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ABSTRACT
There are known several exact results of the crossing numbers of the Cartesian product of all graphs of order at most four with

paths, cycles and stars. Moreover, for the path Pn of length n, the crossing numbers of Cartesian products G�Pn for all connected
graphs G on five vertices and for forty graphs G on six vertices are given. In the paper, we extend these results by determining the
crossing numbers for the Cartesian products of paths with two special graphs of order six.
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1. INTRODUCTION

Let G be a simple graph with vertex set V (G) and edge
set E(G). A drawing of a graph is a mapping of a graph into
a surface. The crossing number cr(G) of a simple graph G is
defined as the minimum possible number of edge crossings
in a drawing of G in the plane. A survey of the other vari-
ants of crossing numbers can be found in [12]. A drawing
with minimum number of crossings (an optimal drawing)
must be a good drawing; that is, each two edges have at
most one point in common, which is either a common end-
vertex or a crossing. Moreover, no three edges cross in a
point. The investigation on the crossing number of graphs
is very difficult problem. It is well known that this problem
is NP-complete. The crossing numbers has been studied to
improve the readability of hierarchical structures. A cross-
ing of two edges of the communication graph requires unit
area in VLSI-layout. So, the crossing number together with
the number of vertices of the graph immediately provide a
lower bound for the area of the VLSI-layout of the com-
munication graph. For that reason the problem of crossing
numbers was studied also by VLSI communities and com-
puter scientists.

According to their special structure, Cartesian products
of special graphs are one of few graph classes for which
the exact values of crossing numbers were obtained. The
Cartesian product G1�G2 of graphs G1 and G2 has ver-
tex set V (G1�G2) = V (G1)×V (G2) and any two vertices
(u,u′) and (v,v′) are adjacent in G1�G2 if and only if ei-
ther u = v and u′ is adjacent with v′ in G2, or u′ = v′ and u
is adjacent with v in G1.

Let Cn be the cycle of length n, Pn be the path of
length n, and Sn be the star isomorphic to K1,n. Beineke
and Ringeisen [1] started to study the crossing numbers of
Cartesian products of cycles with all graphs on at most four
vertices. The crossing numbers of Cartesian products of cy-
cles, paths and stars with all 4-vertex graphs are determined
in [3], [4], and [5]. The crossing numbers of Cartesian
products of paths with all graphs of order five are collected
in [8]. It seems natural to enquire about crossing numbers
of Cartesian products of paths with other graphs. There are
known the crossing numbers of products G�Pn for some
6-vertex graphs G, see [6], [10], [11], [13], [14], and [15].
The crossing numbers of Cartesian products of paths with
40 graphs of order six are collected in [9]. In this paper, we

extend these results by determining the crossing numbers
of the Cartesian products of two special 6-vertex graphs F
and H shown in Fig. 1 with the path Pn.
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Fig. 1 The graphs F and H of order six.

Let D be a good drawing of the graph G. We denote
the number of crossings in D by crD(G). Let Gi and G j be
edge-disjoint subgraphs of G. We denote by crD(Gi,G j) the
number of crossings between edges of Gi and edges of G j.
In a good drawing D of the graph G, we say that a cycle C
separates the cycles C′ and C′′ (the vertices of a subgraph
G not containing vertices of C) if C′ and C′′ (the vertices
of G) are contained in different components of R2 \C. In
the proofs of the paper, we will often use the term “region”
also in non-planar drawings. In this case, the vertices are
considered to be vertices in the “map”.

2. THE GRAPHS F�PN AND H�PN

We assume n ≥ 1 and find it convenient to consider
the graph F�Pn in the following way: it has 6(n+ 1) ver-
tices and edges that are the edges in n + 1 copies of F i,
i = 0,1, . . . ,n, and in six paths of length n, see Fig. 2. For
i = 0,1, . . . ,n, let ai, bi, ci, and ei be the vertices of F i of
degree two, di the vertex of degree three, and fi the ver-
tex of degree one (see Fig. 1(a)). Let us denote by Mi

F the
subgraph of F�Pn containing the vertices of F i−1 and F i

and six edges joining F i−1 to F i, i = 1,2, . . . ,n. Let Qi
F ,

i = 1,2, . . . ,n−1, denote the subgraph of F�Pn induced by
V (F i−1)∪V (F i)∪V (F i+1). So, Qi

F = F i−1 ∪Mi
F ∪ F i ∪

Mi+1
F ∪F i+1.
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Fig. 2 The drawing of the graph F�Pn with 2(n−2) crossings.

Similarly, the graph H�Pn has 6(n + 1) vertices and
edges that are the edges in n + 1 copies of H i and six
paths of length n, see Fig. 3. The vertices of H i of de-
gree three are denoted by bi,ci,di, and ei. The vertices of
degree one adjacent to bi and ei are denoted by ai, and fi,
respectively (see Fig. 1(b)). For i = 1,2, . . . ,n, let Mi

H de-
note the subgraph of H�Pn consisting of the vertices in
H i−1 and H i and of the edges joining H i−1 with H i, and
let Qi

H = H i−1∪Mi
H ∪H i∪Mi+1

H ∪H i+1.

Fig. 3 The drawing of the graph H�Pn with 2n crossings.

Both graphs F�Pn and H�Pn contain C4�Pn as a sub-
graph. For i = 0,1, . . . ,n, let Ci

4 denote the 4-cycle of the
subgraph C4�Pn and let Mi

C denote the corresponding sub-
graph of Mi

F or Mi
H . The subgraph of H induced on the ver-

tices b,c,d, and e is isomorphic with the complete tripartite
graph K1,1,2. Hence, the graph H�Pn contains K1,1,2�Pn as
a subgraph. In the graph H�Pn, let Ki denote the subgraph
of H i which is isomorphic with K1,1,2, i = 0,1, . . . ,n. By
Mi

K we will denote the corresponding subgraph of Mi
H in

K1,1,2�Pn.
Consider the graph C4�P2 which is a subgraph of Qi

F in
F�Pn as well as a subgraph of Qi

H in H�Pn, i = 1,2, . . . ,n.
The following result enables us to simplify the proofs in the
next sections.

Lemma 2.1. Let D be a good drawing of the graph C4�P2
in which the 4-cycles C0

4 , C1
4 , and C2

4 do not cross each other
and none of them separates two other. Then crD(C1

4) +
crD(C1

4 ,M
1
C ∪M2

C)+ crD(C0
4 ∪M1

C,C
2
4 ∪M2

C)≥ 2.

Proof. Assume that there is a good drawing D of the graph
C4�P2 in which two different 4-cycles do not cross each
other and none of the 4-cycles C0

4 , C1
4 , and C2

4 separates
two other and that crD(C1

4)+ crD(C1
4 ,M

1
C ∪M2

C)+ crD(C0
4 ∪

M1
C,C

2
4 ∪M2

C) ≤ 1. Hence, in such a drawing, at least one
of the subgraphs C0

4 ∪M1
C and C2

4 ∪M2
C does not cross C1

4 .
Without loss of generality, let crD(C1

4 ,C
0
4 ∪M1

C) = 0 and let

both C0
4 and C2

4 are placed outside C1
4 . Then, regardless of

the edges of C1
4 cross each other or not, the subdrawing of

C0
4 ∪M1

C ∪C1
4 induced by D divides the plane in such a way

that on the boundary of every region outside C1
4 there are

at most two vertices of C1
4 . The 4-cycle C2

4 does not cross
an edge of the 2-connected subgraph C0

4 ∪M1
C ∪C1

4 , other-
wise crD(C2

4 ,C
0
4 ∪M1

C ∪C1
4) ≥ 2, a contradiction. Thus, C2

4
is placed in one region outside C1

4 . But, in this case, at least
two edges of M2

C joining C2
4 with the vertices of C1

4 cross
the edges of C0

4 ∪M1
C ∪C1

4 . This contradiction completes
the proof. �

3. THE CROSSING NUMBER OF F�PN

The graph F�P1 is planar. The crossing number of the
graph F�P2 is one, because the graph S3�P2 is its sub-
graph and cr(S3�P2) = 1 (see [3]). The reverse inequality
cr(F�P2) ≤ 1 one can verify by finding a suitable draw-
ing of the graph F�P2 with one crossing. In Fig. 2 there
is the drawing of the graph F�Pn with 2(n− 2) crossings.
The next result is fundamental in proving that the crossing
number of the graph F�Pn is 2(n−2) for n≥ 3.

Lemma 3.1. If D is a good drawing of the graph F�Pn,
n ≥ 3, in which every of the subgraphs F i, i = 0,1,2, ...,n,
has at most one crossing on its edges, then in D there are at
least 2(n−2) crossings.

Proof. In a drawing of the graph F�Pn, let us consider the
following types of possible crossings on the edges of Qi

F
for all i = 1,2, ...,n−1:

(1) a crossing of an edge in F i−1 ∪Mi
F with an edge in

F i+1∪Mi+1
F ,

(2) a crossing of an edge in Mi
F ∪Mi+1

F with an edge in
F i,

(3) a crossing among the edges of F i.

It is readily seen that every of the considered crossings
appears in a good drawing of the graph F�Pn only on the
edges of one subgraph Qi

F . In a good drawing of F�Pn, we
define the force f (Qi

F) of Qi
F in the following way: every

crossing of type (1), (2), and (3) contributes the value 1 to
f (Qi

F). The total force of the drawing is the sum of f (Qi
F).

It is easy to see that the number of crossings in the drawing
is not less than the total force of the drawing.

Consider now the good drawing D of F�Pn assumed
in Lemma 3.1. Clearly, two 4-cycles Ci

4 and C j
4, i 6= j,

do not cross each other in D, otherwise both F i and F j

are crossed at least twice. In every subdrawing D(Qi
F) of

the subgraph Qi
F induced by D, i = 1,2, . . . ,n− 1, none of

the 4-cycles Ci−1
4 and Ci+1

4 separates two other. If other-
wise, Ci−1

4 separates Ci
4 and Ci+1

4 (Ci+1
4 separates Ci

4 and
Ci−1

4 ), then the cycle Ci−1
4 (Ci+1

4 ) is crossed by all four edges
joining the separated 4-cycles. For i = 2,3 . . . ,n− 2, if Ci

4
separates Ci−1

4 and Ci+1
4 , both paths di−1ei−1eiei+1di+1 and

di−1di−2ei−2 fi−2 fi−1 fi fi+1 fi+2ei+2di+2di+1 cross the cycle
Ci

4. This contradicts the assumption that every subgraph F i

has at most one crossing on its edges. So, by Lemma 2.1,
every subdrawing D(Qi

F), i = 2,3, . . . ,n− 2, contains at
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least two crossings of types (1), (2) or (3). This forces that,
in D, there are at least 2(n−3) crossings among the edges
of the subgraph F1∪M1

F ∪F2∪ ·· · ∪Fn−2∪Mn−1
F ∪Fn−1.

Moreover, if C1
4 does not separate the cycles C0

4 and C2
4 or if

Cn−1
4 does not separate the cycles Cn−2

4 and Cn
4 , in D there

are at least 2(n−2) crossings and we are done.
It remains to prove that if both C1

4 in Q1
F and Cn−1

4 in
Qn−1

F separate the remaining two 4-cycles, then in D there
are at least two crossings not counted in ∑

n−2
i=2 f (Qi

F). If the
cycle C1

4 separates C0
4 and C2

4 , a possible crossing between
an edge of C1

4 and an edge of F0 or F2 is not a crossing in
∑

n−2
i=2 f (Qi

F). Otherwise if crD(C1
4 ,F

0) = crD(C1
4 ,F

2) = 0,
both path eoe1e2 and f0 f1 f2 cross C1

4 , which contradicts
the restriction of at most one crossing on C1

4 . The same
holds for the subgraph Qn−1

F if Cn−1
4 separates Cn−2

4 and
Cn

4 . Hence, in D there are at least ∑
n−2
i=2 f (Qi

F) + 2 =
2(n−3)+2= 2(n−2) crossings. This completes the proof.

�
For the crossing number of the graph F�Pn we have the

next result.

Theorem 3.1. cr(F�Pn) = 2(n−2) for n≥ 3.

Proof. The drawing in Fig. 2 with 2(n− 2) crossings con-
firms that cr(F�Pn) ≤ 2(n− 2) for n ≥ 3. We prove the
reverse inequality by induction on n. The graph S3�P3
is a subgraph of F�P3 and we know that cr(S3�P3) = 2
(see [3]). Thus, the crossing number of F�P3 is at least
two and the result is true for n = 3. Assume that it is true
for n = k, k ≥ 3, and suppose that there is a good drawing
of the graph F�Pk+1 with fewer than 2(k− 1) crossings.
By Lemma 3.1, some of the subgraphs F i, i = 0,1, ...,k+1,
must be crossed at least twice. If F0 has at least two cross-
ings on its edges, then deleting of all vertices of F0 results
in a drawing of the graph F�Pk with fewer than 2(k− 2)
crossings. This contradicts the induction hypothesis. The
same contradiction is obtained if at least two crossings ap-
pear on the edges of Fk+1. If some F i, i ∈ {1,2, ...,k}, is
crossed at least twice, by the removal of all edges of this F i,
a subdivision of F�Pk with fewer than 2(k−2) crossings is
obtained. This contradiction with the induction hypothesis
completes the proof. �

4. THE CROSSING NUMBER OF H�PN

In this section, the crossing number of the Cartesian
product H�Pn described in Section 2 is given. It is easy
to see that the graph H�P1 is planar and the next lemma
determines the crossing number of the graph H�P2.

Lemma 4.1. cr(H�P2) = 4.

Proof. The graph H�P2 is isomorphic with the subgraph
Q1

H defined above. Hence, H�P2 = H0∪M1
H ∪H1∪M2

H ∪
H2. It can be easily seen in Fig. 3 that the inequality
cr(H�P2) ≤ 4 holds. To prove the inverse inequality, as-
sume that there is a good drawing of the graph H�P2 with
less than four crossings and let D be such a drawing. In D,
none of Ki, i ∈ {0,1,2}, cross both subgraphs K j and Kl ,
j, l ∈ {0,1,2}, j, l 6= i, j 6= l, because if two different graphs
both isomorphic with K1,1,2 cross each other in a good

drawing, then they cross at least twice. We will show that,
in D, two different subgraphs Ki and K j, i, j ∈ {0,1,2}, do
not cross each other and that none of the subgraphs K0,K1,
and K2 separates two others.

Assume first that crD(K0,K2) 6= 0. As the drawing D
is good, at least one of K0 and K2 separates the vertices of
the other. Without loss of generality, let K0 separates the
vertices of K2. In such a case, K0 separates at least one ver-
tex of K2 from the vertices of K1 and therefore, at least one
edge of M2

K crosses the edges of K0. The restriction of at
most three crossings in D forces that crD(H0,H2) = 2. It is
easy to see that, in this case, K0 separates one of the edges
a2b2 and e2 f2 from the subgraph H1 and that the edges of
M2

H ∪H1 cross the edges of K0 at least twice. This con-
tradicts the assumption of at most three crossings in D and
therefore, crD(K0,K2) = 0. Now, without loss of generality,
assume that crD(K0,K1) 6= 0. If K0 separates the vertices of
K1, then the similar consideration as above shows that there
are more than three crossings in D, a contradiction. The last
case to consider is that K1 separates the vertices of K0. If
crD(K0,K1) = 3, then no crossing can appear in the sub-
drawing of K1∪M2

K ∪K2 induced by D and the subdrawing
D(K1 ∪M2

K ∪K2) divides the plane as shown in Fig. 4(a).
Then, in D, the path b0a0a1a2b2 does not cross the edges of
D(K1∪M2

K ∪K2) and K0 must be placed in two neighbour-
ing regions of the subdrawing D(K1 ∪M2

K ∪K2) bounded
by the edge b1c1 or by the edge b1d1. In both cases, the
path e0 f0 f1 f2e2 crosses the edges of K1∪M1

K ∪K2 at least
once, a contradiction. Thus, crD(K0,K1) = 2 and K1 sepa-
rates the edges a0b0 and e0 f0. If, in this case, K1 separates
K0 and K2, both paths b0a0a1a2b2 and e0 f0 f1 f2e2 cross the
edges of K1 and in D there are more than three crossings.
Hence, the unique possibility is that one of the edges a0b0
and e0 f0, say a0b0, is separated from the vertices of K2.
This forces one other crossing between the edges of K1 and
the path a0a1a2. So, the subdrawing D(K1∪M1

K∪K2) with-
out crossings is the same as in Fig. 4(a). Now, in D, the
vertices of K0 are placed in two regions of the subdrawing
D(K1∪M2

K ∪K2) with at most three vertices of K1 on their
boundaries and therefore, at least one crossing must appear
between the edges of M1

K and the edges of K1 ∪M2
K ∪K2.

This contradiction confirms that crD(Ki,K j) = 0 for i 6= j,
i, j ∈ {0,1,2}.
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Fig. 4 The subdrawing of K1∪M2
K ∪K2 without crossings and

the drawing of H�P2 without the edge c0c1 with only two
crossings.

The subgraph K0 (K2) does not separate K1 and K2 (K0

and K1), otherwise at least four edges of M2
K (M1

K) cross K0
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(K2). Assume now that K1 separates K0 and K2. Thus, in
D, both paths b0a0a1a2b2 and e0 f0 f1 f2e2 cross K1. This
forces that in the subdrawing of C1

4 ∪M2
C ∪C2

4 induced by
D there is at most one crossing. It is well known that there
is no good drawing of C4�P1 with exactly one crossing,
because for any two edges which cross each other one can
find two vertex-disjoint cycles such that crossed edges are
in different cycles. Two vertex-disjoint cycles cannot cross
only once. Hence, the subdrawing of C1

4 ∪M2
C ∪C2

4 with-
out crossings one can obtain by deleting the edges c1d1 and
c2d2 from the drawing in Fig. 4(a). If, in D, the edge c1d1
does not cross an edge of M2

C, then it is placed as shown
in Fig. 4(a) and K0 is placed in one of two triangular re-
gions inside K1. Due to symmetry, let K0 is placed in the
region with the vertices c1,d1, and e1 on its boundary. So,
in D, the path b0a0a1a2b2 crosses K1 ∪M2

K ∪K2 at least
twice, because the vertices b0 and b2 are separated by two
edge-disjoint cycles c1d1e1c1 and c1b1d1d2e2c2c1. More-
over, K1 is crossed by the edge b0b1, too. This contradicts
the assumption of at most three crossings in D. The last
possibility is that the edge c1d1 outside C1

4 crosses one of
the edges b1b2 and e1e2. Without loss of generality, let
the edge c1d1 crosses the edge b1b2. In this case, the edge
c2d2 must be placed inside C2

4 and the vertices b0 and b2
are separated by the edge-disjoint cycles c1b1d1e1c1 and
c1d1d2c2c1, which forces that the path b0a0a1a2b2 crosses
the edges of K1 ∪M2

K ∪K2 at least twice and in D there
are at least four crossings again. So, none of the subgraphs
K0,K1, and K2 separates two others in the considered draw-
ing D.

Now we show that, in D, no edge of M1
K crosses K2 as

well as no edge of M2
K crosses K0. Without loss of gen-

erality let an edge of M2
K crosses K0. As two different Ki

and K j do not cross, crD(K0,M2
K)≥ 2. As there is no good

drawing of the graph C4�P1 with only one crossing, the
subdrawing of D induced by the subgraph C1

4 ∪M2
C ∪C2

4
without crossings divides the plane in such a way that at
most two vertices of K1 are on the boundary of every re-
gion outside K1. Since crD(K0,M2

K) ≤ 3, only one edge
of M2

K crosses K0 and therefore, at least one vertex of K1

is not on the boundaries of the regions with the vertices
of K0 inside. This requires at least one crossing between
an edge of M1

K and an edge of K1 ∪M2
K ∪K2. The draw-

ing D is assumed with at most three crossings and there-
fore, the unique subdrawing of K1 ∪M2

K ∪K2 induced by
D is shown in Fig. 4(a). None of the edges b1b2 and e1e2
crosses K0, otherwise, in D, at least two paths joining e0 to
e1 or b0 to b1 cross the edges of K1 ∪M2

K ∪K2, a contra-
diction. Due to symmetry, let the edge d1d2 crosses K0.
Hence, K0 is placed into two regions of the subdrawing
D(K1 ∪M2

K ∪K2) in such a way that the edge c0c1 crosses
the cycle b1b2d2e2e1d1b1 and therefore, the edges b0b1 and
e0e1 do not cross the edges of K1 ∪M2

K ∪K2. This forces
that the edges of K0 do not cross each other and that both
edges b0c0 and b0d0 or both edges e0c0 and e0d0 cross the
edge d1d2. Without loss of generality assume the first case.
Since the edge d0d1 as well as the paths b0a0a1b1, e0 f0 f1e1,
a1a2b2, and f1 f2e2 are not crossed, the necessary subdraw-
ing of D obtained by deleting the edge c0c1 is shown in
Fig. 4(b). One can easy to verify that it is impossible to add

the edge c0c1 with only one crossing. This confirms that
crD(K0,M2

K) = crD(K2,M1
K) = 0.

In this paragraph we show that in D(K0 ∪M1
K ∪K1 ∪

M2
K ∪K2) there are at least two crossings other than the

crossings among the edges of K0∪M1
K as well as the cross-

ings among the edges of M2
K ∪K2. Needless to say, two

different Ki and K j do not cross. If both M1
K and M2

K
cross K1, we are done. Otherwise, without loss of gener-
ality, let crD(K1,M1

K) = 0. Assume now the subdrawing of
K0 ∪M1

K ∪K1. Regardless of the edges of K1 cross each
other or not, D(K0 ∪M1

K ∪K1) divides the plane in such a
way that on the boundary of every region outside K1 there
are at most two vertices of K1, see the drawings in Fig. 5,
where possible crossings among the edges of K0 ∪M1

K are
inside the dotted cycle. As crD(K2,K0∪M1

K ∪K1) = 0, it is
easy to verify that every placing of the subgraph K2 outside
K1 enforces at least two crossings between the edges of M2

K
and the edges of K0∪M1

K ∪K1.

K KK K

0
01

1

Fig. 5 The subdrawings of K0∪M1
K ∪K1 without crossings

between K0∪M1
K and K1.

In the rest of the proof we show that in D there are at
least two crossings other than the two crossings consid-
ered in the previous paragraph. Consider now the subgraph
of Q1

H consisting of K0, the edge c0c1, the paths c1b1b0,
c1d1d0, c1e1e0, and the path b0a0a1a2b2c2d2e2 f2 f1 f0e0,
and let us denote it by Ks

5(K
0), see the bold edges in Fig. 6.

As the considered subgraph Ks
5(K

0) is a subdivision of the
complete graph on five vertices and cr(K5) = 1, at least one
crossing appears among its edges. Two different subgraphs
Ki and K j do not cross each other and therefore, none of
the edges of K1 or K2 belonging to Ks

5(K
0) crosses K0. If

an edge of K0 is crossed in Ks
5(K

0) by some other edge of
Ks

5(K
0), we have at least one crossing other than two cross-

ings considered in the previous paragraph. Otherwise, as
two edges of K5 incident with same vertex do not cross each
other and K2 does not cross an edge of M1

K , one of the paths
b0a0a1a2b2 and e0 f0 f1 f2e2 must cross the edges joining c1
with the vertices of K0. If such a path crosses an edge of
K1, then it crosses K1 at least twice and we are done. Oth-
erwise we have at least one crossing between an edge of
M1

K and an edge not belonging to K0∪M1
K ∪K1∪M2

K ∪K2.
The same consideration for the subgraph of Q1

H consist-
ing of K2 and the paths c1c2, c1b1b2, c1d1d2, c1e1e2, and
b2,a2a1a0b0c0d0e0 f0 f1 f2e2 denoted by Ks

5(K
2) confirms

that in D there are at least two crossings not considered
in the previous paragraph. This proves that in any good
drawing of Q1

H there are at least four crossings and that
cr(H�P2) = 4.
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b b b
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f
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c c c

d d d

e e e

0 1 2

0 1 2

0

1
2

0 1 2

0 1 2

0
1 2

Fig. 6 The subdivision of K5 in Q1
H .

�
The next lemma help us to prove that the crossing num-

ber of the graph H�Pn is 2n for n≥ 2.

Lemma 4.2. If D is a good drawing of the graph H�Pn,
n ≥ 2, in which every of the subgraphs H i, i = 0,1,2, ...,n,
has at most one crossing on its edges, then there are at least
2n crossings in D.

Proof. The proof is based on counting the total force of
crossings in a drawing of a graph. In a drawing of the graph
H�Pn, let us consider the following types of possible cross-
ings on the edges of Qi

H , i = 1,2, ...,n−1:

(1) a crossing of an edge in H i−1 ∪Mi
H with an edge in

H i+1∪Mi+1
H ,

(2) a crossing of an edge in Mi
H ∪Mi+1

H with an edge in
H i,

(3) a crossing among the edges of H i.

(4) a crossing among the edges of H0 ∪M1
H as well as a

crossing of an edge in H0 with an edge in H1,

(5) a crossing among the edges of Hn ∪Mn
H as well as a

crossing of an edge in Hn with an edge in Hn−1.

It is readily seen that every crossing of types (1), (2),
and (3) appears in a good drawing of the graph H�Pn only
on the edges of one subgraph Qi

H . A crossing of type (4) ap-
pears only in Q1

H whereas a crossing of type (5) is a crossing
only in Qn−1

H . In a good drawing of H�Pn, we define the
force f (Qi

H) of Qi
H in the following way: every crossing

of type (1), (2), (3), (4), or (5) contributes the value 1 to
f (Qi

H). The total force of the drawing is the sum of f (Qi
H).

It is easy to see that the number of crossings in the draw-
ing is not less than the total force of the drawing. The aim
of this proof is to show that if every of the subgraphs H i,
i = 0,1,2, ...,n, has at most one crossing on its edges, then
f (Qi

H)≥ 2 for all i = 2,3, ...,n−2 and f (Qi
H)≥ 3 for i = 1

and i = n−1.
Consider now the good drawing D of H�Pn assumed

in Lemma 4.2. This drawing contains the subdrawing of
the graph C4�Pn in which none of the 4-cycles separates
two other. Otherwise in case when Ci

4 separates C j
4 and Ck

4,
i < j, i < k (i > j, i > k), the cycle Ci

4 is crossed by all four

edges joining the separated 4-cycles. In the case when Ci
4

separates C j
4 and Ck

4 for j < i and k > i, at least two paths
joining b j with bk and e j with ek cross in D the cycle Ci

4.
This contradicts the assumption that every of the subgraphs
H i has at most one crossing on its edges. Moreover, two
4-cycles do not cross each other. So, by Lemma 2.1, every
subgraph Qi

H has at least two crossings of types (1), (2), and
(3) which are counted in f (Qi

H) and therefore, f (Qi
H) ≥ 2

for all i = 1,2, . . . ,n−1.
It remains to prove that f (Qi

H) ≥ 3 for i = 1 and i =
n− 1. Consider first the subgraph Q1

H . By Lemma 2.1,
crD(C1

4)+ crD(C1
4 ,M

1
C ∪M2

C)+ crD(C0
4 ∪M1

C,C
2
4 ∪M2

C)≥ 2.
Thus, f (Q1

H) ≥ 2. If f (Q1
H) = 2, the edges of H0 ∪M1

H
do not cross each other as well as none of the edges a1b1
and e1 f1 crosses an edge of H0 ∪M1

H . A possible cross-
ing in the subdrawing of C0

4 ∪M1
C ∪C1

4 induced by D must
appear on the edges of C1

4 . But C1
4 can be crossed at most

once and as there is no good drawing of the graph C4�P1
with exactly one crossing, crD(C0

4 ∪M1
C ∪C1

4) = 0. The
subdrawing D(C0

4 ∪M1
C ∪C1

4) without crossings is unique
with exactly two vertices of C1

4 on the boundary of ev-
ery region outside C1

4 . (This drawing one can obtain from
the drawing in Fig. 4(a) by deleting the edges c1d1 and
c2d2 and by replacing the vertices b2,c2,d2,e2 by the ver-
tices b0,c0,d0,e0.) In D, the cycle C2

4 is placed in one re-
gion of D(C0

4 ∪M1
C ∪C1

4) outside C1
4 . Moreover, none of

the vertices a2 and f2 is placed inside C1
4 , otherwise C1

4
is crossed by the edge a2b2 and by the paths a2a1a0b0 or
by the edge e2 f2 and by the path f2 f1 f0e0, a contradiction.
So, at least two edges of M2

C and at least one of the paths
a2a1b1 and f2 f1e1 cross the edges of D(C0

4 ∪M1
C ∪C1

4). All
three crossings contribute the value 1 to f (Q1

H) and there-
fore, f (Q1

H) ≥ 3. The similar analysis for the subdrawing
of Qn−1

H gives f (Qi−1
H ) ≥ 3. So, in D there are at least

3+∑
n−2
i=2 f (Qi)+3 = 3+2(n−3)+3 = 2n crossings. This

completes the proof. �
The next theorem determines the crossing number of the

graph H�Pn for n≥ 2.

Theorem 4.1. cr(H�Pn) = 2n for n≥ 2.

Proof. The drawing in Fig. 3 shows that cr(H�Pn)≤ 2n, be-
cause every copy of H i, i = 1,2,3, ...,n−1, is crossed two
times, H0 and Hn are crossed once and there is no other
crossing in the drawing. We prove the reverse inequality
by induction on n. By Lemma 4.1, cr(H�P2) = 4. So, the
result is true for n = 2. Assume that it is true for n = k,
k≥ 2, and suppose that there is a good drawing of H�Pk+1
with fewer than 2(k+1) crossings. By Lemma 4.2, some of
the subgraphs H i, i = 0,1, ...,k+1, must be crossed at least
twice. By the removal of all edges of this H i, we obtain a
graph homeomorphic to H�Pk with fewer than 2k crossings
or one that contains the subgraph H�Pk and has fewer than
2k crossings. This contradiction with the induction hypoth-
esis completes the proof. �
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pěstovánı́ matematiky 107, No. 3 (1982) 225–230
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