
Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013, 45–50, DOI: 10.15546/aeei-2013-0048 45

GENERATING TYPE-SAFE SCRIPT LANGUAGES FROM FUNCTIONAL APIS

Gábor Horváth, Gábor Kozár, Zalán Szűgyi
Department of Programming Languages and Compilers, Faculty of Informatics, Eötvös Loránd University, Pázmány Péter sétány

1/C., 1117 Budapest, Hungary, e-mail: xazax.hun, kozargabor, szugyi.zalan@gmail.com

ABSTRACT
It is often useful to expose an Application Programming Interface (API) as a scripting language when developing complex applica-

tions, especially when many teams are working on the same product. This allows for a solid separation of concerns and enables rapid
development using the scripting language. However, to expose an API might involve huge amount of effort and a common problem with
these scripting languages is their type-unsafe nature which can easily result in issues that are hard to debug.

Our solution is to generate an interpreter from a functional API utilizing C++ meta-programming techniques. The generated script
language is type safe. Using our libraries it takes minimal effort to generate an interpreter from such an API. We also present a case
study with a widely used EDSL. This method also turned out to be a more general solution to several other problems, including providing
type-safe auto-completion support for the interpreted language or implementing a plug-in system that enables fast prototyping while
remaining type-safe.

Keywords: EDSL, generative programming, metaprogramming, C++, wrapper, functional

1. INTRODUCTION

Compiled languages provide us with several advan-
tages. These advantages include superior performance and
static guarantees. However compilation can take a signifi-
cant amount of time which degrades the productivity of the
developers. Moreover, once the compilation is finished one
needs to stop the old instance of the software and start a
new one to utilize the new version. Sometimes initializing
a software can be even more time consuming than the com-
pilation. One possible solution would be to use dynamic
libraries, and reload them on demand. However, this solu-
tion is platform-dependent and compilation still takes time.

Interpreted languages are usually not type-checked, and
are therefore more error prone. On the other hand, a fast
and iterative trial-and-error method of development works
fairly well in an interpreted environment. Due to the lack of
in-depth static analysis of the code, the vast majority of the
errors are only detected during runtime. These languages
are not capable of systems programming, in part because of
their poor performance compared to compiled languages.
However, since most of the platform-dependent details are
usually abstracted away by the interpreter, such scripting
languages tend to be portable.

It is not unusual to implement the performance critical
part of a software in a compiled language and expose an
Application Programming Interface (API) to an interpreted
language. Unfortunately, this involves a lot of work, and
the scripts require huge amounts of testing, because code
on unexplored code paths is not verified by the interpreter.
This paper presents a solution to automate the generation of
an interpreter for a type-safe scripting language using the
type information of the hosting compiled language. This
method can save significant amount of time and effort in
programming as well as debugging (due to type-checking).

First we present the problem and discuss the general
methods that we are using to cope with it. Then we propose
a possible implementation to solve the problem. After that
there is a case study about our current solution, followed
by discussing related works. At the end we summarize the

paper.

2. GENERAL METHOD

An API or an Embedded Domain Specific Language
(EDSL) in a statically typed language provides the user
with some restrictions how it can be used thanks to the
type system. These restrictions prevent some misuses of
the API. When an API is exposed to a scripting language
that is dynamically typed, the restrictions enforced by the
type system are no longer protecting the user from such po-
tential errors. One possible solution would be to modify the
grammar of the scripting language to have similar restric-
tions as to what the type system provides. However, most
of the script languages today do not give us the flexibility
to modify their grammar. Another solution would be to use
a statically typed script language and expose all of the type
information. This interpreter of this language can be gen-
erated from the source code and the language tends to be
domain specific.

Fig. 1 General method

Both solutions require redundant efforts from the de-
velopers. Once the type information is available in the

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

46 Generating Type-Safe Script Languages from Functional APIs

host language, why should we spend time to duplicate it
by describing those restrictions to the script language’s in-
terpreter? The main source of the problem is not the ini-
tial implementation, but the constant overhead of that every
time the API changes, we have to update the bindings to
the scripting language as well. This is a tedious and also
error-prone process.

We created a metaprogram library which is able to use
the limited capabilities of C++’s compile-time type intro-
spection to derive grammar rules from the type informa-
tion of the functions and functors making up the API 1. If
we use this library to expose the API to a special scripting
language, the cost of maintenance for the bindings will be
significantly reduced. The library needs the enumeration
of the functions and functors that are the part of the API.
When a new function is introduced, or an old one is deleted,
only this list has to be maintained. However, when the type
signature of a function changes, no changes are required.
Also, if a new conversion operator is introduced between
two types, the library will still automatically generate the
correct grammar.

It is also better for the user of the API to use such an
interpreter, because the generated grammar makes some
classes of errors impossible. For this reason, the user does
not need to write tests for those kind of errors, saving con-
siderable amount of time and effort.

3. IMPLEMENTATION

The introduced technique is implemented in C++ [7]
and utilizes a large amount of template metaprogramming.
Templates in C++ provide us with a Turing-complete lan-
guage [9] that is evaluated at compile time. It is also possi-
ble to generate whole software components - such as inter-
preters - solely using metaprograms. This is called gener-
ative programming [8]. However, the proposed solution is
not unique to C++; it is possible to implement it in any lan-
guage that has similar support for metaprogramming, such
as D [17]. An alternative approach to template metapro-
gramming is dynamic introspection (reflection), which al-
lows a similar technique to be used in languages such as
Java.

The basic idea is that the type information of an API
is available to the compiler. Pattern matching with tem-
plate specializations and relying on the Substitution Fail-
ure Is Not An Error (SFINAE) [10] principle of C++ al-
low us to encode type convertibility information in a matrix
of boolean values that are known compile-time constants.
These values will then determine how the API is allowed to
be used, as the semantic analyzer of the scripting language
is generated by a metaprogram based on those values. The
parser of this language is not generated by a metaprogram
in this solution, however it is possible to generate parsers in
compile time [6] [15].

Our solution is able to cope with both functions and
functors (objects behaving as functions), however creating
instances of callable objects can be non-trivial. However,
functors are advantageous for describing exposable APIs
because they can be part of a class hierarchy, allowing us
to take advantage of runtime polymorphism. A frequently

used method to generate EDSLs in C++ is to use the gen-
eralized command pattern [1] with functors. Such EDSLs
can be easily exposed to an interpreter using our library.
Some APIs require relatively small amount of additional
work. Potential source of problems are functions with sev-
eral overloads. Those functions have to be disambiguated
by static casts.

3.1. Strings in metaprograms

The first challenge is one that may not be immediately
obvious: string handling. This is very much non-trivial in
metaprograms, primarily due to the fact that (for techni-
cal reasons) a string literal is not (and cannot be) a valid
template parameter. The source of the problem is that the
semantic analyzer will work on function names - which are
strings. The method for effectively work with compile-time
strings was developed by Ábel Sinkovics [14]. We have
slightly altered his approach to make it easier to create run-
time strings from compile-time strings. Sinkovics’ main
idea was to create a macro, a metaprogram and a constexpr
function to reduce a character string literal to a list of char-
acters. His method generates some trailing zeros which can
also be easily removed during compile-time.

d e f i n e DO(z , n , s) a t (s , n) ,

d e f i n e S (s) \
BOOST PP REPEAT (STRING MAX LENGTH , \

DO, s)

t e m p l a t e < i n t N>
c o n s t e x p r c h a r

a t (c h a r c o n s t (& s) [N] , i n t i)
{

r e t u r n i >= N ? ’\0 ’ : s [i] ;
}

He created a Boost MPL [11] vector from the charac-
ters, but we stored the characters in a template parameter
pack instead. This made it possible to create a runtime
string easily by utilizing the C++11 uniform initialization
syntax [7]. The MetaStringImpl class is responsible for
removing the trailing zeros, but its implementation is not
relevant to this paper. The GetRuntimeStr method of the
Accumulator class shows how easy it is to create runtime
strings from this representation.

t e m p l a t e <c h a r . . . cs>
s t r u c t Accumula to r {

s t a t i c s t d : : s t r i n g Ge tRun t imeS t r () {
r e t u r n { cs . . . } ;

}
} ;

t e m p l a t e <typename T , c h a r . . . >
s t r u c t M e t a S t r i n g I m p l ;

t e m p l a t e <c h a r . . . cs>
s t r u c t M e t a S t r i n g {

t y p e d e f typename
M et a S t r i ng I mp l<

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013 47

Accumulator <>,
c s . . . > : : r e s u l t s t r ;

s t a t i c s t d : : s t r i n g Ge tRun t imeS t r () {
r e t u r n s t r : : G e t R u n t i m e S t r i n g () ;

}
} ;

3.2. Storing type information

The next obstacle is how to provide all the necessary
information for the automata (the semantic analyzer) in a
convenient way. We used preprocessor macros to make it
easy for the user to register functions - this is unavoidable,
given the lack of introspection in C++. The information in-
volves the type signature of the callable object, the name of
the function to identify it, and the type of an object to be
instantiated. We use tuples to store all the necessary type
information.

t e m p l a t e<typename T , T∗ p t r>
s t r u c t F u n c t i o n P o i n t e r ;

t e m p l a t e<typename Ret ,
typename . . . Args ,
Ret (∗ f) (Args . . .) >

s t r u c t F u n c t i o n P o i n t e r <Ret (Args . . .) ,
f> {

Ret o p e r a t o r () (Args . . . a r g s) {
r e t u r n f (a r g s . . .) ;

}
} ;

d e f i n e FUNCTION(x) \
s t d : : t u p l e <d e c l t y p e (x) , \

F u n c t i o n P o i n t e r <d e c l t y p e (x) , &x> ,\
MetaS t r i ng< S (#x)>>

d e f i n e FUNCTOR(x) \
s t d : : t u p l e < \

d e c l t y p e (&x : : o p e r a t o r ()) , x , \
MetaS t r i ng< S (#x)>>

Template metaprograms primarily work with types. In
case of functors, it is easy to supply all of the information
- however, for functions, it is important to box the function
pointer into a functor type. The FunctionPointer class
does exactly that, making it easy to work with function
pointers in our metaprograms. The automata is generated
from a list of those tuples. In fact, if we want to instantiate
the boxed function pointers, we will face another issue: the
C++ functions can not be overloaded on return types. To
solve this issue we added a common base class to all of the
function pointer boxes. The interface of the instantiation
function will return a pointer to the common base, which
points to the allocated derived box on the heap.

3.3. Generating the analyzer

What the automata actually does is generating several
matrices: one for each possible argument. Currently, the

number of matrices is a pre-configured constant and it is
equal to the maximum arity (number of parameters) sup-
ported by the automata, but it is possible to deduce this
number from the input and it is a target for future devel-
opment.

Mi =


A B · · · · · ·

A true f alse · · · true
B f alse f alse · · · f alse
...

...
...

. . .
...

... true true · · · true


Each matrix is indexed with function names. The nodes

of the syntax tree which we want to analyze are represent-
ing function compositions such as A(...,B(...), ...), where
the result of B is applied to the ith parameter of function
A. Let’s call the ith matrix Mi. The node of the syntax
tree representing the call above is valid if and only if the
value of Mi[A,B] is true. This implies that Mi[A,B] holds
the information of whether the return type of B is implicitly
convertible to the type of the ith formal parameter of A. To
make it work, the metaprogram have to generate all the ma-
trices at compile time, and generate the code to lookup the
values in those matrices. Right now the lookup in the ma-
trix involves an O(N2) complex function call chain where
N is the number of functions in the API, which can result
in stack overflow in moderately sized APIs - however, it is
possible to reduce it to O(1) long call chain if we use the
information to build a hash maps instead of generating a
recursive function chain.

To show how easy it is to work with this metaprogram,
let’s study a trivial example. Suppose we have the following
tiny API with a dummy implementation:

s t r u c t A {} ;
s t r u c t B : A {} ;
s t r u c t C {} ;
s t r u c t E : B {} ;

A∗ func1 (A∗) { r e t u r n 0 ; }
B∗ func2 (A∗ , B∗) { r e t u r n 0 ; }
C∗ func3 (A∗) { r e t u r n 0 ; }

s t r u c t D
{

E∗ o p e r a t o r () (A∗) { r e t u r n 0 ; }
} ;

To create the automata we only need to enumerate the
functions of our API with the corresponding macros:

t y p e d e f typename Automata<
FUNCTION(func1) ,
FUNCTION(func2) ,
FUNCTION(func3) ,
FUNCTOR(D)

> : : r e s u l t GA;

s t d : : s e t<s t d : : s t r i n g >
e x p e c t e d {” func1 ” , ” func2 ” , ”D”} ;

a u t o tmp =

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

48 Generating Type-Safe Script Languages from Functional APIs

GA : : GetComposables (” func1 ” , 0) ;

s t d : : s e t<s t d : : s t r i n g >
r e s u l t (tmp . b e g i n () , tmp . end ()) ;

EXPECT EQ (expec t ed , r e s u l t) ;

Now, if we want to, for example, know which func-
tions can appear as the first argument of func1, we can use
the GetComposables function of the generated automata.
Here, because casting a pointer to a derived class to a base
class pointer is a valid implicit conversion, the functions
returning pointer to A or to a descendant of A are all valid
functions. Those are func1, func2 and the functor D in this
example.

The template parameters of Automata are in fact tuples
of three components describing a function: the type signa-
ture of the function, the object to instantiate, and the name
of the function. Automata checks all the possible compo-
sitions and stores whether it is valid for all of the possible
parameters and generates the lookup code. Unfortunately
due to the verbosity and the noisiness of meta-programming
the implementation of the lookup code generation is more
than 200 lines of code. The lookup code operates solely
on runtime strings. The current implementation involves
a relatively time consuming lookup, but in the future it is
possible to generate code that initializes a hash table for
lookup instead of generating the lookup code directly. This
future improvement will improve the performance of the
interpreted scripting languages significantly.

4. CASE STUDY

We developed a tool, that executes queries on a C++
codebase. The tool is based on an EDSL that is already
available in Clang.

Clang [4] is a modern C++ compiler, consisting of a
set of a libraries each responsible for a separate task of
the compiler. It was designed for tools to build on top of
its libraries. One of these libraries provides an embedded
domain-specific language [2] [3] [5] called AST matchers
for expressing patterns in the abstract syntax tree of the sub-
ject code. It basically exposes a number of predicate func-
tions (and functors) that can be composed together to form
a pattern.

C++ is one of the most complex languages in existence.
An AST built from C++ source code naturally has to reflect
this complexity. This poses a problem for tool developers
who want to use the matcher library: forming correct pat-
terns is very much non-trivial. This often means that de-
veloper has to adapt a trial-and-error work flow, as he is
trying to piece together a correct AST matcher expression.
This is due to the fact that he has no easy way of testing the
matcher, short of re-compiling the tool, re-parsing the sub-
ject code, and running the matchers against the built AST.
This overall makes for an extremely inefficient work-flow.

To solve this, we are building a Read Eval Print Loop
(REPL) interface that provides instant feedback [12]. The
underlying engine is responsible for parsing the provided
matcher expression into a primitive AST, and translating
it into a matcher object. It is of course absolutely critical

to ensure semantic correctness. It is also imperative that
adding support for new AST matchers is very easy, as Clang
is rapidly developing.

The tool we developed relied on an interpreted query
language to run queries against C++ code bases - more
specifically, their Abstract Syntax Tree (AST). The gen-
eral design of the tool is shown on Figure 2. The input
of the tool is an AST matcher expression as query string,
that is, an expression describing a pattern to be searched
for in the target AST, much like how regular expressions
describe patterns over strings (text). The front-end is re-
sponsible for parsing the query, resulting in a syntax tree
of the query expression itself. This task is fairly trivial, as
the matcher expressions consist of only function calls and
function composition, besides constant literals. Any lex-
ical or syntactical errors are emitted during parsing. The
next stage is semantic analysis: type-checking the function
compositions. The verifier is generated by a metaprogram,
based on the type information available to the compiler.
This will detect type mismatches while building the com-
piled matcher expression from the query’s syntax tree. The
created matcher expression will be executed by the execu-
tion module, matching the pattern defined by the expression
against the AST of the target C++ code base.

The module responsible for semantic analysis can be
also used to provide auto-completion, in order to help the
users to write such matcher expressions by listing all the
possible type-safe subexpressions while editing a query.
The topic of the present paper is the design and implemen-
tation of the metaprogram which generates this module.

5. RELATED WORK

There are several alternatives such as Simplified Wrap-
per and Interface Generator (SWIG) [16] which is an exter-
nal tool that can generate such glue code for many existing
scripting and compiled languages. However, the supported
scripting languages did not meet our requirements. One
of the problems is that it does not support statically typed
scripting languages. The other issue is that it does not han-
dle EDSLs written in C++ well.

Comprehending DSLs is not always an easy task [12].
However if a REPL is available for the developers to exper-
iment with, it makes it much easier for new developers to
explore and understand the DSL.

Using solely C++ for generating bindings for an inter-
preter is not a unique idea. The Boost.Python [18] library is
taking this approach. However it is only limited to Python
which was not suitable for our purposes.

6. SUMMARY

Generic programming is a very popular paradigm for
solving various tasks. There are also some automated tools
to generate bindings to a language. However, as it turned
out, the C++ programming language is capable of generat-
ing type-safe bindings to a language without any external
tools. This shows off the power of compile-time compu-
tations and the richness of information provided by static
typing. We created a library that makes it straightforward

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013 49

for the users to expose an EDSL or an API to a scripting
language and significantly reduce the maintenance cost of
the created bindings. The upcoming C++17 standard is ex-
pected to introduce compile-time reflection to the language.
This will help us to write significantly more efficient code
and greatly reduce the size of our code base. Moreover, it

will open up new possibilities, such as automatically ex-
posing whole classes to an object oriented type-safe script-
ing language. There are still several tasks waiting for us to
achieve a completely robust solution, but the results so far
look promising.

Fig. 2 Design of the Query Program

REFERENCES

[1] ALEXANDRESCU, A.: Modern C++ Design:
Generic Programming and Design Patterns Applied,
Addison Wesley (2001).

[2] FOWLER, M.: Domain-Specific Languages,
Addison-Wesley, 2010.

[3] HUDAK, P.: Building domain-specific embedded lan-
guages, ACM Comput. Surv. 28, 4 (Dec), 1996.

[4] LATTNER, C.: LLVM and Clang: Next Generation
Compiler Technology, The BSD Conference, 2008.

[5] MERNIK,M. – HEERING, J. – SLOAN, A.: When
and how to develop domain-specific languages, ACM
Computing Surveys, 37(4) pp. 316 – 344, 2005.

[6] PORKOLÁB, Z. – SINKOVICS, Á.: Domain-specific
Language Integration with Compile-time Parser Gen-
erator Library, In Proc. 9th international conference
on Generative programming and component engineer-
ing (GPCE 2010). ACM, October 2010, pp. 137-146.

[7] STROUSTRUP, B.: The C++ Programming Lan-
guage
Addison-Wesley Publishing Company, fourth edition,
2013.

[8] CZARNECKI, K. – EISENECKER, U. W.: Genera-
tive Programming, Addison-Wesley, 2000.

[9] VELDHUIZEN, T. L.: C++ templates are Turing
complete, Technical report, Indiana University Com-
puter Science, 2003.

[10] VANDERVOORDE, D. – JOSUTTIS, N. M.: C++
Templates: The Complete Guide, Addison-Wesley
Professional, 2002.

[11] ABRAHAMS, D. – GURTOVOY, A.: C++ Template
Metaprogramming Concepts, Tools, and Techniques
from Boost and Beyons Pearson Education, Inc., 2005.

[12] VARANDA, M. J. – MERNIK. M. – Da CRUZ, D.
– HENRIQUES, P. R.: Program comprehension for
domain-specific languages, Comput. Sci. Inf. Syst.,
Dec. 2008, vol. 5, no. 2, pp. 1–17.

[13] Clang AST matcher library
http://clang.llvm.org/docs/

LibASTMatchers.html

(11. June 2013).

[14] SINKOVICS, Á. – ABRAHAMS, D.: Using strings
in C++ template metaprograms
http://cpp-next.com/archive/2012/10/using

-strings-in-c-template-metaprograms/

(02. June 2013).

[15] Boost Spirit, a compile time parser generator
http://boost-spirit.com/home/about-2/

(08. January 2014).

[16] BEAZLEY, D. M.: SWIG: an easy to use tool for in-
tegrating scripting languages with C and C++

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

50 Generating Type-Safe Script Languages from Functional APIs

In Proc. 4th conference on USENIX Tcl/Tk Work-
shop, 1996 - Volume 4, pp. 15-15.

[17] ALEXANDRESCU, A.: The D Programming Lan-
guage
Addison-Wesley Publishing Company, 2010.

[18] ABRAHAMS, D. – GROSSE-KUNSTLEVE, R. W.:
Building hybrid systems with Boost.Python, C/C++
Users J. 21, 2003.

Received November 6, 2013, accepted December 22, 2013

BIOGRAPHY

Gábor Horváth was born on 26. 08. 1991. In 2011 he
started the BSc in Computer Science at Eötvös Loránd
University in Budapest. In 2012 he worked for Graphisoft
on a software for energy performance analysis of buildings.
Since 2013 he is a teaching assistant at the department of
Programming Languages and Compilers of the Faculty of

Informatics and working for Ericsson on a static analysis
research project.

Gábor Kozár was born on 20. 02. 1992. In 2011 he started
the BSc in Computer Science at Eötvös Loránd University
in Budapest. In 2013 he worked for Ericsson on a static
analysis research project, while working as a teaching as-
sistant at the department of Programming Languages and
Compilers of the Faculty of Informatics. He’s spending
the 2013/2014 spring term in Stockholm on a professional
internship at Ericsson, developing code coverage analysis
tools.

Zalán Szűgyi was born on 11. 02. 1980. In 2007 he gradu-
ated (MSc) at the department of Programming Languages
and Compilers of the Faculty of Informatics at Eötvös
Loránd University in Budapest. He is working on his PhD
in the field of programming languages, C++. Since 2010 he
is working assistant lecturer at department of Programming
Languages and Compilers.

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

