
20 Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013, 20–25, DOI: 10.15546/aeei-2013-0044

A MOBILE BROWSER PROTOTYPE FOR SEMANTIC INFORMATION SYSTEMS

Gergő GOMBOS∗, Tamás MATUSZKA∗∗, Balázs PINCZEL∗, Gábor RÁCZ∗, Attila KISS∗, Tamás GAIZER∗∗∗
∗Department of Information Systems, Faculty of Informatics, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest,

Hungary, e-mail: ggombos, tomintt, vic, gabee33, kiss@inf.elte.hu
∗∗Inter-University Centre for Telecommunications and Informatics, Debrecen, Hungary

∗∗∗Régens Zrt, Budapest, Hungary, e-mail: gaizer.tamas@regens.hu

ABSTRACT
Nowadays, companies have to handle large amounts of data every day (e.g. employee data, reports, statements). These data are

usually unstructured or semi-structured; they do not have a consistent format, since they come from various sources. As a solution, the
Semantic Web provides a common data format, which helps integrate the heterogeneous data. In the industry, in order to be efficient
and to remain competitive, it is crucial to have quick, easy, and reliable access to your data from anywhere. In this paper, we introduce
a client-server system, which enables browsing of semantic data with smartphones and tablets running Android operating system. The
users can access their data using predefined views. These views determine which parts of the data a user can see, and how to present
them in the client application. Each user can have different access privileges to different views, so each employee can have a level of
access suitable to his status.

Keywords: Semantic Web, Ontology, Mobile Application, ERP System

1. INTRODUCTION

During their operation, the companies have to manage a
large number of documents, which are usually plain texts,
CVs, project reports, websites, e-mails, feeds, blog posts,
geographic data, etc. In addition, we can access more and
more public knowledge bases on the Internet, for exam-
ple, encyclopedias, books, dictionaries, databases in field of
government, touristic, multimedia content and social net-
works. Furthermore, there are numerous databases which
contain theoretical and experimental results of various sci-
entific experiments in the field of computer science, biol-
ogy, chemistry, etc. There is a quite complex collection
of these kinds of data maintained by the Linked Data Com-
munity [3]. This collection contains datasets and ontologies
which are at least 1000 lines in length, and which contain
links to each other. We could get relevant answers from
some databases with the help of search engines using well-
defined questions. However, from the perspective of com-
panies, it means much more potential advantages if they can
integrate their structured and unstructured data, and they
are capable to extract the information from textual contents.
The Semantic Web [2] provides a standardized data model
and a corresponding query language for this purpose. With
these technologies, it is possible to integrate and query data
which come from various sources in a standard way. Be-
cause of these features, the industrial interest is increasing
more and more.

In this paper, we present a system we designed and im-
plemented, which is able to access, filter and display se-
mantic datasets. The system uses a client-server architec-
ture, where the clients can be smartphones, tablets and other
devices which are running Android operating system. This
is an important feature for the companies, because it is cru-
cial to have quick, easy, and reliable access to their data
from anywhere in order to be efficient and to remain com-
petitive. Furthermore, the system is capable of managing
multiple users and controlling which parts of the data are
accessible for a given user, and how to format them.

The structure of the paper is as follows. In Section

2, we outline the preliminary definitions. Thereafter, we
present the architecture of the system in Section 3. In Sec-
tion 4, we describe the main functions of the system in
details. Then, we compare our solution with some sim-
ilar applications in Section 5. After that, we give two
industrial-like examples in Section 6 to demonstrate the
usability of our application. Finally, we summarize our ex-
periences with the system in Section 7.

2. PRELIMINARIES

As we mentioned in the introduction, the Semantic Web
[2] provides various techniques to manage the data avail-
able on the Internet. This section gives insight into the ba-
sic concepts of Semantic Web that are necessary for under-
standing what our system is capable of and how it works.
The main technologies that are used in our system are the
following: Resource Description Framework (RDF), RDF
Schema (RDFS), SPARQL query language, Web Ontology
Language (OWL). In the formal discussion we follow the
concepts and notations introduced in [11].

The Resource Description Framework is a description
language, where the information is represented by RDF
triples. Informally an RDF triple consists of a subject, a
predicate, and an object; or alternatively it consists of an
entity, a property, and the value of that property of the de-
scribed entity. This representation form is similar to natu-
ral language sentences. For example the sentence ’Eötvös
Loránd University is located in Budapest.’ can be trans-
lated into the triple (Eötvös Loránd University, location,
Budapest). Three kinds of terms are distinguished: IRIs
represent entities (e.g. http://dbpedia.org/resource/ELTE)
or relations (e.g. http://dbpedia.org/ontology/location); lit-
erals can only occur as value of a property; blank nodes
are the terms that do not represent real world entities, they
just help to construct complex values, for example, mail ad-
dresses which consist of multiple parts such as postal code,
city, street and number. Below is the formal definition of
RDF triples (Definition 2.1).

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013 21

Definition 2.1. Let I, B, and L (IRIs, Blank Nodes, Lit-
erals) be pairwise disjoint sets. An RDF triple is a
(v1,v2,v3) ∈ (I ∪B)× I× (I ∪B∪L), where v1 is the sub-
ject, v2 is the predicate and v3 is the object. A finite set of
RDF triples is called an RDF graph or RDF dataset.

The RDF Schema is a data-modeling vocabulary built
on the top of RDF for defining concepts, properties and
constraints which are essential for organizing the knowl-
edge represented by triples. The Web Ontology Language
also enables us to define concept and property hierarchies,
however, it is a computational logic-based language. There-
fore logical constraints and rules can be expressed in order
to verify the consistency of that knowledge or to make im-
plicit knowledge explicit. The formal definition of an on-
tology is presented in Definition 2.2, based on [17].

Definition 2.2. A structure O := (C,≤C,P,σ) is an ontol-
ogy, where C and P are two disjoint sets. The elements of C
and P are called classes and properties, respectively. A par-
tial order ≤C on C is called class hierarchy and a function
σ : P→C×C is a signature of a property. For a property
p ∈ P, its domain and its range can be defined in the fol-
lowing: dom(p) := π1(σ(p)) and range(p) := π2(σ(p)),
where π is the projection operation. Let c1,c2 ∈ C be two
classes; if c1 ≤C c2, then c1 is a subclass of c2 and c2 is a
superclass of c1.

SPARQL is a query language for retrieving and manipu-
lating RDF data. It is an SQL-like declarative language; the
queries are based on pattern matching, where the patterns
are in the form of triples, though they can contain variables
as well. Most of the keywords and their meanings are the
same, such as SELECT, WHERE, LIMIT. However, there
are some new keywords in SPARQL, for example, OP-
TIONAL means optional pattern matching, or FILTER that
defines constraints for the variables. Definition 2.3 gives
the abstract syntax of the filter conditions and Definition 2.4
presents the abstract syntax of the SPARQL expressions.

Definition 2.3. Let V be the set of distinct variables over
(I ∪ B ∪ L). The variables are distinguished by a ques-
tion mark. Let ?X ,?Y ∈ V be variables and c,d ∈ (L∪ I)
be a literal and an IRI constant, respectively. We define
the filter conditions recursively as follows. The ?X = c,
?X =?Y , c = d, bound(?X), isIRI(?X), isLiteral(?X), and
isBlank(?X) are atomic filter conditions. Thereafter, if
R1,R2 are filter conditions, then ¬R1, R1 ∧R2 and R1 ∨R2
are filter conditions as well.

Definition 2.4. A SPARQL expression is built up recur-
sively in the following way:

1. the triple t ∈ (I ∪V )× (I ∪V )× (L ∪ I ∪V ) is a
SPARQL expression,

2. if Q1,Q2 are SPARQL expressions, and R is a filter
condition,
then Q1 FILTER R, Q1 UNION Q2, Q1 OPT Q2, and
Q1 AND Q2 are SPARQL expressions as well.

The discussion of formal semantics of SPARQL is out
of the scope of this paper. Set and multiset semantics are
described in [11].

3. SYSTEM ARCHITECTURE

As it can be seen on Figure 1, the application uses client-
server architecture. All resource-intensive operations are
carried out on the server, thus clients of any quality can
connect to it, even ones with limited CPU or memory re-
sources, such as smartphones or tablets. The clients only
request answers to queries, and display the results. A client
can be any devices which are running Android operation
system. Such devices are always on hand and they usually
have internet connection. The server consists of a middle-
ware system and a local database.

Fig. 1 The architecture of our system

On server-side there is a REST web service which
communicates with clients, handles the configuration files,
transforms the queries according to the requests, and for-
wards them to local or remote endpoints. Furthermore,
the server uses an Oracle database with Jena Adapter API
to store the local models. It is capable the handle large
datasets. The results of queries are sent in form XML back
to clients. Query results are stored in the local database, and
sent to the clients in small parts, which they can handle.

Fig. 2 Screens in the client application, and transitions between
them

A typical scenario is the following. The first step is au-
thentication, which is done with a username and a pass-
word. Next, the middleware loads the user’s configuration
file, which contains the views which are accessible by him,
so that he can decide which table view he would like to see.
The middleware sends the table view’s query to either a lo-
cal or a remote endpoint, depending on where the data for
the view is located. The query results are forwarded to the
client dynamically. That means only the first few rows are
sent, and whenever the user gets close to the bottom of the
table while browsing it, more rows are sent to the client.

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



22 A Mobile Browser Prototype for Semantic Information Systems

This way we can prevent the undesired situation, where the
client application would hang until a large table loads. If
the user filter the table, then he can open the filter dialog
and construct the filter conditions using the dynamically
built filter form. The desired filter conditions are incorpo-
rated to the table view’s query, and the middleware resends
this modified query to the endpoint, and the results are pro-
cessed in a similar way. Note that filtering does not require
knowledge of the SPARQL query language [14]; the filter
options can be selected using a graphical interface, and they
are translated to SPARQL by the middleware. If the user
selects an object from the table, then the appropriate de-
tailed view (which is also defined in the configuration file)
appears. To do this, the middleware needs to send another
modified query, but this time the result is small enough to
be sent to the client in one step.

4. SYSTEM FUNCTIONALITY

In this section we describe the main functions of the sys-
tem, both the client and the server-side components. The
details of semantic data querying, user account handling,
views, filters as well as query rewriting are presented.

4.1. Querying semantic data

One of the many advantages of semantic technology is
that we can access data from diverse sources using a uni-
fied data model (RDF triples [5]). Furthermore, it provides
the SPARQL language, which can be used to query seman-
tic data. These techniques make it possible to create an
application which can integrate various data sources under
a common user interface. Data sources can be local [9],
or one of the numerous publicly available sources, such as
DBpedia [4], Geonames [16], etc.

Because the clients of the system can be mobile devices
with limited resources (such as memory, or battery life), it is
important to preprocess the results of the queries. It means
that if the query results are too large, they must be split into
smaller fragments, and we have to store these fragments on
a server and send them to the clients only if it is necessary.

4.2. Handling user accounts

In industrial environment, it is essential to handle mul-
tiple users and to be able to control which parts of the data
can be seen by the individual users. Our system authenti-
cates each client with a username and a password. After
confirming the identity of a user, the appropriate configu-
ration file will be loaded. A configuration file defines the
views that describe the way how a user can see the datasets
(see below). Moreover, if a query result has been split into
pieces because of its size as we mentioned above, then the
fragments are stored separately for each query of each user.

4.3. Views

One of the main features of our system besides data in-
tegration is the management of views. Each user has a con-
figuration file that is located on the server-side. These files

created based on some general schemes then an adminis-
trator can be modifies them. The configuration file defines
the data accessible for the user, and the way it is to be pre-
sented. There are two types of views: the table and the
detailed view.

The table view is suitable to define a table of objects
of a given category or class, along with their most impor-
tant attributes. The filter window is available from this type
of view (for further details, see the next section). If an ob-
ject is selected, the appropriate detailed view will be loaded.
The detailed view screen is dynamically built up as the filter
screen based on the attribute types. In this view, additional
attributes are displayed. Moreover, if one of the attributes
describe the location of an image or PDF document, that
document could be displayed as well. The semantic repre-
sentation allows multiple values to an attribute; in the de-
tailed view these values will be represented using lists. Fig-
ure 3 illustrates a table view with the corresponding detailed
view.

Fig. 3 View selection screen, with examples for table and
detailed views

4.4. Filters

From table view screens, a special tab is available,
where you can define filter conditions for the main at-
tributes. To do this, the data type of each attribute must
be specified in the configuration file. These data types can
be one of the followings:

• Text: in this case there will be a text area in the filter
window. The value of the attribute must contain the
given text.

• Enum: possible values will be converted to a drop-
down list. The possible values are collected automat-
ically by an auxiliary query.

• Decimal: you can define an interval with its lower
and upper bounds. If one end of the interval is not
specified, that means no bounds.

• Date: these are filtered using intervals as well. In this
case, bounds can be entered using a date selection di-
alog.

• Boolean: determines whether the object has a partic-
ular property (e.g. a picture attached to it).

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013 23

After filtering the table, only those items remain which
match the criteria. In Figure 4, you can see two examples
for filter windows. The first one illustrate a date selection
screen while the second one shows a complex use case with
some attributes related to a person, such as name, age or
experience level.

Fig. 4 Filter examples

4.5. Query rewriting

For each table view, its declaration consists of an ini-
tial SPARQL query, and additional attribute definitions.
That query selects the displayable entities and additional at-
tributes which determine the columns of the table on client
side. Every attribute has a URI tag, a name and a type. The
system can build the final query from these parameters in
the following way:

The names of additional attributes are added to the
query as variables after the SELECT keyword. The
WHERE clause will contain the corresponding triples
based on the attribute declarations, in the form (?entity
<URI><name of attribute>) in OPTIONAL groups. In
case of filtering, the appropriate groups will contain addi-
tional triplets based on the filter conditions. The Figure 5
illustrates the process. On left-hand side, there is a frag-
ment from the configuration file with a table view definition
named ’Candidates’. The definition contains the SPARQL
query and an attribute description belongs to column named
’name’. When the client application has to build up the ta-
ble view that initial query will be transformed as the right-
hand side box shows it.

Fig. 5 Building a SPARQL query

Detailed views use the initial query of the correspond-
ing table view, but they define some additional attributes
to display in the same way than we do it in case of table
views, with an <attribute>tag. In case of detailed views,
the SPARQL query will be contain an extra condition to
filter data related to the previously chosen entity.

5. RELATED WORK

There are some application which have already used the
advantages of semantic technologies. In this section we
compare these applications with our system. DBpedia Mo-
bile [1] is a location-sensitive semantic application, which
enables its users to browse linked data on their mobile de-
vices by navigating a map. The objects on the map are dis-
played using icons based on the YAGO categories [10]. By
clicking on these icons, we can access DBpedia descrip-
tions and Flickr [8] photos for the selected object. This
application shares many common features with our solu-
tion: the user can use filters for a search, and the results
can be browsed using a detailed view, which displays infor-
mation about the object using multiple data sources. How-
ever, there are differences as well, which stem from the fact
that DBpedia Mobile is an application designed exclusively
for one particular data set, while our browser is general-
purpose, and supports arbitrary data sets. The most signifi-
cant difference is that our main browsing interface is table-
based, not map-based. Moreover, in our application the fil-
ter conditions cover every attribute of the data set: for each
view, a filter form is generated automatically, where specific
filter conditions can be set for each column. In DBPedia
Mobile, however, only a limited set of filter conditions are
available on the form; to achieve more complex filtering,
the users should use the SPARQL query language.

OntoWiki Mobile [7] is an application based on the se-
mantic collaboration platform called OntoWiki. It allows
its users to browse, navigate, create and edit semantic data
on-the-fly. It focuses on offline editing: users can alter the
knowledge base without a data connection, and their modi-
fications will take effect later, when a connection is present.

The idea of displaying RDF data with views comes from
Fresnel [13]. It defines a vocabulary, which allows the users
to describe the display properties of their data. The vocab-
ulary uses two basic concepts: lenses and formats. Lenses
define the parts of the data which the users would like to
display, and formats define how the selected data should
appear. Selectors for the lenses can be defined using simple
restrictions (e.g. filtering objects by their type), but more
complex filters can be expressed with the Fresnel Selec-
tor Language (FSL) or the SPARQL query language. A
visual browser which implements Fresnel is (for example)
IsaViz [12]. In our solution we have a different approach:
to define views, the user only needs to specify the parts of
the data to be displayed, as a SPARQL query. Formatting is
done automatically based on the data types of the selected
attributes.

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



24 A Mobile Browser Prototype for Semantic Information Systems

6. EXPERIMENTS

As we mentioned previously, the industry’s interest
towards semantic technologies is growing continuously,
thanks to the capability to integrate and query data origi-
nating from different sources. In this section, we present
two examples, where we can use our application. The first
example helps the managers in a company, while the sec-
ond example illustrates the perspective of truck drivers in a
transport company. Since our browser was made for gen-
eral purposes, the range of use is not limited to these two
tasks, but with these two different uses we would like to
demonstrate the diversity of our application.

6.1. HR

At large companies, interviewing is typically made by
managers. Those who also deal with many other tasks do
not sit permanently in the office, so they cannot be informed
about the candidates in time. The application we made
can be used for a possible industrial use of a company’s
HR and project management support. Our application al-
lows managers to query the necessary information provided
by HR assistants, anytime, anywhere. To help this task,
various ontologies have been developed for semantic stor-
age of the data of the employees, trainees, candidates or
projects [6] [15].

The views presented above allow for a variety of au-
thorized users to view data at different levels. Returning
to the previous example, we can store more data about an
applicant, than it is absolutely necessary for the manager.
Thus, the data needed for the interview (such as experience
and knowledge), can be filtered beforehand, with the help
of the configuration file. We can see the process in Figure
2. At a larger company, there are several managers work-
ing, each with its own area of responsibility. For example,
in the software development department, such areas are de-
signing or testing. It is clear that different areas require
different competencies, so we can specify initial filters in
the configuration file for these, as well. Figure 3 illustrates
the selection of a candidate for the tester position.

6.2. Transportation

Another example shows where our application can be
used in transportation. The drivers receive their waybill, the
cargo on their truck, then they set off to the destination. The
person in office decides what and where to take. In order for
the drivers to know where they are to travel, they must ask
it from the office worker. It can generate a lot of calls which
can be very expensive and make a 24-hour dispatch service

necessary. Our system can also be a solution to this prob-
lem, because if the person in the office inserted transporta-
tion data in a dataset, the drivers would be able to check it
anytime on their phones. They could see delivered and the
upcoming transports too. Obviously the current transport
can be found with him, so these are not relevant. Before
they arrive to a certain destination, they could check where
to go next, so they could organize their next day. The ap-
plication exploits the available public datasets as well. Big
companies have subsidiaries all over the world. The geo-
graphical information of the premises of these subsidiaries
can be obtained from DBpedia or GeoNames datasets.

7. CONCLUSION

In our paper, we presented an application, which pro-
vides opportunity to make use of semantic technologies in
the industry. Our main result is a system that makes it pos-
sible to browse semantic data sources in personalized way.
The system is simple to configure, yet it is general enough
to handle arbitrary semantic datasets. Thanks to its client-
server architecture, the resource-intensive operations can be
carried out by the server, thus mobile clients with limited re-
sources can use the application as well. Moreover, the client
application hides the underlying technological details from
the user: they do not have to formulate SPARQL queries,
because filtering can be done with the help of easy-to-use
forms.

We demonstrated the usability of the system with two
enterprise use cases. In the first case, the application helps
managers in finding the right applicant for a job. The HR
department can record the applicant’s data, and only the
corresponding manager can access it using a view. In the
second use case, truck drivers of a transport company can
see their next freight using their mobile phone, or tablet.
The application can provide solutions for similar cases,
with a suitable configuration file.

In the future, we would like to extend our system to be
able to not just only display the data but edit them as well.
We also aim that data types of attributes could be extracted
from a corresponding ontology. It could simplify the cre-
ation and maintenance of configuration files.

ACKNOWLEDGEMENT

This work was partially supported by the European
Union and the European Social Fund through project Fu-
turICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-
0013) and TAMOP-4.2.2.C-11/1/KONV-2012-0001 sup-
ported by the European Union, co-financed by the European
Social Fund.

REFERENCES

[1] BECKER, C. – BIZER, C.: DBpedia Mobile: A
Location-Enabled Linked Data Browser, World 369,
No. 1 (pp. 6-7). (2008)

[2] BERNERS-LEE, T. – HENDLER, J. – LASSILA, O.:

The semantic web, Scientific American 284, No. 5
(pp. 28-37). (2001)

[3] BIZER, C. – JENTZSCH, A. – CYGANIAK, R.:
State of the LOD Cloud (2011). http://www4.

wiwiss.fu-berlin.de/lodcloud/state/

[4] BIZER, C. – LEHMANN, J. – KOBILAROV, G. –
AUER, S. – BECKER, C. – CYGANIAK, R. – HELL-
MANN, S.: DBpedia-A crystallization point for the

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

http://www4. wiwiss. fu-berlin. de/lodcloud/state/
http://www4. wiwiss. fu-berlin. de/lodcloud/state/


Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013 25

Web of Data, Web Semantics: Science, Services and
Agents on the World Wide Web 7, No. 3 (pp.154-165).
(2009)

[5] BRICKLEY, D. – GUHA, R. V.: RDF vocabulary de-
scription language 1.0: RDF schema (2004)

[6] DORN, J. – NAZ, T. – PICHLMAIR, M.: Ontology
development for human resource management. In: 4th
International Conference on Knowledge Management
(pp. 109-120). (2007)

[7] ERMILOV, T. – HEINO, N. – TRAMP, S. – AUER,
S.: Ontowiki mobile – knowledge management in
your pocket. In: The Semantic Web: Research and
Applications (pp. 185-199). Springer Berlin Heidel-
berg. (2011)

[8] FLICKR http://www.flickr.com

[9] GOMBOS, G. – MATUSZKA, T. – PINCZEL B. –
RÁCZ G. – KISS, A.: VOSD: A General-Purpose Vir-
tual Observatory over Semantic Databases. In: 13th
Symposium on Programming Languages and Soft-
ware Tools (SPLST 2013) (pp. 90-99). (2013)

[10] HOFFART, J. – SUCHANEK, F. M. – BERBERICH,
K. – LEWIS-KELHAM, E. – DE MELO, G. –
WEIKUM, G.: Yago2: exploring and querying world
knowledge in time, space, context, and many lan-
guages. In Proceedings of the 20th international con-
ference companion on World wide web (pp. 229-232).
ACM. (2011)

[11] PÉREZ, J. – ARENAS, M. – GUTIERREZ, C.: Se-
mantics and Complexity of SPARQL. In The Seman-
tic Web-ISWC 2006 (pp. 30-43). Springer Berlin Hei-
delberg (2006)

[12] PIETRIGA, E.: Isaviz: a visual environment for
browsing and authoring rdf models. In: Eleventh In-
ternational World Wide Web Conference Developers
Day. (2002)

[13] PIETRIGA, E. – BIZER, C. – KARGER, D. – LEE,
R.: Fresnel: A browser-independent presentation vo-
cabulary for RDF. In The semantic web-ISWC 2006
(pp. 158-171). Springer Berlin Heidelberg. (2006)

[14] PRUDHOMMEAUX, E. – SEABORNE, A.:
SPARQL query language for RDF. W3C recommen-
dation, 15. (2008)

[15] SZEKELY, A.: An Approach to Ontology Develop-
ment in Human Resources Management. In Proceed-
ings of the 5th International Conference on Virtual
Learning (pp. 153-159) (2010)

[16] VATANT, B. – WICK, M.: Geonames ontology
(2012)

[17] VOLZ, R. – KLEB, J. – MUELLER, W.: To-
wards Ontology-based Disambiguation of Geograph-
ical Identifiers. In Proceedings of WWW2007. (2007)

Received December 2, 2013, accepted December 22, 2013

BIOGRAPHIES

Gergő Gombos was born on 14.12.1986. In 2012 he grad-
uated from the Department of Information Systems of the
Faculty of Informatics at Eötvös Loránd University in Bu-
dapest. His master thesis was about the webservice for
mobile application that use the semantic web. Since 2012
he is a PhD student at the same Department. His scientific
research is focusing on semantic web, cloud and distibuted
computing, webservices and federated queries. He is also
interested in collecting the social networks and big data.

Tamás Matuszka was born on 25.11.1987. In 2012 he
graduated (MSc) with distinction at the department of In-
formation Systems of the Faculty of Eötvös Loránd Uni-
versity in Budapest. Since 2012 he is PhD student at the
Department of Information Systems. His scientific research
is focusing on Augmented Reality supported by Semantic
Web. In addition, he also investigates questions related with
the mobile Semantic Web and Augmented Reality.

Balázs Pinczel was born on 23.11.1988. In 2012 he grad-
uated (MSc) with distinction at the department of Informa-
tion Systems of the Faculty of Eötvös Loránd University
in Budapest. Since 2012 he is a PhD student at the De-
partment of Information Systems. His scientific research is
primarily focusing on improving the efficiency of Semantic
Web technologies (e.g. SPARQL query evaluation). In ad-
dition, he is also interested in the area of NoSQL databases
and Big Data.

Gábor Rácz was born on 27.02.1989. In 2012 he grad-
uated from the Department of Information Systems of the
Faculty of Informatics at Eötvös Loránd University in Bu-
dapest. His master thesis was about the visual query lan-
guages and the SPARQL query language. Since 2012 he
is a PhD student at the same Department. His scientific
research is focusing on semantic web and data mining. In
addition, he is also interested in natural language process-
ing and social networks.

Attila Kiss was born in 1960. In 1985 he graduated (MSc)
as mathematician at Eötvös Loránd University, in Budapest.
He defended his PhD in the field of database theory in 1991;
his thesis title was Dependencies of Relational Databases.
Since 2010 he is working as the head of Information Sys-
tems Department at Etvs Lornd University. His scientific
research is focusing on database theory and practice, se-
mantic web, big data, graph databases, data mining. In
addition, he also investigates questions related with social
network analysis.

Tamás Gaizer was born on 1964. In 1986 he graduated
(MSc) with distinction at the University of Szeged. Since
1995 he is working as a senior IT consultant at Regens Zrt.
His scientific research is focusing on analysis, design and
implementation of systems. In addition, he also investi-
gates questions related with business process analysis and
modeling.

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

http://www.flickr.com

