54

Acta Electrotechnica et Informatica, Vol. 13, No. 2, 2013, 54-64, DOI: 10.2478/aeei-2013-0029

ALGORITHM VISUALIZATION USING THE VIZALGO PLATFORM

Slavomir SIMONAK
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of KoSice,
Letnd 9, 042 00 Kosice, Slovak Republic, tel. +421 55 602 3021, e-mail: slavomir.simonak @tuke.sk

ABSTRACT
Algorithms are central objects of every nontrivial computer application. Every programmer thus should have basic knowledge from
the area of algorithm design in order to work more effectively. Simplifying and deepening the understanding of algorithms operation
is the main goal of algorithm visualization. There is active research and development in the area of algorithm visualization in the last
decades. Solutions of different quality and serving different purposes are available nowadays, but often it is not an easy task to modify
or extend the particular solution to meet specific needs exactly. The paper contains concise overview of development in the area of
software visualization, as well as a proposal of software visualization platform with the emphasis on its extensibility and portability.

Keywords: Algorithm visualization, software visualization, visualization systems, plugin-based visualization platform, Java Simple

Plugin Framework (JSPF)

1. INTRODUCTION AND MOTIVATION

Based on the results of research in the visualization
area [|11/2]] as well as on our own experiences we believe that
visualization of algorithms can help significantly in simpli-
fying and deepening the understanding of algorithms opera-
tion. However, it is not an easy task to develop a purposeful
visualization tool, which would support teaching and re-
search processes effectively. It is important to find out what
makes the visualization tools effective and helpful. To do
so, first we will pay attention to studies that have been al-
ready done in the field of software visualization and then,
based on the knowledge achieved, a new visualization tool
will be proposed.

Except the algorithm visualization, the term software vi-
sualization is also often used within the papers published in
last years. It usually covers both visualization of algorithms
and visualization of data structures, but sometimes also an-
other aspects of software are considered, too [3]]. Algorithm
visualization, as part of software visualization, could be de-
scribed as “graphical representation of an algorithm or pro-
gram that dynamically changes as the algorithm runs” [2].
Data structure animation systems usually are considered to
be systems that support repeated graphical display of data
structures with changes in content and time to show the
viewer how the data are being transformed during execu-
tion [39].

More general definition of software visualization can be
found in [3]], where the author describes it as “visualiza-
tion of artifacts related to software and its development pro-
cess”. Artifacts here can mean program code, requirements
and design documentation, and bug reports. Main aspects
of software which can be visualized then include visualiza-
tion of its structure, behavior, and evolution.

An overview of visualization taxonomies [[7], together
with an analysis of factors increasing the effectiveness of
software visualization, is summarized in [4]].

2. OVERVIEW OF EXISTING SOLUTIONS

Even if the beginnings of software visualization date
back into the 1940’s [5]], the greatest development in the

ISSN 1335-8243 (print) (© 2013 FEI TUKE

www.aei.tuke.sk

VERSITA

area we could observe within the last 20-30 years. Modern
approaches to software visualization were brought in the
1980’s by the introduction of system BALSA (Brown &
Sedgewick, Brown University, USA) [6] which represented
a framework for interactive animations of algorithms with
support of dynamic views on algorithms and data struc-
tures. Later it was improved (BALSA-II) and offered inter-
active visualizations of programs written in Pascal. System
itself was written in the C language and according to 7] it
was the first one allowing the comparison of operation and
performance of algorithms on a single display. A view of
source code of the currently executed procedure with the
current line highlighted was usually provided, too. For a
couple of years the system was in active use within the
teaching process as well as a support tool for the design
and analysis of algorithms.

In the 1990’s, several new visualization systems started
to appear. One of the most famous was the project TANGO
(Stasko, Brown University, USA), which brought fluent an-
imations into the area, followed by its improvements called
Xtango (using X11 Window System) and Polka. Project
Zeus was the first one in which colors and sounds were
used [[8]]. While it is an evolution of system BALSA, Zeus
was implemented in multi-threaded and multi-processor en-
vironment and utilized MIDI synthesizer. 3D graphics in
projects Polka-3D and Zeus-3D was used for the first time
in the area of software visualization.

A list of interesting tools of the 1990’s includes also
ANIM (Bentley & Kernighan, AT&T Bell Laboratories) [9]]
- a system for creating animation and static figures from the
scripts generated during the program runtime (so the origi-
nal program was adapted by adding output commands in its
interesting places), UWPI (University of Washington Pro-
gram Illustrator, Henry & Whaley & Forstall, University
of Washington, Seattle, USA) [10] creating visualizations
of high-level abstract data structures, TPM (The Transpar-
ent Prolog Machine, Eisenstadt & Brayshaw, Open Univer-
sity, UK) - graphical tracer and debugger for the declara-
tive language Prolog, or Pavane (Roman, et al., Washington
University, Saint Louis, USA) [12] - dedicated for three-
dimensional visualization of parallel programs. Illustrative

ISSN 1338-3957 (online)

EMERGING,SCIENCE RUBLISHERS WWW.versita.com/aei

Acta Electrotechnica et Informatica, Vol. 13, No. 2, 2013

55

figures or animations, in some cases capturing the operation
of tools from the 1980’s and the 1990’s, can be found in [[7].

From about the year 2000 until the present time, many
interesting systems dedicated to software visualization have
been created. The project ANIMAL [13}/14], (Technical

University of Darmstadt, Germany) brought a system for
creating algorithm animations completely developed using
the Java language. An interesting feature of the system is
the possibility to generate algorithm visualizations (Fig. [I)
from the different areas of computer science.

r

|£| Animation Content Generators

-

= | B [t

#total: 232
(& Generators

» 55 de
v ﬁ en
v EJava
> [ﬁ Compression
* (&5 cryptography
> [ﬁ Graphics
L [ﬁ‘ Graphs
> [ﬁ Hashing
v (& Misc
L [ﬁ Dynamic Time Warp
v E Towers of Hanoi

Description

» ([i§ Pseudo-Code

This iterative algorithm would provide an excellent validation problem for putative program
simplification systems. To see this simple solution, first establish these standards : 1.
Mumber the disks from 1 (the smallest) to M (the largest). 2. The three posts are ordered
sothatthe concepts of moving a disk clockwise and counterclockwise are meaningful.
Mow the whaole solution derives from these three principles : 1. Move odd-numbered disks
only clockwise and even-numbered disks only counterclockwise. 2. Do not move the
same disk twice in succession. 3. Do not place a larger disk on top of a smaller one. Wm.
Randolph Franklin, "A SIMPLER ITERATIVE SOLUTION TO THE TOWERS OF HANOI
PROBLEM" Electrical, Computer, and Systems Engineering Department Rensselaer
Polytechnic Institute Troy, NY 12181

public void solveTowersOfHanoi (int nrDisks) |

Code Example
» [E5 Searching
> [E5 sorting lastMovedDisk = null;
» (E5 Matiab

allTowers = [TowerRk, TowerB, TowerCl;
putDisks (Towerd)

While { TowerB.nrDisks() '= nrDisks sz TowerC.nrDisks() '= nrD
for (Tower from : allTowers)
if { from.nrDisks() '= 0) |
curDisk = from.topDisk();
if (curDisk '= lastMovedDisk) {
if ({curDisk.LakelIsCdd)
to = from.nextClockwisiy
FRAS Jr - . Y >
Go bac Confirm Quit

Fig.1 The ANIMAL system

The current version of the system is available at its home
page [[14], together with corresponding documentation and
sample animations.

Depth First Search

Frearder:

Fostorder: 2

Stack:

— L = 00

Fig. 2 The JAWAA visualization

The JAWAA system (Duke University, Durham, NC,

ISSN 1335-8243 (print) © 2013 FEI TUKE

www.aei.tuke.sk

VERSITA

USA) is developed in Java and provides the scripting lan-
guage and development environment for simple creation of
algorithm animations with the possibility of their subse-
quent displaying using the web browser.

JAWAA scripts can also be generated by the program
written in an arbitrary programming language and so cre-
ating required animations (e.g. changes in data struc-
tures). Language commands include primitive objects (cir-
cle, line, text, rectangle, ...), generic actions (changeParam,
moveRelative, delay, ...), data structures (array, queue,
stack, tree, ...) and actions over the data structures (push,
pop, enqueue, ...), which can be used for visualization de-
sign. The project homepage [15], except the basic system-
related information and papers published, contains some
demonstrating visualizations, too (Fig. [2).

System Algorithms In Action [[16] (University of Mel-
bourne, Australia) was developed as a supporting tool for
teaching algorithms. Application’s interface consists of
several windows displaying algorithm pseudocode, expla-
nations and algorithm visualization itself (Fig. [3). Algo-
rithm visualizations implemented currently are subdivided
into four groups: searching algorithms (Binary search tree,
2-3-4 tree, RB tree, Skip list, ...), sorting algorithms (Shell-
sort, Quicksort, Heapsort, ...), string processing (KMP,
Boyer-Moore), and graph algorithms (BFS, DFS, Minimal

ISSN 1338-3957 (online)

EMERGING) SCIENCE PUBLISHERS WWW.versita.com/aei

56

Algorithm Visualization Using the VizAlgo Platform

spanning tree, ...). System is developed using Java and Java
script programming languages.

TRAKLA2 (Helsinki University of Technology, Fin-
land) is an environment for teaching of data structures and
algorithms as well as for visual assessment of knowledge
acquired from the given area. An overview of main fea-
tures of the system is nicely captured in a demonstration
video [18]].

o

Algorithm Mode Data

@, @ Open All || Close All & o
T [T ®;7< e | coce | un [pause || ose

HeapSort

30 create Heap From UnsartzdAray
(Z3 while (Not Finished) ‘

{
—) gwan LargestIn Heap Element In Nin Positian
(-3 Remove Nih Position From Further Considerati
3 Restore Heap Order;
¥
retum; "
+

a

8 48 01 03

Slower <« » Faster

Fig. 3 Algorithms In Action

Within the project homepage [17]], except the basic in-
formation about the system, the list of publications, down-
load section, also the TRAKLA?2 exercise package is avail-
able. This package contains a lot of prepared algorithm vi-
sualizations with the self-testing feature implemented (Fig.
M) to get the immediate feedback using the automatic as-
sessment system. A web browser with the Java support is
required.

[the hash function is
[pzobing type

EEN

595

Has| hle
DHeoee

Fig. 4 TRAKLA?2 exercise package

Very unusual, but interesting form of algorithm visual-
ization can also be found on video sharing site YouTube,
like Quick-sort with Hungarian folk dance [19] or Radix
Sort on the Playground [20]].

Nowadays, visualizations increasingly often are used
not only to help understanding of particular predefined al-
gorithms operation, but also in more general cases con-
nected with programming and system design. The rest of
the section is devoted to couple of approaches of this kind.

ISSN 1335-8243 (print) (© 2013 FEI TUKE

www.aei.tuke.sk

VERSITA

A powerful way to gain insight into a system opera-
tion can lead via moving between levels of abstraction. A
systematic approach to interactive visualization is explored
deeply in [41]. The approach is illustrated by example of
designing the control system for a simple car simulation

(Fig.).

At each step: =
Move forward 1 pixel.
If left of the road, turn right by 2.0° =
If right of the road, turn eft by 2.0°.

Fig. 5 Control system for a simple car simulation

In essay entitled Learnable Programming [42] the fol-
lowing goals for designing a programming system for un-
derstanding programs are formulated:

1. to support and encourage powerful ways of thinking

2. to enable programmers to see and understand the ex-
ecution of their programs

A number of useful hints to fulfill the goals formulated is
given within the essay.

An inspiring talk of the author of essays [41]] and [42]],
mentioned above, given at CUSEC 2012 conference is also
available [40]. Within the talk, the tools enabling people to
understand and create in a visual way are presented.

Another successful example is the Online Python Tu-
tor, which is a free educational tool for learning program-
ming by visualizing code execution. Visualization execu-
tions from different areas are prepared, e.g. Basic Exam-
ples, Math-Related, User Input, Object-Oriented Program-
ming, Linked Lists (Fig. [6), etc. According to the informa-
tion available on the project’s homepage [43]], instructors in
over a dozen universities have used it for teaching introduc-
tory computer science and programming courses.

Frames Ohjects

def listsum(numbers):

- if not numbers: Global variables funct

on
Listsum(numbers)

return @ listSum

else: myList tuple tuple

P! tuple
(f, rest) = numbers [B o [t
return f + listsum{rest) Listsum g 2 8 || Memo

numbers
mylist = (1, (2, (3, None))} P

total = listSum(mylist) rest

Edit code
ListSum

numbers

Fig. 6 Python Tutor

Light Table is an interactive IDE, providing a possibil-
ity of running program modifications, embedding different
kinds of objects and other features to help understanding
how programs really work [44].

ISSN 1338-3957 (online)

EMERGING,SCIENCE RUBLISHERS WWW.versita.com/aei

Acta Electrotechnica et Informatica, Vol. 13, No. 2, 2013

57

3. DOMAIN SPECIFIC VISUALIZATIONS

Searching for adequate abstractions of the specific prop-
erties of a particular domain requires the specific knowl-
edge from a given domain (dominant types of objects and
operations on them). Sometimes general-purpose algo-
rithm animation systems can be used for producing domain-
specific visualizations. However, the effort to do that could
be significantly higher, compared to approach when the
narrowly-focused systems are used [23]].

3.1. Computational Geometry

Finding abstractions of processed data can be quite sim-
ple if the data contain position-related information and so
could be displayed without extensive transformations. A
general tool for interactive visualization of geometric algo-
rithms is GeoWin [26]. System is implemented as a C++
class and thus can be interfaced with algorithmic software
libraries such as LEDA [27]].

[®] Algorithm-Window: MoxFlowFast <—1=

File Algarithm Tools

Generate graph

| |u|q]E]&

SiE B

Name
Caption

Value

Type
&l String

| @ Ready.
H B step H Il pause H

MaxFlowFast

L W step ‘

slower faster

Ready.

Fig. 7 EVEGA visualization environment [28]]

Java-based system EVEGA [28] is a visualization envi-
ronment for graph algorithms (Fig. [7). It provides means to
design and edit graphs, display visualizations, and perform
algorithm comparisons.

3.2. Concurrent Programs

Within the visualization of concurrent programs a num-
ber of specific problems (regarding data collection, data dis-
play, program execution, resource allocation, etc.) must be
addressed. An overview of systems for parallel program
visualization can be found e.g. in [29].

PARADE [30] is an event-based environment, which
supports the design and implementation of concurrent and
distributed program visualizations. The events can be re-
ceived via program calls, pipes, or read from a file. A spe-
cific component of the system collects events for every sin-
gle process and provides the user with possibility to ma-
nipulate order of the events (chronologically, logically, ...).

ISSN 1335-8243 (print) © 2013 FEI TUKE

www.aei.tuke.sk

VERSITA

Animation system POLKA is used within the PARADE for
creation of graphical views.

Start Execution I Select Execution Leadser | Pause “
Help | Redraw | Reset
Add Nodes 4‘ Default Configuration wiﬂ:vl Default Style 1
!
6
41

Another example of a system from the area of concur-
rent program visualization is VADE [31]. It is a client-
server system for visualization of distributed algorithms
(Fig. [8). The system provides libraries for automatic vi-
sualization generation, synchronization methods for main-
taining consistency as well as support for building web pre-
sentations of animations created.

3.3. Real-time Visualizations

In the case of some specific domains (e.g. network pro-
tocols) it is strongly required to represent exact timing rela-
tions of a given program. An extension of system POLKA
with the ability to animate actions with exact timing is sys-
tem POLKA-RC [32]. It also provides flexible multipro-
cessor mapping between the program and the visualization,
i.e. the program and its animation run as separate processes
communicating by sockets.

r‘j Simulation 1: Prototcol 5: Pipelining: Scenario 1
Send List
seq. Trie
0

Received List
Frame Seq.

sender receiver

Fram:

Frames Sent: 7 Frames Received: 0

S
—da-
.
e
=

waiting for Ack waiting for Frame

Timeouts(7) In: 7.3

S
%W unavailable

Protocol 5 | Automatic | sound off | Destroy | Stop |

Reject

Clear | Hide |

scenarin1 | scenarioz | seemenen | soensres | comrol | commentary | cantt |

Fig. 9 JOTSA - simulation of network protocol [33]]

ISSN 1338-3957 (online)

EMERGING) SCIENCE PUBLISHERS WWW.versita.com/aei

58

Algorithm Visualization Using the VizAlgo Platform

Another interesting system here is JOTSA (Java On
Time Synchronous Animation) [33]], developed using Java
and intended for design of interactive algorithm animations,
mainly of network protocols (Fig. [9). It supports exact
timing within animations, multiple independent synchro-
nized views, display zooming and linking of collections of
objects. In addition it provides support for animation of
user-defined simulations of network protocols. The project
homepage [34] contains a couple of links to documents
about JOTSA and applications utilizing the system. Ani-
mation examples together with source codes and the appli-
cation itself with source code are available, too.

3.4. Computational Models

Another area of interest for algorithm animators is the
visualization of computational models of formal languages.
These models are typically used for mathematical reasoning
rather than for programming of real applications. A tool for
design and simulation of several kinds of automata (finite
state automata, pushdown automata, and Turing machines)
and for mutual conversions of language representations is
JFLAP (Duke University, Durham, NC, USA) [35]. JFLAP
is written in Java and has been used for teaching as well as
research purposes.

An interesting tool for teaching subjects from the area of
theoretical informatics or design and construction of com-
pilers can be GANIFA [36]]. It is the Java applet for vi-
sualizations of algorithms from the field of finite automata
theory.

3.5. Proof Animations

According to [23]], visualization of proofs within the
scope of teaching theoretical computer science is relatively
unexplored area. As an example in this case can serve the
proof animation system SCAPA [37]]. The system generates
both an HTML document and a Java file from a proof writ-
ten in I&TEX. The task of visualizer is to extend and modify
these files. The proof animation is then created by using an
extended version of the LAMBADA tool.

4. ANALYSIS AND DESIGN OF VISUALIZATION
SYSTEMS

In a process of development of software system, anal-
ysis plays an important role. Specific issues of analyti-
cal phase in design of algorithm visualization systems are
treated in [[11]:

e User analysis should provide information concern-
ing the target group of users of the system under de-
sign (students, teachers, researchers, developers). By
using this information, designer can decide on right
content, its organization, depth, and methods of pre-
sentation and interaction.

o Needs analysis - do we really need the presentation of
an algorithm by its visualization, or there exist other
effective ways to do so?

ISSN 1335-8243 (print) (© 2013 FEI TUKE

www.aei.tuke.sk

VERSHT A 4 {EMERGING;SCLENCE RUBUISHERS

e Task analysis should give answers to what intended
users will do with the tool (creating new animations,
interacting with existing visualizations, debugging
programs, etc.).

o [nformation analysis - what kind of information will
be presented? Do we want to put emphasis on the
data structures rather than on the algorithms, display
a profile of resource utilization, compare two algo-
rithms?

e Domain analysis gives the scope of the algorithm vi-
sualization. The scope ranges from general-purpose
algorithm visualization systems (able to visualize al-
most any algorithm, like BALSA, TANGO, Zeus) to
specialized algorithm visualization systems. While
specialized systems are focused on a certain field of
computer science, they simplify the process of creat-
ing new visualizations.

® Resources analysis includes estimation of develop-
ment time, the size and skills of development team,
and the needs of specialized computer resources.

Within the design phase, special attention is required
when choosing the right specification method and tech-
niques for visual representation of information. In the case
of specification method, three main options are available:

e Predefinition (hand coded visualization) is mainly
used in application-specific visualizations. The
method is characterized by fixed (or highly restricted)
mapping of the steps of the algorithm to the graphi-
cal views. Main advantages include execution speed,
simple distribution and resulting visualizations can
be very interactive and visually attractive.

e Annotation - important steps of an algorithm are an-
notated with events calling graphical operations from
the library (change of position, color, ...). The main
advantage of the approach is the ability to define
events at any suitable level. Main disadvantage, on
the other hand, is the need to access and modify the
code of the program.

e Declaration - defined are mappings between states of
the program and graphical objects. Changes in pro-
gram state induce changes in its graphical represen-
tation (Pavane).

Brief description of some interesting techniques for vi-
sual representation of information follows:

e Default visualizations - design of appropriate com-
plexity of visual presentations for intended purposes
is required.

o Screen design and multiple views - for less expe-
rienced users, a way for reduction of the informa-
tion overload is abstraction (complicated parts of the
scene can be transformed into simpler items, some
phases of an algorithm operation can be omitted, us-
ing step-wise refinement, where basic idea is pre-
sented first, deeper details later, at user request). Rec-
ommended is a screen subdivision into functional ar-
eas, containing related type of information. When

ISSN 1338-3957 (online)

www.versita.com/aei

Acta Electrotechnica et Informatica, Vol. 13, No. 2, 2013

59

multiple views are used, each view provides a par-
ticular aspect of an algorithm and these views are
conceptually simpler and easier to implement than
monolithic views.

e Color and Sound. Using of colors calls attention to
specific data or information, helps to identify ele-
ments of structures, and capture the changes in time.
Color generally allows for denser presentation of in-
formation and according to [11] it increases appeal,
believability, memorability, and comprehensibility.
However, some drawbacks or disadvantages are con-
nected with using of colors, too (more complicated
design, color perception is subjective, so introducing
general rules for color use is very difficult), so it is
recommended to be rather conservative when using
colors. Sound can help to reduce the visual clutter
of current graphic interfaces, but there are also some
problems connected with using sound (more than one
computer using audio in the same room, more than
one view uses audio output, etc.). Similarly as in the
case of color, it is recommended to be rather conser-
vative in using sound, too.

e 3D displays are usually used to represent the 3-
dimensional data some algorithms manipulate, or
provide an extra dimension to convey more informa-
tion about two-dimensional data. Some techniques
that may be used with 3D (rotation, transparency,
navigation, exploration of objects) can be interesting
in the area of algorithm visualization.

e Interaction makes the visualizations more effective
by allowing the user to step through the execution or
set its speed, design input data for the algorithm, or
control the presentation and amount of information
displayed. Allowing the user to simultaneously run
several algorithms for comparison purposes can be
an interesting feature of a designed system, too.

According to [[11]], over one hundred of different algo-
rithm visualization tools have been built in the last twenty
years, but very few of them were evaluated systematically.
Difficulties connected with formal evaluation include: eval-
uation takes time, which visualization to use for testing,
how to measure program understanding, which criteria to
use, etc. So far, we have rather informal evidence available
that applications of algorithm visualizations are useful.

5. VIZALGO: PLUGIN-BASED ALGORITHM VI-
SUALIZATION PLATFORM

We start with analysis and present the resulting de-
cisions in design of the application later in this section.
Descriptions of the structure of prototype implementation,
user interface and the method of implementing plugin mod-
ules are provided within the section, too.

The decision to work on our own solution, while a lot of
existing solutions is available, is driven mainly by the fact,
that the application is intended to be used as a support tool
within the subject named Data Structures and Algorithms,

ISSN 1335-8243 (print) © 2013 FEI TUKE

www.aei.tuke.sk

VERSITA

taught in a bachelor study program at the author’s home in-
stitution. The selection of topics within the scope of the
subject is quite wide and it could probably be changed over
the time. To cover the scope of the subject, probably more
tools would be used, or quite big interventions to selected
tool would be required. Taking also possible changes to the
subject’s structure into account, we believe it is better to
start designing and developing our own solution with em-
phasis on its extensibility.

5.1. Requirements Analysis

There are some specific issues of analysis and design of
algorithm visualization systems, as it was described in sec-
tion [4] of this paper. At this place we try to give answers at
least to most important questions formulated there.

User analysis - the target group of users of the system is
mainly formed by students of bachelor study program. Ac-
cording to this fact, methods of presentation and interaction
should be rather simple, than too detailed and complicated.

Needs analysis - visualizations here are intended to be
an additional form of algorithm presentation, used together
with more traditional methods like pseudocodes, static fig-
ures, debugging outputs of running program for different
inputs, etc.

Task analysis - it is not supposed, that new animations
will be created by the users of the system (students). Ma-
jority of users will only interact with existing visualizations
of predefined algorithms in order to better understand their
operation.

Information analysis - within an initial version, empha-
sis is put on displaying the steps of given algorithm together
with corresponding changes in data structures used by the
algorithm. More advanced features, like profile of resource
utilization, or comparing two algorithms solving the same
problem could be attractive future enhancement.

Domain analysis - the system under design could be
considered general-purpose algorithm visualization system,
rather than specialized one. The reason is quite wide selec-
tion of topics within the scope of Data Structures and Algo-
rithms subject, where it is intended to be used as a support
tool.

Resources analysis - JSPF (Java Simple Plugin Frame-
work) helps to simplify communication of plugin modules
with the main module, so the reduction in development time
by using the JSPF is supposed. However, the estimation of
total development time has not been performed, because the
development of additional plugin modules is considered in
a longer period of time in the future.

The most suitable specification method to use within the
system seems to be annotation. Within the method, im-
portant steps of an algorithm (implemented by the plugin
module) are annotated with calls of corresponding graphi-
cal operations provided by the main module.

From visual representation of information point of view,
it is intended to keep the interface of the application rather
simple, as it is designed mainly for use by less experienced
users (students), as it was mentioned above. Colors are in-
tended to be used in a conservative way and sound output
will not be used at all. While the interaction possibility

ISSN 1338-3957 (online)

EMERGING) SCIENCE PUBLISHERS WWW.versita.com/aei

60

Algorithm Visualization Using the VizAlgo Platform

makes visualizations more effective, features like stepping
through the algorithm execution, setting its speed, and sup-
plying input data by the user are those to be included in our
solution.

5.2. Design Decisions

Having in mind the goals mentioned at the beginning
of the paper, including extensibility and portability of the
application, and the supposed way of using it, we had to
make several decisions. The need for extensibility was ex-
plained above, at the beginning of the section [5] of the pa-
per. Application is intended to be used mainly by students,
within university laboratories equipped with desktop com-
puters, possibly exploiting different software and hardware
platforms.

While Java is a mature platform with properties suitable
for project of this type (huge set of available libraries, tools
and frameworks, safety, productivity, maintainability, per-
formance, thread management, etc. [45])), the JVM (Java
Virtual Machine) is available for many software and hard-
ware platforms and usually it is preinstalled on computers
in laboratories, Java seems to be a good candidate for this
project.

Another technology to consider in our case, wold be the

HTMLS in combination with JavaScript, which is increas-
ingly popular choice for many applications nowadays. It
also offers a lot of useful features, like browser Ul (user
interface) uniformity, speed of development, simplicity,
scripts usable without compilation, etc. [45]].

If our intention was the web-based application with the
support for different types of client devices, the technology
of our choice probably would be the HTMLS. Instead of
this, stand-alone application, possibly preinstalled on com-
puters in laboratories, without the necessity of maintaining
dedicated server, in an environment with (even rare) con-
nectivity failures, would be more suitable for us. So at
the moment, we believe the better choice for the project
is Java, which proved itself a suitable technology for other
projects of this type [15H17]. Another important decision
to made was the selection of software framework to de-
crease the programming effort by support the cooperation
with plugin modules. After the analysis of available solu-
tions [21]] the JSPF was chosen [22]]. JSPF was designed
to reduce the time of development of plugin-based appli-
cations. The framework hides details of component im-
plementation from the programmer, which can concentrate
better on the module functionality. Inter-module communi-
cation is performed only by using the predefined interface.

==Java Class>»
(3 TimerAction
vizaige
<<Java Class>> o <<Java Class=»
(@ VizAlgo (3 VizApplet
vizalgo 0.1 vizalge
-visualizationPanel
-sourceCodePanel 0., -currentAlgorithm|0..1 0.1
Java Cl =<Java Interface>> =
<zJava Class=> _algorithm v _algorithm =<lava Class>>
(®CodePanel © ModulAlg (® visualPanel
vizsigo 0.1 vizsko 0.1 vizaigo
| ~ﬂrstAreEOm\LD.‘1
=<Java Class»> <fistSourceCode <<lava CLass.» slistArea <=Java Class=>
(3 ModulCode z (3 ModulViz : (O Area
vizalgo 0. vizalgo 0 vizaigo

~secandAreaObﬁu. 1

Fig. 10 VizAlgo: The structure of the main module [21]

5.3. The Structure of the Application

The VizAlgo application consists of two cooperating
parts - the main module and a set of independent plugin
modules. The main module functionality includes support
for displaying and controlling the algorithm execution. In-
dependent plugin modules form the second part of the plat-
form. A plugin module thus should contain the algorithm
code to be visualized and can utilize the services provided
by the main module. A structure of the main module con-
sists of several classes and interfaces as depicted in Fig. [I0]

ISSN 1335-8243 (print) (© 2013 FEI TUKE

www.aei.tuke.sk

VERSHT A 4 {EMERGING;SCLENCE RUBUISHERS

e VizApplet class - provides visualization-related ser-
vices for different components and selection of inter-
face language.

VizAlgo class - provides execution logic, algorithm
settings, and animation control. Drives a cooperation
of the main module with plugin modules. Creates a
list of available algorithms from which the user can
select one for visualization.

the rest of classes (Area, CodePanel, ModulCode,
ModulViz, VisualPanel) and the interface ModulAlg

ISSN 1338-3957 (online)

www.versita.com/aei

Acta Electrotechnica et Informatica, Vol. 13, No. 2, 2013

61

provide supporting methods for the application func-
tionality and their detailed description can be found
in [21].

5.4. Plugin Modules

Plugin modules within the platform are responsible for
implementation and visualization of particular algorithms.
The process of plugin module development will be illus-
trated by example of a simple sorting algorithm BubbleSort.

<<lava Class»>

(® ModulCode

vizalgo

<<Java Class»>
® ModulViz

vizaigo

<<Java Class>>

JRS— (@ BubbleSortimpl

vizalgo.bubblesort.impl

<<Java Interface>>

@ BubbleSort

vizalgo bubblesort

© pseudoCode():void
@ solution():void

Fig. 11 VizAlgo: The structure of a plugin module [21]]

We start by creation of the BubbleSort interface and
the BubbleSortImpl class. The interface created will con-
tain two abstract methods pseudoCode() and solution(), and
these will be overwritten in the BubbleSortImpl class later.
The class extends the ModulViz class and implements inter-
faces BubbleSort and Runnable (Fig. [T1).

public BubbleSortImpl() {
sort = new Thread (this);
sort.starc();
pseudoCode () ;

Fig. 12 VizAlgo: The BubbleSortImpl method

Within the constructor of the BubbleSortImpl class (Fig.
@), creation and execution of a new thread is followed
by loading the algorithm pseudocode by calling the pseu-
doCode() method. For storing the pseudocode of algorithm,
the method utilizes a list of ModulCode type (Fig. [13).

public void pseudoCode () {

listSourceCode. add (new ModulCode ("for (int pass=1; pass < n;
listSourceCode. add (new ModulCode ("
listSourceCode.add (new ModulCode ("
listSourceCode. add (new ModulCode ("
listSourceCode. add (new ModulCode ("
listSourceCode. add (new ModulCode (" x[i+1] = temp;"));
listSourceCode.add (new ModulCode (™ My
listSourceCode. add (new ModulCode (" IR
listSourceCode.add (new ModulCode ("}™));

pass++) {")):
for (int i=0; i < n-pass; i++) {")}):
if (x[i] > =x[i+1]) {"));
int temp = x[i]; "y
x[1] = x[1+1]1:"));

Fig. 13 VizAlgo: The pseudoCode method

The solution() method contains a code for algorithm ex-
ecution, in conjunction with managing the highlighting of

ISSN 1335-8243 (print) © 2013 FEI TUKE

www.aei.tuke.sk

VERSITA

proper line of pseudo code and visual representation of al-
gorithm operation. A core part of the method for a simple
sorting algorithm visualization (Bubble sort) is given in Fig.

14

public void solution{) {

try i
areaRestore();
rectangleClear (10,
loadhrea (60, 120):

10, 320, 320);

for (int pass = 1; pass < listArea.size():

colorCodeMarker (0) ;

colorCodeMarker (1)

for (int i = 0; i <
pause ()}

colorMarker(i, i + 1, 2, 55, 393);

if (table[i] > table[(i + 1)1) {

colorCodeMarker (2);

pass++) {

n - pass; i++) {

colorMarker(i, 1 + 1, 1,
colorCodeMarker (3) ;

int temp = table[i]:
colorCodeMarker (4)
table[i] = table[(i + 1)]:

colorCodeMarker (5) ;

stringTable[i] = stringTable[(i + 1)]:
table[{(i + 1)] = temp;

stringTabkle[(i + 1)] = Integer.toString(temp);
colorCodeMarker (1) ;

linePrint (60, 120);

55, 93);

drawText (algorithmEnd, 40, 320, 2):

wizalgo.VizAlgo.end = true;

} catch (Exception e) { return; }

Fig. 14 VizAlgo: The solution method

By using methods of the ModulViz class within the al-
gorithm execution code, it is possible to perform following
visualization-related operations:

o rectangleClear() - clearing the content of given rect-
angular area,

e loadArea() - loading the elements with given drawing
position,

e linePrint() - printing the list of elements,

o colorCodeMarker() - highlighting the particular line
of source code,

e areaRestore() - clearing all the highlightings,

e colorMarker() - coloring of particular elements of ar-
ray,

e drawText() - drawing a text at the position specified.

5.5. User Interface

Main window of the application, representing the user
interface, can be subdivided into five logical areas: Inputs
panel, Pseudo code visualization, Algorithm visualization,
Information and Settings panel (Fig. [I3).

ISSN 1338-3957 (online)

EMERGING) SCIENCE PUBLISHERS WWW.versita.com/aei

62

Algorithm Visualization Using the VizAlgo Platform

| VizAlge
Inputs panel

Pseudo code visualisation

for (int pass=1; pass < n; passt++] |
for (int i=0;
if (x=[i] > =[i+1]) {
int temp = x[i];

x[i] = =[i+l];
x[i+l]

i < n-pass; it+) {

= temp;

Settings panel

Program Help

Algorithm

Algorithm visualisation

Information

Bubble sort is a simple sorting algorithm. This algorithm comparing each pair of adjacent items and
swwapping them if they ars in the wrong order

11 61 89 . 39 71 29 7

]

Fig. 15 VizAlgo: User Interface

The inputs panel is located at the top of the application’s
window and it includes a scrolling menu for selection of an
algorithm. Pseudo code of the algorithm selected is dis-
played in pseudo code visualization area at the left side of
the window. While the visualization is running, the part of
the algorithm actually executed is highlighted here. Algo-
rithm visualization area is located at the right side of the
window and it displays the visual representation of the al-
gorithm operation.

Under the algorithm visualization area, the information
panel is located, containing the short description of a given
algorithm supplied by the author of the plugin module. At
the bottom of the window, the settings panel is located.
In direction from the left to the right side it contains two
menus (Program and Help) for terminating the program and
displaying information about the author of the program and
about the program itself respectively.

Next four buttons, in direction from left to right, are re-
sponsible for the basic algorithm execution control: Start
- loading and executing the algorithm selected, Next - step
by step execution and visualization, Stop - terminating the
algorithm execution, and Play - activating the automatic vi-
sualization mode. Next to the right, the speed of the an-
imation, the number of digits of sorted numbers, and the
language (Slovak or English) can be set using the corre-
sponding controls. The My number button enables the user
to enter its own sequence of numbers to sort instead of leav-
ing the program to generate the sequence randomly.

5.6. VizAlgo: the Current State

At the present time, three sorting algorithms are imple-
mented in a form of plugin modules. Two of them, Bubble
sort and Selection sort are simple comparison-based sorting
algorithms. The third one, Radix sort, takes rather different

ISSN 1335-8243 (print) (© 2013 FEI TUKE

www.aei.tuke.sk

VERSITA

approach to sort integers with the same number of digits,
without direct comparison of sorted elements. Elements
here are distributed into buckets (ADT Queue) according
to the digit at a particular position, starting from the right-
most one. When the distribution phase by the digit at a
given position is finished, contents of buckets are concate-
nated back to the main bucket and thus forming sequence
sorted according to the given digit and digits on the right
from it. The algorithm continues by distribution into buck-
ets again, according to higher-order digits, with subsequent
concatenation into the main bucket. After processing the
sequence of elements according to the highest-order digit,
the sequence is sorted.

In addition to the three sorting algorithms mentioned
above, visualization of the Stack ADT is implemented and
supplied as the next plugin module.

6. CONCLUSIONS

Within the paper we provided a concise overview of de-
velopment in the area of software visualization and sum-
marized the specific issues of analysis and design of visu-
alization systems. According to our intention to design and
develop a plugin-based platform for algorithm visualization
with the emphasis on its extensibility and portability, we
proposed the core of the platform, together with a couple of
plugin modules for examination of the design. The exten-
sibility is ensured by the possibility of independent devel-
opment of plugin modules, extending the functionality of
the application without intervening into the main module.
By using the JSPF framework, communication of the plu-
gin modules with the main module was simplified signifi-
cantly and so the development effort could be reduced, too.
Portability was ensured by using the Java programming lan-
guage, so the application can be used on many software and

ISSN 1338-3957 (online)

EMERGING,SCIENCE RUBLISHERS WWW.versita.com/aei

Acta Electrotechnica et Informatica, Vol. 13, No. 2, 2013

63

hardware platforms, where the Java environment is avail-
able.

As the main direction of future extensions we recognize
the implementation of new plugin modules. By increas-
ing the number of plugin modules available, the usability
of the application can be improved, too. We would like
to implement not only the next sorting algorithms, for vi-
sualization of which the application has shown its capabil-
ities, but also algorithms from other areas. As examples
here can serve the visualizations of algorithms on graphs,
trees, hash tables, or other data structures. As a next ben-
efit from implementing such extensions the feedback could
be obtained, showing us the way in which the main module
could be extended or modified to give even better support
for visualization of different kinds of algorithms. As a pos-
sibility in this direction we can mention the ability to step
back or to adjust some of parameters while the visualiza-
tion is running. Another interesting extension to implement
would be a testing module providing automatic knowledge
assessment functionality within the system.

ACKNOWLEDGEMENT

This work is the result of the project implementation:
Development of the Center of Information and Communi-
cation Technologies for Knowledge Systems (ITMS project
code: 26220120030) supported by the Research & Devel-
opment Operational Program funded by the ERDF.

REFERENCES

[1] STASKO,J.: Algorithm Visualization Reflections and
Future Directions. The Third International Comput-
ing Education Research Workshop ICER’07, Georgia
Institute of Technology, Atlanta, GA, USA, 2007.

TUDOREANU, M. E. - WU, R. — HAMILTON-
TAYLOR, A. — KRAEMER, E.: Empirical Evidence
that Algorithm Animation Promotes Understanding of
Distributed Algorithms, IEEE 2002 Symposium on
Human Centric Computing Languages and Environ-
ments, 2002.

(2]

[3] DIEHL, S.: Software visualization: Visualizing the
Structure, Behaviour, and Evolution of Software.

Springer, New York, 2007, 187 p.

§UCHOVA, 7.: Visualization of algorithms and data
structures, DCI FEEI TU of KoSice, Bachelor thesis,
2010 (in Slovak).

[5] DIEHL, S. (Ed.): Software Visualization, Lecture
Notes in Computer Science, Vol.2269, 2002.

[6] BROWN, M. H. — SEDGEWICK, R.: A system
for algorithm animation, Proceedings of the 11th an-
nual conference on Computer graphics and interactive
techniques, SIGGRAPH’ 84, 1984.

PRICE, B. A. — BAECKER, R. M. - SMALL, I
S.: A Principled Taxonomy of Software Visualiza-
tion, Journal of Visual Languages and Computing,
Volume 4, Issue 3, pp. 211-266, 1993. Available:
http://mcs.open.ac.uk/bpS/papers/1993-JVLC/

(4]

(7]

ISSN 1335-8243 (print) © 2013 FEI TUKE

www.aei.tuke.sk

VERSITA

[8] BROWN, M. H. - HERSHBERGER, J.: Color and
sound in algorithm animation, Computer, 25(12),
1992.

BENTLEY, J. L. - KERNIGHAN, B. W.: A System
for Algorithm Animation. Computing Systems, 4(1):
5-30, 1991.

HENRY, R. R. - WHALEY, K. M. - FORSTALL, B.:
The University of Washington Illustrating Compiler.
In Proceedings of The ACM SIGPLAN’90 Confer-
ence on Programming Language Design and Imple-
mentation, (pp. 223-233). New York, 1990.

KHURI, S.: Designing Effective Algorithm Visu-
alizations, First International Program Visualization
Workshop, ITiCSE, Finland, 2000. Available: http:
/Iwww.cs.sjsu.edu/~khuri/invited.html

ROMAN, G. C. - COX, K. C. - WILCOX, C. D. -
PLUN, J. Y.: Pavane: a System for Declarative Visu-
alization of Concurrent Computations. Journal of Vi-
sual Languages and Computing, Vol. 3, pp.161-193,
1992.

ROBLING, G. - FREISLEBEN, B.: ANIMAL: A sys-
tem for supporting multiple roles in algorithm ani-
mation, Journal of Visual Languages and Computing,
2002.

ANIMAL Home Page,
algoanim.info/Animal AV/

The JAWAA Homepage, Available: https://www.cs.
duke.edu/csed/jawaa2/

(9]

(10]

(11]

[12]

[13]

[14] Available: http://www.

[15]

[16] Algorithms in Action, Available: http://ww2.cs.mu.

oz.au/aia/

TRAKLA?2 Software Project, Available: http://www.
cse.hut.fi/en/research/SVG/TRAKLA?2/

[18] TRAKLA2 video, Available: http://www.cse.hut.fi/
en/research/SVG/TRAKILA2/video/

[17]

[19] Quick-sort with Hungarian (Kiikiillomenti legényes)
folk dance, YouTube, Available: http://www.youtube.
com/watch?v=kDgvnbUlqT4&feature=related

Radix Sort on the Playground, YouTube,
Available: http://www.youtube.com/watch?v=
1btN8rY7VSk&feature=related

SAJKO, A.: Algorithm Visualization, DCI FEEI TU
of Kosice, Bachelor thesis, 2012 (in Slovak).

(20]

(21]

[22] JSPF: Java Simple Plugin Framework. Available:

http://code.google.com/p/jspf/

KERREN, A. — STASKO, J.: Algorithm Animation -
Introduction, Software Visualization State of the Art
Survey, Springer, LNCS 2269, 2002, Chapter 1, pp.
1-15.

BERGHAMMER, R.: KIEL: A Program for Visual-
izations of the Evaluation of Functional Programs (in
German). In S. Diehl and A. Kerren, editors: Pro-
ceedings of the GI-Workshop “Software Visualiza-
tion” SV2000.

(23]

(24]

ISSN 1338-3957 (online)

EMERGING) SCIENCE PUBLISHERS WWW.versita.com/aei

http://mcs.open.ac.uk/bp5/papers/1993-JVLC/
http://www.cs.sjsu.edu/~khuri/invited.html
http://www.cs.sjsu.edu/~khuri/invited.html
http://www.algoanim.info/AnimalAV/
http://www.algoanim.info/AnimalAV/
https://www.cs.duke.edu/csed/jawaa2/
https://www.cs.duke.edu/csed/jawaa2/
http://ww2.cs.mu.oz.au/aia/
http://ww2.cs.mu.oz.au/aia/
http://www.cse.hut.fi/en/research/SVG/TRAKLA2/
http://www.cse.hut.fi/en/research/SVG/TRAKLA2/
http://www.cse.hut.fi/en/research/SVG/TRAKLA2/video/
http://www.cse.hut.fi/en/research/SVG/TRAKLA2/video/
http://www.youtube.com/watch?v=kDgvnbUIqT4&feature=related
http://www.youtube.com/watch?v=kDgvnbUIqT4&feature=related
http://www.youtube.com/watch?v=ibtN8rY7V5k&feature=related
http://www.youtube.com/watch?v=ibtN8rY7V5k&feature=related
http://code.google.com/p/jspf/

64

Algorithm Visualization Using the VizAlgo Platform

[25] EISENSTADT, M. — BRAYSHAW, M.: The Trans-
parent Prolog Machine (TPM): An Execution Model
and Graphical Debugger for Logic Programming.
Journal of Logic Programming, 5(4):1-66, 1988.

BASKEN, M. — NAHER, S: GeoWin A Generic
Tool for Interactive Visualization of Geometric Algo-
rithms. In Proceedings of Dagstuhl Seminar on Soft-
ware Visualization, 2001.

LEDA home, Available:
algorithmic-solutions.com/index.htm

KHURI, S. - HOLZAPFEL, K.: EVEGA: An Edu-
cational Visualization Environment for Graph Algo-
rithms. In Proceedings of the 6th Annual Conference

on Innovation and Technology in Computer Science
Education, ITiCSE 2001. ACM Press, 2001.

KRAEMER, E.: Visualizing Concurrent Programs. In
John Stasko, John Domingue, Marc H. Brown, and
Blaine A. Price, editors, Software Visualization: Pro-
gramming as a Multimedia Experience, chapter 17,
pages 237-256. MIT Press, Cambridge, MA, 1998.

STASKO, J. T.: The PARADE Environment for Visu-
alizing Parallel Program Executions: A Progress Re-
port. Technical Report GIT-GVU-95-03, 1995.

MOSES, Y. -POLUNSKY, Z. - TAL, A. - ULITSKY,
L.: Algorithm Visualization For Distributed Environ-
ments. In Proceedings of the IEEE Symposium on In-
formation Visualization 1998, pages 71-78, 1998.

STASKO, J. T. - McCRICKARD, D. S.: Real Clock
Time Animation Support for Developing Software Vi-
sualisations. Australian Computer Journal, 27(4):118-
128, 1995.

ROBBINS, S.: The JOTSA Animation Environment.
In Proceedings of the 31st Hawaii Int. Conference on
Systems Science, pages 655-664, 1998.

JOTSA Home Page, Available: http://vip.cs.utsa.edu/
java/jotsahome/

GRAMOND, E. - RODGER, S. H.: Using JFLAP to
Interact with Theorems in Automata Theory. SIGCSE
Bulletin (ACM Special Interest Group on Computer
Science Education), 31, 1999.

DIEHL, S. — KERREN, A. — WELLER, T.: Visual
Exploration of Generation Algorithms for Finite Au-

tomata. In Implementation and Application of Au-
tomata, LNCS 2088, pages 327-328, 2001.

[26]

[27] http://www.

(28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]

(36]

ISSN 1335-8243 (print) (© 2013 FEI TUKE

www.aei.tuke.sk

VERSHT A 4 {EMERGING;SCLENCE RUBUISHERS

[37] PAPE, C.: Animation of Structured Proofs in Educa-
tion at University Level (in German). PhD thesis, Uni-
versity of Karlsruhe, Germany, 1999.

[38] Sami Khuri’s Visualization and Animation Pack-
ages, Available: http://www.cs.sjsu.edu/faculty/khuri/

animation.html

STASKO, J. T. — PATTERSON, C.: Understanding
and Characterising Program Visualization Systems,
Technical Report GIT-GVU-91-17, 1993.

VICTOR, B.: Inventing on Principle. Canadian Uni-
versity Software Engineering Conference, CUSEC
2012. Available: http://vimeo.com/36579366

VICTOR, B.: Up and Down the Ladder of Abstrac-
tion. October, 2011. Available: http://worrydream.
com/LadderOfAbstraction/

VICTOR, B.: Learnable Programming. Septem-
ber, 2012. Available: http://worrydream.com/
LearnableProgramming/

[43] GUO, P.: Online Python Tutor. 2010-2013. Available:
http://www.pythontutor.com/

[44] GRANGER, C.: Light Table, 2013. Available: http:
/lwww.chris-granger.com/lighttable/

[45] TRAVERSAT, B.: HTMLS5/JavaScript and Java:
The Facts and the Myths, JavaOne annual confer-
ence, Oracle, 2011. Available: http://www.oracle.
com/javaone/lad-en/session-presentations/clientside/
24821-enok-1439095.pdf

[39]

[40]

[41]

[42]

Received March 18, 2013, accepted June 17, 2013

BIOGRAPHY

Slavomir Simoiidk was born in 1974. In 1998 he grad-
uated from the Department of Computers and Informatics
of the Faculty of Electrical Engineering and Informatics at
Technical University of KoSice and defended his PhD thesis
titled ’Formal Method Integration Based on Transformation
of Petri Nets and Process Algebras’ in 2003. Currently he
works as an assistant professor at the Department of Com-
puters and Informatics. His research interests include for-
mal methods integration and application, algorithms and
data structures, machine-oriented languages, and computer
emulation.

ISSN 1338-3957 (online)

www.versita.com/aei

http://www.algorithmic-solutions.com/index.htm
http://www.algorithmic-solutions.com/index.htm
http://vip.cs.utsa.edu/java/jotsahome/
http://vip.cs.utsa.edu/java/jotsahome/
http://www.cs.sjsu.edu/faculty/khuri/animation.html
http://www.cs.sjsu.edu/faculty/khuri/animation.html
http://vimeo.com/36579366
http://worrydream.com/LadderOfAbstraction/
http://worrydream.com/LadderOfAbstraction/
http://worrydream.com/LearnableProgramming/
http://worrydream.com/LearnableProgramming/
http://www.pythontutor.com/
http://www.chris-granger.com/lighttable/
http://www.chris-granger.com/lighttable/
http://www.oracle.com/javaone/lad-en/session-presentations/clientside/24821-enok-1439095.pdf
http://www.oracle.com/javaone/lad-en/session-presentations/clientside/24821-enok-1439095.pdf
http://www.oracle.com/javaone/lad-en/session-presentations/clientside/24821-enok-1439095.pdf

