
Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013, 51–56, DOI: 10.15546/aeei-2013-0049 51

GENERIC DETECTION AND ANNOTATIONS OF THE STATICALLY LINKED CODE

Lukáš Ďurfina∗, Dušan Kolář∗∗
∗Faculty of Information Technology, Brno University of Technology, Božetěchova 1/2, 612 66 Brno, Czech Republic, e-mail:

idurfina@fit.vutbr.cz
∗∗Faculty of Information Technology, Brno University of Technology, Božetěchova 1/2, 612 66 Brno, Czech Republic, e-mail:

kolar@fit.vutbr.cz

ABSTRACT
Detection of the statically linked code is one of the important steps in a process of decompilation. It restricts a code, which can

be skipped by the decompiler. Type annotations provide an additional information about the number, types, and suitable names for
arguments and return values of recognized functions in recognized statically linked code. This is important for generation of calls
for these functions. The detection is based on the generic signatures, which are created from the static libraries. The signatures are
composed of the first bytes of library modules, CRC codes, module sizes, public symbols, and optionally tail bits or references. A tree
structure of signature improves performance by decreasing a count of compared bytes. Generic approach of detection is achieved by an
usage of a common object file format. The process is not restricted on specific architecture or file format. However, there are situations
when a conflict in the detection can be resolved only by an analysis in the decompiler. Impact of signature usage is verified by the tests
with the decompiler.

Keywords: statically linked code, signature, detection, type annotations, decompiler

1. INTRODUCTION

Detection of statically linked code is important for static
binary analyses as a decompilation. Main aim is to elimi-
nate such a code to save a time for a process of decompila-
tion and also for an analysis of the results from decompiler.
The second aim is a delivery of valuable information about
recognized code. We can directly mark some piece of the
code as a specific function. This tool-chain was developed
for a usage in decompiler, which is created by our project
Lissom [2]. The architecture of decompiler and the signif-
icance of statically linked code removal for decompilation
was described in the article [3]. The motivation is to provide
a better decompilation of binaries with the statically linked
code. The detection of such a code makes the decompila-
tion faster and more accurate due to better knowledge of
called functions.

Linking of static libraries is available for all widely used
platforms and compilers, therefore the process should be
generic. Also, it should follow idea of the decompiler,
which is built as generic and retargetable. Naturally, we
cannot assume that we recognize same version of library on
the different architectures by a single signature. The goal is
to have a single tool for same action. The fact that the li-
braries are from the different architectures and file formats
has to be irrelevant for such a tool. We achieve it by usage
of unified object file format. Libraries are transformed to
this format and the tool-chain starts the work with handling
the files in this format.

The signatures are not directly created from transformed
libraries. We extract patterns from them. Each module from
the library is described by a single pattern. Finally, the pat-
terns are transformed into signatures and if there are con-
flicts, they are stored into separated file. This method al-
lows easily to join patterns from more libraries into a single
signature.

The signatures assign the name of functions for recog-
nized code, but for the decompilation it is very important
to know the type of arguments, return values, and suit-

able names for variables with these values. This is cov-
ered by type annotations. Lissom decompiler is based on
LLVM [4]. Therefore the C types are directly transformed
into LLVM types and these types are used in type annota-
tions for more precise description.

In the Section 2 there is described the current state of
this research field. The following Section 3 presents com-
plete process how the signature is created. For meaningful
usage the decompiler needs more information about func-
tions from libraries. This is ensured by type annotations,
what is written down in Section 4. Section 5 brings a closer
look how the signatures and type annotations are used in-
side of decompiler. The experimental results are shown in
Section 6. The paper is closed by Section 7 with idea for
future research. This article is an extended version of the
paper [1].

2. THE STATE OF THE ART

The detection of statically linked code is solved on
different levels in various decompilers. The decompiler
dcc [5] is aimed only at MS-DOS executables, so it can
detect linked static libraries for that operating system. It
uses a signature generator, which generates signatures with
the first 23 bytes of standard lib files. It uses wild-card byte
F4 (the opcode for HALT instruction), because it occurs very
rarely [6]. For each triplet compiler vendor, memory model,
and compiler version there is created own static library sig-
nature.

The decompiler Boomerang [7] supports decompilation
for several architectures and this is probably reason why it
does not support recognition of statically linked code. It has
only some simplified header files with function declarations
and typedefs. These files are used for dynamically linked
functions that are recognized from imports in executables.

REC decompiler [8] is in similar situation like
Boomerang. It has some special signatures for recogni-
tion of used compiler, but these signatures cannot be used

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



52 Generic Detection and Annotations of the Statically Linked Code

for some complex elimination of statically linked code. It
has also header files, but these files are not simplified, but
are taken in original state. They contain the declarations of
structures, but they do not seem to be used.

The commercial Hex-Rays Decompiler [9] uses own
F.L.I.R.T technology for recognizing standard func-
tions [10]. It stands for Fast Library Identification and
Recognition Technology. The technology tries to reduce
false positives and to require a minimum of processor and
memory requirements. There are used signature files for
recognition. The function is represented by sequences of
32 bytes. If there are same sequences of bytes for two or
more functions, the additional elements are used as CRC
code, the first different byte, or different referenced func-
tion. Moreover, these files are compressed, so they take
smaller amount of space, and also it is hard to verify their
real content.

3. CREATION OF SIGNATURES

There are two mainly used object file formats: ELF and
PE. The first tool, which touches the libraries, has to handle
at least these two formats to get closer to generic purpose.
The second and better option is to convert library from var-
ious formats into single common format. This is used in
our solution. We use tool bintran [11], which converts ob-
ject files from ELF, PE, and Mach-O formats into specific
COFF file format developed within project Lissom. Hence,
we can have a single tool for processing only this unified
format. The static library is an archive of object module
files. Bintran extracts these module files from library, con-
verts each module to COFF format, and finally stores all of
them into own archive format.

3.1. Pattern files

The second step is ensured by the tool coff2pat. This
tool takes a converted library and generates a pattern file.
The file contains a header and one pattern for each mod-
ule from library. The pattern from module is taken only
if it has at least 128 non-variable bits. The lower number
for minimal size of non-variable bits causes too many false
positives in recognition process. The variable bits are used
on the place of references. We do not know exact value of

variable bit, because there is usually encoded an address.
This address is set by linker in the linking process.

Header is formed by four lines, on the first line
there is an identifier (magic number) for this file format
R14kdP0a7q. Then, there is a size of byte in bits. The min-
imal size of instruction in bits is placed on the third line,
and the last one is the number of lines with patterns (one
pattern is on one line). The minimal size of instruction is
important, because of usage for different architectures. For
example, on the MIPS platform there have all instructions
same length 32 bits. This length forms minimal compare
unit for signature creation and also for later searching in
executables.

The example is shown in Figure 1, it is lightly edited for
paper purpose. Sequences of bits are replaced by [] blocks.
This pattern file is extracted from library for MIPS archi-
tecture, where all instructions have same size of 32 bits,
therefore the minimal length is 32 (the second line).

The first part of pattern is 256 chars, char is one of 0,
1, or ., where dot means a variable bit. These 256 chars
represent the first bits of module. If the module has less
than 256 bits, the missing bits are also represented by dots.
Then, there is a number of bytes used for calculation of
CRC code and the CRC code. This number depends on the
distance of the first byte with variable bit behind first 256
bits. Such a byte determines the end of code, which is used
for CRC calculation. If the module is smaller than 256 bits,
the CRC will be obviously 0000. We use CRC16 algorithm.
The size of module follows. Numbers are in hexadecimal
format.

Behind module size, there is a number of public sym-
bols of that module. For each public symbol there is its ad-
dress and name. There should be always at least one public
symbol. The same form is used for references, the differ-
ence is that there could be no reference, then there is just a
0 (the case of the last pattern in example). The references
are used for distinguishing of modules, which have same
other parts. The last part is [tail bits], which contains
the bits sequence after bits used for CRC code. This part
can be empty. Its size is not limited, so it is filled out with
all remaining bits. The content is same as it is for the first
part, it consists of 0, 1, or .. The tail bits are used if there is
unequal bit at same position for otherwise same modules.

R14kdP0a7q
8
32
6
[256 bits] 08 0397 0074 2 0000 printf 0040 _printf_r 1 0028 _vfprintf_r [tail bits]
[256 bits] 70 B422 0160 2 0000 putc 00B8 _putc_r 2 0090 __swbuf_r 0098 __sinit [tail bits]
[256 bits] 0C 05D8 00EC 1 0000 asprintf 3 0078 realloc 00AC malloc 00C0 strcpy [tail bits]
[256 bits] 1C 4487 009C 1 0000 bind 2 003C _errno 0060 sceNetInetBind [tail bits]
[256 bits] 0C 634C 0058 1 0000 closedir 3 0010 free 002C _set_errno 0034 _errno [tail bits]
[256 bits] 0C 5AC0 008C 1 0000 chdir 0 [tail bits]

Fig. 1 : A part of pattern file

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013 53

Sig14sd77x
8
32
7
[256b] | 1 N FF E60F 0B0C 2 0000 permute 016C getopt
[32b] [32b] [192b] | 1 N FF 904A 0150 1 0000 memcpy

[192b] | 1 N 64 D4BA 0084 1 0000 memmove
[192b] | 1 N B4 6347 00E0 1 0000 memset
[192b] | 1 N B4 6347 00D4 1 0000 stpncpy
[192b] | 2 T 64 706F 008C 27 1 1 0000 strcpy T 0090 35 0 1 0000 stpcpy

[32b] [192b] | 1 N 5C AD03 007C 1 0000 strcmp
[192b] | 2 R 00 0000 0074 0020 _svfiscanf 1 0000 iscanf 0020 _svfscanf 1 0000 scanf

Fig. 2 : A part of signature file

3.2. Signature files

The signature file is created from one or more pattern
files. The main reasons for this transformation are detec-
tion of conflicts and finding of common first bits. The con-
flict is a state, when two or more patterns have equal first
bits, CRC codes, references, and tail bits. Such patterns are
excluded from signature file into separate file, called ex-
ception file. This file is not further processed. It only stores
information about excluded patterns and the reason for the
exclusion.

The tool pat2sig is developed for this action. It loads
all input pattern files. It takes the smallest minimal instruc-
tion size as the compare unit size. In out example it is 32.
Now, the patterns are divided into groups. The first group
is derived from the first 32 bits of the first pattern. All other
patterns are tested if they have same first 32 bits, and if yes,
they are included into this group. This is done recursively
for all patterns until each pattern is in some group. There
could be only one pattern in the group if it has a unique first
32 bits. This process continues in the groups with at least
two patterns, there are compared next 32 bits to create sub-
groups. Dividing into groups is stopped when there is no
more first bits or each pattern is in own group or subgroup.

The next step is detection of collisions. Now, it is quite
simple step due to division of patterns into groups. If there
is more than one pattern in group, they are tested for dif-
ferences in CRC codes, references, or tail bits. If they can-
not be distinguished, they are moved out into exception file.
According to the way how the module can be distinguished,
there are three types of signature:

• N - normal type: the module is recognized by first
bits or CRC code, there is described exactly one mod-
ule.

• T - tail type: the modules are recognized by tail bit,
there can be two or more described modules.

• R - reference type: the modules are recognized by
different references, there can be two or more de-
scribed modules.

The better precision and performance of signature is
achieved by sorting of signatures before writing them into
output file. The idea is based on a fact that the signatures
with larger number of bytes included in CRC calculation

are more accurate, so they are written firstly. If the number
of such bytes is same, the second sort is done by the size of
module, because larger modules reduce more code, which
afterwards is not tested with another signatures.

Header of the signature file is formed by four lines.
The format is very similar to pattern file header. On the
first line, there is a string for recognizing the type of file
(Sig14sd77x). It is followed by the number of bits in byte,
the size of compare unit and the number of lines with sig-
natures. Header is followed by lines with signatures, where
on the single line there is at least one signature. There could
be more signature on one line only if tail or reference type
is used.

Division of patterns into groups is used to create tree-
like format, which saves a memory consumption of loaded
signatures, and also, it helps to get more efficient search. In
Figure 2, the module of function getopt has unique first
bits, so they are all written. Other modules have same 32
bits from beginning, so these bits are written only once. The
indentation ensures an inclusion of modules to same group.
We see that on the following 32 bits there is a difference in
module of function strcmp, which has listed own 32 bits,
and other modules have common 32 bits. All remaining
modules are different in the next 192 bits, so they are listed
separately.

The format of line is related to pattern format. Starting
bits are first, but they can be divided into groups as it was
described. Then, there is a separator |, its effect is only vi-
sual. The next number is count of described modules. The
following letter designates the type, the valid letters are N –
normal type, T – tail type, or R – reference type. For normal
type the count of modules has to be always 1. The next two
numbers are related to CRC and it is a number of used bytes
and CRC code. Then, there is the size of module in bytes.
The last part includes public symbols: their count, and for
each symbol there is its offset in module and name.

For the case of tail the count of described modules can
be 2 or more. The additional information about important
bit in tail bits is stored behind module size. There is the off-
set of that bit and its value. The part with public symbols
is the same. The description of next module is introduced
by letter T, it has same CRC code, so this is not written
again. There is only the size of this module, the different
bit information and listed public symbols.

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



54 Generic Detection and Annotations of the Statically Linked Code

2
%struct.IO_marker = type { %struct.IO_marker*, %struct.FILE*, i32 }
%struct.FILE = type { i32 , i8*, i8*, i8*, i8*, i8*, i8*, i8*, i8*, i8*, i8*, i8*,

%struct.FILE*, %struct.IO_marker*, i32 , i32 , i32 , i16 , i8 , [1 x i8],
8*, i64 , i8*, i8*, i8*, i8*, i32 , i32 , [40 x i8] }

9
fprintf i32 3 %struct.FILE* file , i8* buffer , ... # int fprintf (FILE *, const char *, ...)
printf i32 2 i8*, ... # int printf (const char *, ...)
remove i32 1 i8* path # int remove (const char *)
rename i32 2 i8* old_name , i8* new_name # int rename (const char *, const char *)
tmpfile %struct.FILE* tmp_file 0 # FILE * tmpfile ()
tmpnam i8* tmp_file_name 1 i8* # char * tmpnam (char *)
fclose i32 1 %struct.FILE* file # int fclose (FILE *)
fflush i32 1 %struct.FILE* file # int fflush (FILE *)
fopen %struct.FILE* file 2 i8* filename , i8* mode # FILE * fopen (const char *, const char *)

Fig. 3 : A preview of file with library type annotations

The reference type is similar to tail type, but instead of
tail bit position and value, we have there the position of ref-
erence and the referenced function. There is requirement
that used referenced function has to be also described by
signature file. We are able to evaluate the correctness of
detection only if referenced function is also detected and
recognized.

Fig. 4 : The process of signature file creation.

Process of the signature file creation is illustrated in Fig-
ure 4. With dash lines there is indicated an option that
more pattern files can be transformed in a single signature.
By this way we remove more collisions between patterns.
Also, it is practical to use on more libraries from single
compiler to cover the produced code of this compiler by the
single signature file.

4. TYPE ANNOTATIONS

Type annotations bring an additional data for recognized
functions in the statically linked code. The advantage of
separation is in possibility of its usage for functions, which
are known from imports of executable files. These func-
tions are linked dynamically from shared libraries (dll/so).
The file with type annotations is shown in Figure 3.

The base of file is generated from one or more C header
files and optional data can be added manually (names of ar-
guments and return values). The tool is implemented as a
plugin into the Clang compiler. The Clang is C front-end
for LLVM and it supports usage of plugins, which are able
to connect to various states of C file or header file process-
ing. The plugin is connected to a part, which creates an
abstract syntax tree. If the declaration of a new function
is finished, the plugin adds information for this function –
the number and types of arguments and a type of the re-
turn value. If some of type is a structure, it processes its
declaration and creates a separated type annotation for this
structure.

The file consists of two main parts – declarations of
structures and declarations of functions. The number of
declared structures is on the first line. Then, there is one
structure declaration on each line. In our example the
long declaration is divided into more lines to be able to
show it. This part is followed by the number specify-
ing the count of function declarations. And then, there is
one declaration for each line. If there is structure used
in another structure, the declaration has to be listed for
all of them. In %struct.FILE there is used a pointer to
%struct.IO_marker, so its declaration is also listed.

All the types are directly transformed into LLVM types.
The reason is usage in our decompiler, which has LLVM
framework as its middle-end and back-end. This trans-
formation is very straightforward due to usage of Clang.
Clang as LLVM front-end supports a conversion of all C
types into LLVM types. For example, int is converted into
i32, or char* into i8*. Information like modifier const
is dropped, because it is not applicable in decompilation.

The format for function declaration is quite simple. The
first string is name of the described function. The type of re-
turn value follows. Then, there is an optional string value,

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013 55

which represents suitable name for variable where the re-
turn value is stored. Then, there follow a number of ar-
guments, their types, and also optional suitable argument
names. Each type, alternatively pair of type and name, is
divided by a comma. Behind terminating symbol # there
is the original C declaration, which is used by decompiler
only for informative purposes.

Optional parts of annotations are an extension to ver-
sion in paper [1]. Their disadvantage is a requirement to
fill them by a hand. We are not able to get them fully auto-
matically from the header files, because for the return val-
ues there are not at all, and also arguments can be listed
only by the types. On the other hand, if there is a name
for the argument, we take it to the type annotations file.
If the author adds this extended information, the quality
of code generated from the decompiler is higher. Earlier,
for the call of function fopen, we generated the code sim-
ilar to this: var_8a9d = fopen("a.txt", arg_8a9b).
With the extended type annotations we produce: file =
fopen("a.txt", mode).

5. DETECTION BY MATCHING SIGNATURES

There is a lot of different libraries, which results into a
lot of signatures. Decompiler has to choose some subset of
them to be applied. It is smart to sort signatures by various
conditions, at least by an architecture and object file format.
In the better case also by particular compiler or compiler
version. This information could be included directly in the
signatures, but that was rejected, because we want to avoid
loading of each signature to make a decision to use it or not.

As the part of decompiler there is a special tool for rec-
ognizing the architecture of executable, its file format, used
compiler or packer. If the executable is packed, there is no
need to use signatures, because the code is changed in many
ways and this prevents finding of some library code. This
tool helps the decompiler to set conditions for signature se-
lection. For example if an executable is for x86 architecture
and it is PE format, compiled by Delphi, we take only sig-
natures for these specific parameters. It saves a time and
resources due to disposal a lot of signatures for other com-
pilers as gcc or Microsoft Visual C.

Decompiler loads all selected signatures and sorts them
by the same strategy as it is applied on signature file before
writing into the file. After load of an executable, the search
is started. The search is performed only on the bytes from
the code sections, because it is wasteful to look on data or
other sections. The decompiler determines the size of mini-
mal compare unit from the loaded signatures. Then, it reads
and compares parts of code with this size. The tree-like
structure is fully exploited, because we make only a single
comparison between code and signatures, which have com-
mon starting bits.

If there is a hit on the first bits and CRC checksum, there
is a control of tail bit or reference if needed. Tail bit is
checked by a value on position given by the number from
signature. The check of reference is more complicated. The
instruction on the address of reference has to be decoded. It
is checked that it contains a jump. The target address of
this jump has to be calculated for the resolution if it is the

address of required referenced function. If everything is
correctly compared, the code is marked as statically linked
code. Such a code is no more searched with other signatures
and the decompiler stores internally the addresses and the
names of functions in this code. As a last step the decom-
piler pairs the recognized functions with type annotations.
This is done simply by the matching names.

6. EXPERIMENTAL RESULTS

For tests, we take libc.a library for various ar-
chitectures. There are small differences between com-
pilers for each architecture. We use these compilers:
mips/elf - psp-gcc 4.3.5, pic32/elf - xc32-gcc
4.5.2, ppc/elf - powerpc-apm-linux-gnu-gcc
4.5.1, arm/elf - arm-elf-gcc 4.4.0, x86/elf
- i686-pc-linux-gnu-gcc 4.7.2, and x86/pe -
i686-pc-mingw32-gcc 4.8.1. We count the number
of modules for each library. Then, we create patterns, and
note a number of created patterns. The difference between
module and patterns count is created by too small modules,
which are ignored by the coff2pat tool. After that we
convert patterns into signatures by pat2sig. There is the
difference again. This one is caused by collisions between
patterns, which are moved into exception file. The results
are shown in Table 1. The ratio column shows the con-
version rate from patterns to signatures. The ratio 100%
would mean no collision in creation of signatures. In real
world, that is possible only for libraries with small number
of modules. If we compare the current results with previ-
ous results, which were published in the paper [1], we have
higher ratio. This positive effect is given by addition of the
reference type of signatures. In another words, extended
solution produces smaller amount of collisions.

Modules Patterns Signatures Ratio
mips/elf 588 541 529 97,8%
pic32/elf 1539 1215 1092 89,9%
ppc/elf 1483 1457 1402 96,2%
arm/elf 481 440 436 99,1%
x86/elf 1508 1423 1378 96,8%
x86/pe 1179 1021 917 89,8%

Table 1: A comparison between libc.a from different
architectures.

Next test is aimed on an impact of signature usage dur-
ing decompiler runtime. We use simple Hello world pro-
gram. The test shows how the signatures save a time by
elimination of decompiled code. The results are presented
in Table 2. All times are in seconds. The column Without
sig. shows the running time of decompiler, when no signa-
tures are used. The column With sig. contains the times,
when we use created signatures for libc.a. The time of
searching for statically linked code is in the last column
Search. This time is a subset of time from With signatures.

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



56 Generic Detection and Annotations of the Statically Linked Code

Without sig. With sig. Search
mips/elf 3,38 0,67 0,21
pic32/elf 0,47 0,25 0,04
ppc/elf 202,82 61,82 0,25
arm/elf 9,91 7,26 0,31
x86/elf 14,53 3,12 0,27
x86/pe 11,73 2,28 0,18

Table 2: A running time of the decompiler.

The time for architecture ppc is significantly longer
than other times. This is caused by some special features in
architecture description and it is not related to signatures.
The given tests prove the importance of signature usage in
decompilation. The time with signatures is decreased in
comparison to time without an application of signatures.

7. CONCLUSION

The improved framework for the generic recognition of
statically linked code is presented. The solution is generic
and it can be applied for various architectures and object
file formats. The new important feature is the support of
the references. This feature adds more complex connection
with decompiler, because it requires decoding of instruc-
tion. The tests are performed on library from several differ-
ent architectures and the reached results are excellent. The
searching is fast enough, therefore it does not slow down
the run of decompiler. And, moreover, the recognized code
is not decompiled as other user code, what means less time
for analysis of decompiler output.

For the future research, we want to enhance generation
of type annotations. Now, there is a part for names of ar-
guments and return values that have to be added manually.
We see a possibility to develop a tool, which will be able to
parse and extend base type annotations from Clang plugin.
Such a tool should parse C files to be able to find out suit-
able names for them and finally update type annotations.

ACKNOWLEDGEMENT

This work was supported by the project FIT-S-14-
2299 Research and application of advanced methods
in ICT, and by the European Regional Development
Fund in the IT4Innovations Centre of Excellence project
(CZ.1.05/1.1.00/02.0070).

REFERENCES

[1] ĎURFINA, L. – KOLÁŘ, D.: “Generic detection
of the statically linked code,” in Proceedings of the
Twelfth International Conference on Informatics (IN-
FORMATICS 2013), Spišská Nová Ves, 2013, pp.
157–161, ISBN 978-80-8143-127-2

[2] Lissom, http://www.fit.vutbr.cz/research/
groups/lissom/, 2013.

[3] ĎURFINA, L. – KŘOUSTEK, J. – ZEMEK, P. –
KOLÁŘ, D. – HRUŠKA, T. – MASAŘÍK, K. –

MEDUNA, A.: “Design of a retargetable decompiler
for a static platform-independent malware analysis,”
International Journal of Security and Its Applications
(IJSIA), vol. 5, no. 4, pp. 91–106, 2011.

[4] The LLVM Compiler Infrastructure, http://llvm.
org/, 2013.

[5] The dcc Decompiler, http://itee.uq.edu.au/
~cristina/dcc.html, 2012.

[6] CIFUENTES, C.: “Reverse compilation techniques,”
Ph.D. dissertation, School of Computing Science,
Queensland University of Technology, Brisbane,
QLD, AU, 1994.

[7] Boomerang, http://boomerang.sourceforge.
net/, 2012.

[8] Reverse Engineering Compiler (REC), http://www.
backerstreet.com/rec/rec.htm, 2011.

[9] Hex-Rays Decompiler, www.hex-rays.com/
products/decompiler/, 2013.

[10] Fast Library Identification and Recognition Tech-
nology (FLIRT), http://www.hex-rays.com/
idapro/flirt.htm, 2012.

[11] KŘOUSTEK, J. – MATULA, P. – ĎURFINA, L.:
“Generic plugin-based convertor of executable file
formats and its usage in retargetable decompilation,”
in 6th International Scientific and Technical Confer-
ence (CSIT’11). Ministry of Education, Science,
Youth and Sports of Ukraine, Lviv Polytechnic
National University, Institute of Computer Science
and Information Technologies, 2011, pp. 127–130.

Received December 2, 2013, accepted December 28, 2013

BIOGRAPHY

Lukáš Ďurfina was born on 19. 11. 1986. In 2010 he grad-
uated (Ing.) at the Faculty of Information Technology, Brno
University of Technology (FIT BUT). He is PhD student
and his scientific research is focusing on reverse engineer-
ing.

Dušan Kolář was born on 3. 1. 1971. In 1994 he graduated
(Ing.) with distinction at the Faculty of Electrical Engi-
neering and Computer Science at Brno University of Tech-
nology (FEECS BUT). He defended his PhD in the field
of cybernetics and computer science in 1998; his thesis title
was “Functional Technology for Object-Oriented Modeling
and Databases”. Since 1998 he worked as assistant profes-
sor on FEECS BUT, and since 2005 he is working as asso-
ciate professor at Department of Information Technology at
FIT BUT. His scientific research is focusing on formal lan-
guages, automata, compilers, programming languages, and
advanved database systems.

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

http://www.fit.vutbr.cz/research/groups/lissom/
http://www.fit.vutbr.cz/research/groups/lissom/
http://llvm.org/
http://llvm.org/
http://itee.uq.edu.au/~cristina/dcc.html
http://itee.uq.edu.au/~cristina/dcc.html
http://boomerang.sourceforge.net/
http://boomerang.sourceforge.net/
http://www.backerstreet.com/rec/rec.htm
http://www.backerstreet.com/rec/rec.htm
www.hex-rays.com/products/decompiler/
www.hex-rays.com/products/decompiler/
http://www.hex-rays.com/idapro/flirt.htm
http://www.hex-rays.com/idapro/flirt.htm

