
are very rare in source codes, the influence of approximate
values are not significant.

4.1. Processing the decisions separately

The way to process the decisions, depends on their com-
plexity. The one argument decisions are the simplest: we
need two test cases to cover them and we can deal with
them in the same way as we did in DC case.

Decisions with two arguments requires three test cases.
If the operator is the logical and the test cases need to
evaluate the arguments as (true, true), (true, f alse) and
(f alse,any). In C++ the logical and operator is a short-
cut operator, thus if the first argument is false, the second
one does not count. If the operator is the logical or the
test cases should evaluate the arguments as (f alse, f alse),
(f alse, true) and (true,any).

If the decision contains more than two arguments we do
the four steps below:

1. Generate all the possible combinations of values for
the arguments. (2n combinations, where n is the num-
ber of arguments.) These are the potential test cases.

2. Eliminate the masked test cases. For example let us
consider A&&B, and there is a test case where B is
f alse. In this case the whole logical expression is
f alse and independent of A. But A is not necessarily
a logical variable. It can be a logical subexpression
and in this case the outcome value of A does not af-
fect the whole logical expression. It means this test
case cannot be used to show a part of A is indepen-
dently affect the result. Therefore, we can say this
test case is masked for A. Thus we need to find other
test cases to prove that the parts of A are indepen-
dently affect the result of the decision. You can find a

more detailed description and examples in [12] about
this step.

3. For every logical operator in the decision: we col-
lect the non-masked test cases which satisfy one
of its requirements. So we get a set of test cases
for every requirement of every logical operator.
(The operator logical and requires three test cases:
(true, true),(true, f alse),(f alse, true), thus it im-
plies three sets. The first set contains the indices of
those non-masked test cases which evaluate both ar-
gument true.) The logical and and logical or opera-
tors imply three sets and the logical not implies two.
If one of these sets is empty the decision cannot be
fully covered by MC/DC. If this happens we try to
achieve the highest possible coverage.

4. Calculate the minimal covering set of these sets. We
do it in the following way: let us suppose we have
n arguments in a decision. The maximum number
of test cases is m = 2n and we index them from 0
to m− 1. (Most of them will be masked.) Sets
s0,s1, ...,sk are the ones mentioned in previous item.
We calculate the minimal covering set by Integer Pro-
gramming (IP), where for every si set we have a dis-
parity which is:

m−1

∑
j=0

f (j)X j ≥ 1

where

f (j) =
{

1 if j ∈ si
0 otherwise

The target function is:

min
m−1

∑
k=0

Xk

In which the value of each Xk is either 0 or 1. When
the result is calculated we get the minimal covering
set. Each test case indexed with k is a member of the
minimal covering set if Xk is 1.
To do that calculation we used LEMON graph li-
brary [2, 9] with glpk linear programming kit [3]

4.2. Put them together

Like in DC, one test case can test several decisions when
they are in the same level, and one decision may require
more test cases when it has nested decisions. But the way
to calculate this is a bit more difficult because we have to
deal with conditions in a decision.

if(a || b) // first decision

{

if(c && d) // second (nested) decision

{

//...

}

}

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

60 Comparison of DC and MC/DC Code Coverages

There are three test cases that are needed for both de-
cisions: (true, f alse),(f alse, true),(f alse, f alse) for the
first and (true, true),(true, f alse),(f alse, true) for the sec-
ond. But in the third case the first decision is false, therefore
the second decision cannot be executed. So we need an ex-
tra test case – where the first decision is true – to exercise
the third requirement of the nested decision.

Algorithm in Table 3 details how we compute the nec-
essary MD/CD test cases in general.

Require: Start with the topmost block of a function
1: if no decision in block then
2: return (1,0)
3: else
4: ReqTC← 0
5: for all d in decisions in same level do
6: if d is in if statement then
7: (trueN, f alseN)← ProcessDecision(d)
8: T Num←ComputeMCDC(truebranch)
9: FNum←ComputeMCDC(f alsebranch)

10: trueN←MAX(trueN,T Num)
11: f alseN←MAX(f alseN,FNum)
12: return trueN + f alseN
13: else if d is in loop statement then
14: (trueN, f alseN)← ProcessDecision(d)
15: BNum←ComputeMCDC(loopbody)
16: trueN←MAX(trueN,BNum)
17: return trueN + f alseN
18: else if d is in switch statement then
19: tmp← 0
20: for all c in case branches do
21: tmp← tmp+ComputeMCDC(c)
22: end for
23: if there was not default branch then
24: tmp← tmp+1
25: end if
26: return tmp
27: end if
28: end for
29: end if

Table 3 ComputeMCDC

5. RESULTS

We analyzed five open source projects written in C++
programming language. These projects were

1. BiblioteQ [4], which is a cataloging and library man-
agement program;

2. DOSBox [5] a multi platform DOS simulator;

3. FileZilla [6] an FTP client;

4. GParted [7] partition manager;

5. Xerces [8] which is an XML parser library.

First we present some basic characteristics of the
projects and then we detail how these characteristics af-
fect the number of required test cases in DC and MC/DC
methods. Table 4 shows the effective lines of code. The
GParted and BiblioteQ are small and the others are medium
size projects.

BiblioteQ ∼ 41000
DOSBox ∼ 119000
FileZilla ∼ 78000
GParted ∼ 16000
Xerces ∼ 142000

Table 4 Effective lines of code

5.1. Cyclomatic complexity

Cyclomatic complexity (or McCabe metric) [11, 17] is
widely used metric to measure the complexity of a pro-
gram. It measures the linearly independent path of the
source code. To see how this metric affect the test meth-
ods we categorized the functions by their McCabe values.
Most of the functions has few McCabe value, because there
are several getter, setter and simple helper functions in a
projects. Table 5 shows the categories (rows) and the num-
ber of functions per projects in a given category (columns).
We joint those categories which contain only few functions.
In the table we refer the projects by the number as they were
enumerated in the beginning of this section.

McCabe cat. #1 #2 #3 #4 #5
1 250 1503 1385 320 6785
2 89 483 481 97 1155
3 57 343 332 66 524
4 67 373 236 67 298
5 36 316 180 51 229
6 32 125 152 19 127

7–8 32 113 180 34 156
9–12 25 202 201 26 162
13–20 33 111 144 14 147
21+ 50 110 81 8 119

Table 5 Distribution of functions by McCabe metric

Table 6 presents the ratio of the number of required
test cases in MC/DC and DC. Every cell represent a ratio
in a given category mentioned above, in the correspond-
ing project. For example functions in GParted project (#4)
which McCabe value more than 21 require 40% more test
cases to test MC/DC than DC. We get very interesting re-
sults. In some project the greater McCabe value implies the
greater ratio of the two testing methods such as FileZilla
(#3) or GParted (#4), however, in other projects it does not
affect the difference. This may happen, because the Mc-
Cabe value can high either the presence of many simple

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013 61

decisions in sequence or the complex nested decision hier-
archy. The first case does not affect the difference, while
the second case highly influences it.

McCabe cat. #1 #2 #3 #4 #5
1 1.00 1.00 1.00 1.00 1.00
2 1.05 1.02 1.07 1.06 1.08
3 1.12 1.09 1.12 1.10 1.12
4 1.03 1.07 1.19 1.11 1.15
5 1.07 1.06 1.15 1.19 1.16
6 1.06 1.18 1.21 1.21 1.12

7–8 1.06 1.15 1.22 1.39 1.14
9–12 1.03 1.12 1.31 1.27 1.15

13–20 1.02 1.25 1.36 1.46 1.13
21+ 1.05 1.19 1.52 1.40 1.12

Table 6 Ratio of required test cases for MC/DC and DC of
functions by McCabe metric

Figure 1 shows an overview of the ratio. In the first
group (marked with “all”) we dealt with all the functions
in project to compute the ratio, while in the second group
(marked with “7+”) we kept only those functions, which
McCabe value is seven or greater.

Fig. 1 Ratio of required test cases for MC/DC and DC of
functions by McCabe metric

5.2. Maximum deepness of nested blocks

Maximum deepness of nested blocks is another metric
to see the complexity of a function. While a functions have
a great McCabe value if they contain lot of decision point
in a sequence, this metric results a great value only if the
decisions are nested. Table 7 shows the nesting character-
istics of the projects. The structure of the table is similar to
Table 5.

Deepness cat. #1 #2 #3 #4 #5
1 250 1503 1385 320 6865
2 147 888 919 159 1504
3 110 556 550 136 651
4 58 539 272 53 314

5–6 43 147 190 25 230
7+ 63 46 56 9 138

Table 7 Distribution of functions by maximum deepness of
nested blocks

Table 8 details the ratio of the number require test cases
for functions grouped by their nesting value. The structure
of the table is similar to Table 6. We have similar conse-
quences than in previous subsection. FileZilla and GParted
has a great increase on the ratio when the deepness is grow-
ing, the others gain a slight increase. While we can nest
simple decision which does not require additional MC/DC
test cases the result is acceptable.

Deepness cat. #1 #2 #3 #4 #5
1 1.00 1.00 1.00 1.00 1.00
2 1.08 1.04 1.11 1.03 1.09
3 1.02 1.05 1.17 1.23 1.11
4 1.08 1.10 1.22 1.21 1.15

5–6 1.08 1.20 1.39 1.32 1.14
7+ 1.05 1.30 1.75 2.16 1.15

Table 8 Ratio of required test cases for MC/DC and DC of
functions by maximum deepness of nested blocks

Figure 2 shows an overview of the ratio grouped by
nesting value. Its structure is similar to Fig. 1. The first
group (marked with “all”) contains all the functions, while
we select only those functions in the second group which
contain at least four level nested blocks.

Fig. 2 Ratio of required test cases for MC/DC and DC of
functions by nesting

5.3. Maximum arity of the decisions

Maximum arity of the decisions is a metric that mea-
sures the complexity of decisions not a functions. A func-
tion with a single quite complex decision has a low McCabe
or nesting value, however, this metric provide a high value.
Distribution of the functions in projects by maximum arity
of their decisions is shown in Table 9. The structure of the
table is similar to previous ones.

Max arity cat. #1 #2 #3 #4 #5
0–1 563 2883 2528 570 8748
2 93 565 541 67 732
3 6 54 114 23 172

4+ 9 24 51 13 50

Table 9 Distribution of functions by maximum arity of decisions

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

62 Comparison of DC and MC/DC Code Coverages

Table 10 shows the ratio of functions grouped by the
maximum arity of their decisions. The structure of the ta-
ble is similar to Table 6. As we expected the grow of the
decisions’ arity significantly increase the difference of the
number of required test cases. GParted (#4) has the great-
est ratio in functions that has at least four argument deci-
sions. In this case more than twice test cases are needed
for MC/DC method than DC. However, BiblioteQ (#1) re-
quires more than 50% test cases to cover MC/DC for the
same characteristics functions.

Max arity cat. #1 #2 #3 #4 #5
0–1 1.00 1.00 1.00 1.00 1.00

2 1.09 1.20 1.36 1.36 1.21
3 1.21 1.29 1.62 1.69 1.24

4+ 1.56 1.72 2.16 2.36 1.79

Table 10 Ratio of required test cases for MC/DC and DC of
functions by McCabe metric by maximum arity of decisions

Figure 3 shows an overview of the ratio grouped by the
maximum arity of decisions in a functions. Its structure is
similar to Fig. 1. The first group (marked with “all”) con-
tains all the functions, while we select only those functions
in the second group which has a decision with least four
argument.

Fig. 3 Ratio of required test cases for MC/DC and DC of
functions by nesting

5.4. Overall

Fig 4 shows the ratio of the number of required test
cases for all functions in the project, and in the last column,
the overall ratio of the functions of all the projects together.

Fig. 4 Ratio of required test cases for MC/DC and DC

We can say about ten per cent more test cases are needed
to covert MC/DC than DC in general. However, for func-
tions with high number of arguments in their decisions the
difference can be significantly higher: we need more than
twice test cases to fulfil the requirements of MC/DC.

6. RELATED WORK

Dupuy et. al. made an empirical evaluation of MC/DC
test criteria on the software of HETE-2 (High Energy Tran-
sient Explorer) scientific satellite. They found errors that
are not detectable with functional testing [10].

Rajan et. al. focused on the connection between the
structure of program or model and MC/DC test adequacy
coverage [19]. They made their analysis on six realistic sys-
tems from the civil avionics domain, and found the MC/DC
metric is highly sensitive on the project’s structure.

The strict rules of MC/DC test coverage require to high
amount and complex test cases. Rayadurgam et. al, made
an investigation to the method for generating test cases ac-
cording to structural coverage criteria [20]. Nevertheless,
Jones et. al. focused on the algorithm that is able to effec-
tively reduce the test suit of MC/DC [14].

Studies pointed out that some bugs are not detectable
with MC/DC testing. Several research is done to im-
prove this testing mechanism. Woodward et. al com-
pared MC/DC with JJ-paths [24]. Vilkomir et. al introduce
their Reinforced Condition / Decision Coverage criteria and
compared it against MC/DC [22, 23]. Yu et. al, in turn,
compared MC/DC with MUMCUT coverage criteria [25].

We made the similar study for programs written in Ada
programming language [21], where we made the analysis
on mission critical industrial softwares.

In our future work, we plan to refine our analysis
method. We need to handle the same subexpressions in the
different decisions. This require heavy data flow analysis
on source code, but it makes more precise results. We plan
to extend the analysis on more projects, and we can add
more aspects on analysis as well.

7. CONCLUSION

We analyzed several well-known open source projects
written in C++ programming language and measured the
difference of the required test cases of Decision Coverage
and the more strict Modified Condition / Decision Cover-
age. To reduce development efforts it is essential to find a
good balance between minimizing testing costs and find the
most of the possible bugs in the code. Choosing the right
testing methods based on the characteristics of the source
could be a useful method.

We found that the difference between DC and MC/DC
is about two to seven per cent because the decisions in most
functions have only one argument and there are several
functions which do not contain decisions at all. If we ex-
clude this special cases we will get a difference that is three
or four times larger. The most important aspect that affects
the difference is the maximum arity of decisions. For those

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013 63

functions where there are decisions with more than four ar-
guments, almost forty per cent more MC/DC test cases are
needed than DC. But such subprograms are only less than
one per cent of the whole project.

In general we can say about ten per cent more test cases
are needed to satisfy the requirements of MC/DC than DC.

REFERENCES

[1] Clang C++ compiler: http://clang.llvm.org/.

[2] The homepage of LEMON library:
http://lemon.cs.elte.hu/trac/lemon/.

[3] The homepage of glpk LP solver library:
http://www.gnu.org/software/glpk/.

[4] The homepage of BiblioteQ the library manager:
http://biblioteq.sourceforge.net/.

[5] The homepage of DOSBox the DOS simulator:
http://www.dosbox.com/.

[6] The homepage of FileZilla ftp client: https://filezilla-
project.org/.

[7] The homepage of GParted partition manager:
http://gparted.sourceforge.net/.

[8] The homepage of Xerces XML parser library:
http://xerces.apache.org/xerces-c/.

[9] Balázs Dezső, Alpár Jüttner, and Péter Kovács.
Lemon–an open source c++ graph template library.
Electronic Notes in Theoretical Computer Science,
264(5):23–45, 2011.

[10] Arnaud Dupuy and Nancy Leveson. An empirical
evaluation of the mc/dc coverage criterion on the hete-
2 satellite software. In Digital Avionics Systems Con-
ference, 2000. Proceedings. DASC. The 19th, vol-
ume 1, pages 1B6–1. IEEE, 2000.

[11] Geoffrey K. Gill and Chris F. Kemerer. Cyclomatic
complexity density and software maintenance produc-
tivity. Software Engineering, IEEE Transactions on,
17(12):1284–1288, 1991.

[12] K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and
L. K. Rierson. A practical tutorial on modified condi-
tion/decision coverage. Technical Report TM-2001-
210876, NASA.

[13] K.J. Hayhurst and D.S. Veerhusen. A practical ap-
proach to modified condition/decision coverage. In
Digital Avionics Systems, 2001. DASC. 20th Confer-
ence, volume 1, pages 1B2/1–1B2/10 vol.1, 2001.

[14] J.A. Jones and M.J. Harrold. Test-suite reduction and
prioritization for modified condition/decision cover-
age. Software Engineering, IEEE Transactions on,
29(3):195–209, 2003.

[15] Chris Lattner. Llvm and clang: Next generation com-
piler technology. In The BSD Conference, pages 1–2,
2008.

[16] Aditya P Mathur. Foundations of software testing.
China Machine Press, 2008.

[17] T.J. McCabe. A complexity measure. Software En-
gineering, IEEE Transactions on, SE-2(4):308–320,
1976.

[18] Glenford J Myers, Corey Sandler, and Tom Badgett.
The art of software testing. John Wiley & Sons, 2011.

[19] A. Rajan, M.W. Whalen, and M.P.E. Heimdahl. The
effect of program and model structure on mc/dc test
adequacy coverage. In Software Engineering, 2008.
ICSE ’08. ACM/IEEE 30th International Conference
on, pages 161–170, 2008.

[20] S. Rayadurgam and M.P.E. Heimdahl. Coverage
based test-case generation using model checkers. In
Engineering of Computer Based Systems, 2001. ECBS
2001. Proceedings. Eighth Annual IEEE International
Conference and Workshop on the, pages 83–91, 2001.

[21] Zalán Szűgyi and Zoltán Porkoláb. Necessary test
cases for decision coverage and modified condition
/ decision coverage. Periodica Polytechnica Electri-
cal Engineering and Computer Science, 52(3–4):187
– 195, 2008.

[22] Sergiy A. Vilkomir and Jonathan P. Bowen. From
MC/DC to RC/DC: formalization and analysis of
control-flow testing criteria. Formal Aspects of Com-
puting, 18(1):42–62, 2006.

[23] SergiyA. Vilkomir and JonathanP. Bowen. Reinforced
condition/decision coverage (RC/DC): A new crite-
rion for software testing. In Didier Bert, JonathanP.
Bowen, MartinC. Henson, and Ken Robinson, editors,
ZB 2002:Formal Specification and Development in Z
and B, volume 2272 of Lecture Notes in Computer
Science, pages 291–308. Springer Berlin Heidelberg,
2002.

[24] Martin R. Woodward and Michael A. Hennell. On the
relationship between two control-flow coverage crite-
ria: all JJ-paths and {MCDC}. Information and Soft-
ware Technology, 48(7):433 – 440, 2006.

[25] Yuen Tak Yu and Man Fai Lau. A comparison of
mc/dc, {MUMCUT} and several other coverage cri-
teria for logical decisions. Journal of Systems and
Software, 79(5):577 – 590, 2006.

Received November 2, 2013, accepted December 21, 2013

BIOGRAPHY

Zalán Szűgyi was born on 11. 02. 1980. In 2007 he gradu-
ated (MSc) at the department of Programming Languages
and Compilers of the Faculty of Informatics at Eötvös
Loránd University in Budapest. He is working on his PhD
in the field of programming languages, C++. Since 2010 he
is working as assistant lecturer at the Department of Pro-
gramming Languages and Compilers.

Zoltán Porkoláb was born on 11. 11. 1963. He received
his MSc. in 1987 and defended his PhD. in 2003 at Eötvös
Loránd University (ELTE) in Budapest. He is associate pro-
fessor at the Department of Programming Languages and
Compilers of the Faculty of Informatics at ELTE, where he
leads the C++ and Generative Programming research group.

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

