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ABSTRACT
We discuss several facts related to numerical-analytic methods for boundary value problems for first order ordinary and functional

differential equations. A numerical-analytic scheme of investigation of a two-point boundary value problem for functional differential
equations is stated.
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1. INTRODUCTION

It may be well agreed upon the philosophical thesis that
the two basic questions for any boundary value problem are
how to:

(E) Prove the existence of a solution in a given set.

(A) Choose a suitable approximation scheme that can be
used for its practical finding.

As a rule, these two points are treated by methods that
essentially differ from one another both in their nature and,
what is most unhappy, in the prerequisites needed to guar-
antee their applicability. Indeed, the powerful armoury of
topological methods, which can be regarded as a source of
the majority of existence theorems and allows one to treat
very rich classes of equations in a truly sophisticated man-
ner, is firmly focused on answering question (E), providing
only the very fact of the existence of a solution as the ulti-
mate result, with some or another additional information on
its spatial localisation at most, and usually no hints for its
efficient construction. In other words, techniques based on
a priori estimates and continuation, as a rule, allow one to
study question (E) only.

On the other hand, with very few exceptions, all the nu-
merical methods providing one tools for addressing ques-
tion (A), can only be applied when the solvability of the
problem under consideration is known, i. e., one should as-
sume that (E) has already been solved.

One thus has to deal with two or more kinds of tech-
niques to solve both (E) and (A). This is the case, for ex-
ample, when Galerkin-type methods are used to construct
a solution the existence of which has been proved by using
topological methods [8]. The choice of a suitable combi-
nation of methods, however, may be quite problematic be-
cause the applicability conditions are usually different. This
is the case, for example, when, for a problem with discon-
tinuities, some conditions providing a priori estimates turn
out to be sufficient for solving (E), whereas for the conver-
gence of a discretisation scheme leading one to the resolu-
tion of (A), some smoothness restrictions are needed. Such
a situation is rather generic.

In order to overcome this complication, one may choose
either to renounce the mathematical rigorousness to some

extent by relying on one’s intuition and treating (A) with-
out a complete substantiation of the discretisation method
in use, or to try to apply an approach that would, under
suitable assumptions, help in solving both (E) and (A) with
sufficient strictness.

The latter choice is a matter of general expediency and
personal preference. In particular, when the non-linear
terms exhibit some kind of monotone behaviour, it makes
sense to try the two-sided approximation methods (or, in
an alternative terminology, monotone-iterative techniques
[6, 9]), having their origin in the method introduced by
Chaplygin in 1919 (see [2, 10, 13]). In case of success, one
proves the solvability of the problem and constructs two
sequences that approximate the solutions from below and
from above respectively with increasing accuracy. How-
ever, the key assumption allowing one to apply such tech-
niques requires the existence of the initial couple of approx-
imations which, in the theory of differential equations, are
usually called lower and upper functions (see, e. g., [15]).
The latter non-trivial assumption, as a rule, is not easy to
verify, and even more, the question on the construction of
such a pair of elements may turn out to be comparable in
complexity with the original problem. The interested reader
may refer to the book [14] for a clear exposition of this mat-
ter in a general setting involving heterotone operators (now
frequently called mixed monotone, apparently due to [4]).

The aim of this note is to outline the advantages that
the so-called numerical-analytic methods may have when
one is interested in treating (E) and (A) simultaneously.
The idea dates back to the works of Lyapunov and Schmidt
[11, 37] and suggests one to decompose the space in such a
way that the given operator equation, under appropriate as-
sumptions, is reduced to a system of finitely many numer-
ical equations usually referred to as determining equations
(see [3, 7, 39, 40] for a detailed exposition).

We are interested in the efficient realisation of this idea
developed by Samoilenko [33,34], motivated by [1,5], and,
in the periodic case, known under the name method of pe-
riodic successive approximations [17, 35]. We refer the
reader to [17, 24, 35, 36] for more details. Many comments
and references on this topic can also be found in the sur-
vey [25–31]. Among recent papers devoted to the subject
discussed, we mention [18–21, 23].
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Here, we breafly describe an approach of this kind
adopted to two-point boundary value problems for systems
of functional differential equations.

Consider the system of functional differential systems

x′(t) = ( f x)(t), t ∈ [a,b], (1)

determined by a non-linear operator f : C([a,b],Rn) →
L1([a,b],Rn). Equation (1) is studied under the two-point
linear boundary conditions of a non-separated type

Ax(a)+Bx(b) = d, (2)

where d ∈ Rn and B is a non-singular matrix. Without loss
of generality, one may restrict oneself to the boundary con-
dition of the particular form

Ax(a)+ x(b) = 0. (3)

2. SUCCESSIVE APPROXIMATIONS

We look for a solution of problem (1), (3) among func-
tions having initial value in the cone segment 〈z0,z1〉 of the
form

〈z0,z1〉 := {z ∈ Rn | z0 ≤ z≤ z1}, (4)

where z0 and z1 are certain fixed vectors. Geometrically,
this means that we fix a strip-like region where x(a) for a
potential solution x(·) may vary. Here and below, the in-
equalities for vectors and matrices are understood in the
componentwise sense.

Definition 2.1. A mapping f :C([a,b],Rn)→ L1([a,b],Rn)
is said to satisfy the Lipschitz condition on a set B ⊂
C([a,b],Rn) if there exists a positive linear operator l :
C([a,b],Rn)→ L1([a,b],Rn) such that

|( f u)(t)− ( f v)(t)| ≤ (l|u− v|)(t), t ∈ [a,b], (5)

for all u and v from B.

The positivity of l in the last definition is understood in
the following sense.

Definition 2.2. An operator

l : C([a,b],Rn)→ L1([a,b],Rn)

is said to be positive if (lu)(t) ≥ 0 for a. e. t ∈ [a,b] when-
ever u(t)≥ 0 for all t ∈ [a,b].

The Lipschitz condition (5) will be assumed in tube-like
regions. More precisely, given any vectors y0 and y1 from
Rn, we define the set B(y0,y1) by putting

B(y0,y1) := {x ∈C([a,b],Rn) : y0 ≤ x(t)≤ y1

for all t ∈ [a,b]}. (6)

In the sequel, we restrict our consideration to the
case where the positive linear operator l : C([a,b],Rn)→
L1([a,b],Rn) appearing in the Lipschitz condition (5) pos-
sesses the property

esssup
t∈[a,b]

(li jσ)(t)
σ(t)

<+∞ (7)

for all i, j = 1,2, . . . ,n, where

σ(t) := (t−a)(b− t), t ∈ [a,b], (8)

and the operators li j : C([a,b],R) → L1([a,b],R), i, j =
1,2, . . . ,n, are the components of l defined according the
formula

(liku)(t) := li(uek), t ∈ [a,b], (9)

for all i, j = 1,2, . . . ,n and u ∈C([a,b],R).
It is clear that, under assumption (7), the components

vi j := esssup
t∈[a,b]

1
σ(t)

(li jσ)(t) (10)

of the square matrix

V := (vi j)
n
i, j=1 (11)

are finite for any i, j = 1,2, . . . ,n. Since σ is a non-negative
function and the operator l is positive, it is clear that all the
elements of V are non-negative. Inequality (7), in fact, is a
growth restriction for the components of l.

Our numerical-analytic study of solutions of the bound-
ary value problem (1), (3) is based upon the use of the func-
tion sequence determined by the recurrence relation

xm+1(·,z) := P f xm(·,z)+ϕz, m = 0,1,2, . . . , (12)

with x0 (·,z) := ϕz, where

ϕz(t) := z− t−a
b−a

(A+1n)z, t ∈ [a,b], (13)

for any z ∈ 〈z0,z1〉 and

(Py)(t) :=
∫ t

a
y(s)ds− t−a

b−a

∫ b

a
y(s)ds (14)

for all y ∈ L1([a,b],Rn) and t ∈ [a,b]. The vector z in (12)
is considered as an unknown parameter varying between z0
and z1. The projector P arises here in a natural way (see,
e. g., [17, 35] and [32, p. 88]).

It is easy to verify that, for every m = 0,1,2, . . . func-
tion (12) satisfies the boundary condition (3) for an arbitrary
value of z. In what follows, this important observation al-
lows one to “forget” about the boundary condition because
all the functions that can potentially be considered as ap-
proximations already satisfy it.

Let us introduce into consideration the n× n matrices
Ā− = (ā−; i, j)

n
i, j=1 and ¯̄A− = ( ¯̄a−; i, j)

n
i, j=1 with the elements

defined by the equalities

ā−; i, j :=

{
0 if i 6= j,
min{1, [aii]−} if i = j,

(15)

and

¯̄a−; i, j :=

{
[ai j]− if i 6= j,
max{1, [aii]−} if i = j.

(16)

Finally, we put

ω(z) := esssup
t∈[a,b]

( f ϕz)(t)− ess inf
t∈[a,b]

( f ϕz)(t) (17)

for all z ∈ 〈z0,z1〉, where ϕz is the function defined by (13).

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:09 AM



Acta Electrotechnica et Informatica, Vol. 12, No. 3, 2012 69

3. CONVERGENCE

Assumption (7) allows one to prove the following state-
ment.

Theorem 3.1. Assume that f satisfies the Lipschitz con-
dition (5) on the set B(−ρ∗ + Ā−z0 − A+z1,

¯̄A−z1 + ρ∗),
where

ρ∗ :=
3
4

(
3

b−a
1n−V

)−1

sup
ξ∈〈z0,z1〉

ω(ξ ) (18)

and l : C([a,b],Rn)→ L1([a,b],Rn) is a certain positive lin-
ear operator with property (7). Furthermore, assume that
the corresponding matrix V = (vi j)

n
i, j=1 with elements (10)

satisfies the condition

r(V )<
3

b−a
. (19)

Then:

1. For any fixed z ∈ 〈z0,z1〉, the sequence of functions
(12) converges uniformly on [a,b] to a function

x∞(·,z) := lim
m→∞

xm(·,z) (20)

possessing the properties

x∞(a,z) = z,

Ax∞(a,z)+ x∞(b,z) = 0.

2. The formula

〈z0,z1〉 3 z 7−→ ∆(z) := (A+1n)z

+
∫ b

a
( f x∞(·,z))(s)ds (21)

introduces a well defined single-valued function ∆ :
〈z0,z1〉 → Rn.

3. The limit function (20) for all fixed z ∈ 〈z0,z1〉 is a
solution of the Cauchy problem

x′(t) = ( f x)(t)−∆(z), t ∈ [a,b], (22)
x(a) = z, (23)

where the vector function ∆ : 〈z0,z1〉 → Rn is given
by (21).

4. For all fixed z ∈ 〈z0,z1〉 and m≥ 1, the estimate

max
t∈[a,b]

|x∞(t,z)− xm(t,z)| ≤ σ(t)
(b−a)m−1

3m V mṼ ω(z)

holds, where

Ṽ :=
(

1n−
1
3
(b−a)V

)−1

. (24)

It is important to obverve that the Lipschitz condi-
tion (5) in Theorem 3.1 is assumed on the bounded set
B(−ρ∗+ Ā−z0−A+z1,

¯̄A−z1 + ρ∗) only and, in general,

may not be satisfied globally. The convergence of the suc-
cessive approximations is then guaranteed by the smallness
condition (19) for the eigenvalues of the matrix V .

One can specify other convergence conditions which do
not depend on property (7) (see, e. g., [23]). Note, however,
that assumption (7) is satisfied in many cases. For example,
if the components of the Lipschitz operator l in (5) have the
form

(liku)(t) := pik(t)u(τik(t)), t ∈ [a,b], i,k = 1,2, . . . ,n,

with pik : [a,b]→ R integrable and τik : [a,b]→ [a,b] mea-
surable, it follows immediately from the relation

(li jσ)(t)
σ(t)

= pi j(t)
(τi j(t)−a)(τi j(t)−b)

(t−a)(t−b)
(25)

that (7) holds, in particular, if either the function

[a,b] 3 t 7−→
pi j(t)

(t−a)(t−b)

is essentially bounded or pi j ∈ L∞([a,b],R) and τi j(t) ≤ t,
i, j = 1,2, . . . ,n.

The following general statement on the solvability of
the boundary value problem (1), (3) holds.

Theorem 3.2. Let the conditions of Theorem 3.1 be satis-
fied. Then the limit function x∞(·,z) of the recurrence se-
quence (12) is a solution of the boundary value problem
(1), (3) if, and only if the value of the vector parameter
z ∈ 〈z0,z1〉 satisfies the system of equations

∆(z) = 0, (26)

where ∆ : 〈z0,z1〉 → Rn is given by (21).

Equations of type (26) are usually referred to as deter-
mining equations [3, 35] because they determine the actual
values of the parameters z∈ 〈z0,z1〉 involved in the iteration
process (12). Likewise, ∆ : 〈z0,z1〉 → Rn given by (21) is
often called a determining function for problem (1), (3).

Theorem 3.2 reduces the boundary value problem (1),
(3) to the finite-dimensional system of equations (26).

4. APPROXIMATE DETERMINING EQUATIONS

The main difficulty related to the determining system
(26) is that the explicit form of the vector field ∆ is un-
known. A constructive investigation of problem (1), (3)
with the help of Theorem 3.2 is carried out by passing from
the exact determining equation (26) to some its approxima-
tions. In practice, it is natural to fix some m≥ 1, introduce
the mth approximate determining function ∆m : 〈z0,z1〉 →
Rn by setting

∆m(z) := (A+1n)z+
∫ b

a
( f xm(·,z))(s)ds (27)

for all z ∈ 〈z0,z1〉 and, instead of the inconvenient equation
(26), consider the mth approximate determining equation
of the form

∆m(z) = 0. (28)
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It should be noted that, in contrast to (26), the new
equation (28) is constructed directly based on the function
xm(·,z) and does not involve any unknown terms. It turns
out that, under suitable assumptions, the function

Xm(t) := xm(t, z̃), t ∈ [a,b], (29)

where z̃ is a root of the system of equations (28), can be
regarded as an mth approximation to a solution of problem
(1), (3).

We need a definition describing a kind of the strict in-
equality for vector functions.

Definition 4.1. Let S ⊂ Rn be an arbitrary non-empty set.
For any pair of functions g j = col

(
g j,1, . . . ,g j,n

)
, j = 1,2,

we write

g1 BS g2 (30)

if and only if there exists a function ν : S→ {1,2, . . . ,n}
such that the strict inequality

g1,ν(x)(x)> g2,ν(x)(x) (31)

holds for all x ∈ S.

The following statement gives conditions sufficient for
the solvability of the boundary value problem (1), (3) based
on properties of a certain fixed member of the recurrence
sequence (12).

Theorem 4.1. Let us suppose that, in addition to assump-
tions of Theorem 3.1, there exist a closed domain Ω ⊂
〈z0,z1〉 and an integer m ≥ 1 such that, on the boundary
of Ω, the approximate determining function ∆m given by
formula (27) satisfies the condition

|∆m|B∂Ω

1
2
(b−a)m+2

3m+1 V m+1Ṽ ω, (32)

where ω : 〈z0,z1〉 → Rn is the function given by (17) and Ṽ
is the matrix (24).

Let, moreover,

deg(∆m,Ω,0) 6= 0. (33)

Then there exists a certain z∗ ∈Ω such that the function
x∞(·,z∗) is a solution of the boundary value problem (1),
(3).

It follows from the last theorem that, once the existence
of a solution is proved on the mth step of iteration after the
verification of conditions (32) and (33), one is also able to
construct its approximation according to formula (29) by
solving the system of n numerical equations (28) the form
of which is known explicitly. The corresponding error es-
timates are derived from the properties of the recurrence
sequence (12)

5. COMMENTS

The following features of the scheme described above
should be mentioned:

• The Lipschitz condition is assumed on a bounded set.

• There is no assumption on the existence and unique-
ness of a solution of the Cauchy problem. Moreover,
in the class of equations (1), there is no unique solv-
ability of this problem in general (which property, in
particular, affects shooting methods [38]). It is also
essential that this is not a matter of sufficient smooth-
ness of coefficients: for example, the initial value
problem

u(a) = 0

for the simplest functional differential equation

u′(t) =
u(b)
b−a

+q(t), t ∈ [a,b], (34)

where−∞ < a < b < ∞ and q : [a,b]→R is such that∫ b
a q(s)ds 6= 0, has no solution.

Note that (34) is a linear equation with the constant
coefficient (b−a)−1, which, in addition, is small on
large intervals.

• In contrast to Galerkin-type methods, there is no need
to recalculate all the data when passing to the next
step.

• The scheme works well on tiny intervals. For ex-
ample, when looking for 2πω−1-periodic solutions
with, e. g., ω = 1010, one does not have to discretise
the equation with step less than 10−11.

• Can be adopted for equations with various kinds of
argument deviations and more complicated boundary
conditions (see, e. g., [16, 17, 22]).

• In contrast to monotone-iterative methods, there are
no difficulties with the selection of the starting ap-
proximation (indeed, the function ϕz in (12) is con-
structed directly according to (13) using the form of
the boundary condition (3)).

• One can combine this approach with other techniques
(e. g., polynomial interpolation [21,36]) that facilitate
the realisation of its analytic part.

• The approximate solution, constructed explicitly in a
finite number of steps, helps in proving the existence
of an exact one.
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(A. Rontó) was carried out as part of the TAMOP-4.2.1.B-
10/2/KONV-2010-0001 project with support by the Eu-
ropean Union, co-financed by the European Social Fund
(M. Rontó).
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[24] RONTÓ, M. – SAMOILENKO, A.: Numerical-
Analytic Methods in the Theory of Boundary-Value
Problems. World Scientific Publishing Co. Inc., 2000,
ISBN 981-02-3676-X. [With a preface by Yu. A.
Mitropolsky and an appendix by the authors and S.
I. Trofimchuk.]

[25] RONTO, N. I. – SAMOILENKO, A. M. – TROFIM-
CHUK, S. I.: The theory of the numerical-analytic
method: achievements and new directions of develop-
ment. I, Ukrainian Math. J. 50, No. 1 (1998) 116–135.

[26] RONTO, N. I. – SAMOILENKO, A. M. – TROFIM-
CHUK, S. I.: The theory of the numerical-analytic

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:09 AM

http://dx.doi.org/10.1155/2011/326052
http://dx.doi.org/10.1155/2011/326052
http://dx.doi.org/10.1186/1687-2770-2011-58
http://dx.doi.org/10.1186/1687-2770-2011-58


72 On Numerical-Analytic Techniques for Boundary Value Problems

method: achievements and new directions of devel-
opment. II, Ukrainian Math. J. 50, No. 2 (1998) 255–
277.

[27] RONTO, N. I. – SAMOILENKO, A. M. – TROFIM-
CHUK, S. I.: The theory of the numerical-analytic
method: achievements and new directions of develop-
ment. III, Ukrainian Math. J. 50, No. 7 (1998) 1091–
1114.

[28] RONTO, N. I. – SAMOILENKO, A. M. – TROFIM-
CHUK, S. I.: The theory of the numerical-analytic
method: achievements and new directions of develop-
ment. IV , Ukrainian Math. J. 50, No. 12 (1998) 1888–
1907.

[29] RONTO, N. I. – SAMOILENKO, A. M. – TROFIM-
CHUK, S. I.: The theory of the numerical-analytic
method: achievements and new directions of devel-
opment. V , Ukrainian Math. J. 51, No. 5 (1999) 735–
747.

[30] RONTO, N. I. – SAMOILENKO, A. M. – TROFIM-
CHUK, S. I.: The theory of the numerical-analytic
method: achievements and new directions of develop-
ment. VI, Ukrainian Math. J. 51, No. 7 (1999) 1079–
1094.

[31] RONTO, N. I. – SAMOILENKO, A. M. – TROFIM-
CHUK, S. I.: The theory of the numerical-analytic
method: achievements and new directions of develop-
ment. VII, Ukrainian Math. J. 51, No. 9 (1999) 1399–
1418.

[32] ROUCHE, N. – MAWHIN, J.: Ordinary Differential
Equations. Stability and Periodic Solutions, volume 5
of Surveys and Reference Works in Mathematics. Pit-
man, Boston, 1980, ISBN 0-273-08419-4. [Translated
from the French and with a preface by R. E. Gaines.]

[33] SAMOILENKO, A. M.: Numerical-analytic method
for the investigation of periodic systems of ordinary
differential equations. I, Ukr. Mat. Zh. 17, No. 4
(1965) 82–93.

[34] SAMOILENKO, A. M.: Numerical-analytic method
for the investigation of periodic systems of ordinary
differential equations. II, Ukr. Mat. Zh. 18, No. 2
(1966) 50–59.

[35] SAMOILENKO, A. M. – RONTO, N. I.: Numerical-
Analytic Methods of Investigating Periodic Solutions.
Mir, Moscow, 1979. [Translated from the Russian,
with a foreword by Yu. A. Mitropolskii.]

[36] SAMOILENKO, A. M. – RONTO, N. I.: Numeri-
cal-Analytic Methods for Investigation of Solutions

of Boundary-Value Problems [in Russian], Naukova
Dumka, Kiev, 1985. [With an English summary,
edited and with a preface by Yu. A. Mitropolskii.]

[37] SCHMIDT, E.: Zur Theorie des linearen und nichtlin-
earen Integralgleichungen. 3 Teil. Über die Auflösung
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