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ABSTRACT 
The continuous-time Markov process is a widely used abstract tool for constructing high-level models of complex computer 

systems in order to evaluate either the performance or reliability parameters of a system. Utilization of the continuous-time 
Markov process is based on the assumption of exponential distribution of the time between random events influencing the 
behaviour of the modelled system. A different kind of probability distribution of this time requires adaptation (extension) of the 
original model.  This article uses a representative example to evaluate the precision of the modelled system parameters using a 
simple Markov model based on the exponential distribution assumption instead of a more complex model which respects another 
(i.e. more realistic) probability distribution.  
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1. INTRODUCTION  

A powerful tool for analysing selected probability 
based systems and/or problems in computer science is the 
model based on the mathematical theory of the 
(stochastic) Markov processes. For a thorough review of 
the basic theory, please consult e.g. [2]. From a computer 
researcher’s point of view, the Markov process is a kind of 
finite automaton, where transition between two states is 
caused by a random event, i.e. the time interval duration 
of every state is a random variable. When an automaton 
state is reached, all ongoing transitions are fired.  Every 
transition (an edge in the graph describing the process) has 
been assigned the value of transition rate. This value can 
be interpreted in two ways: (i) it is the conditional (the 
transition is fired) frequency of the (subsequent) 
transitions, and (ii) it is the parameter of the exponential 
probability distribution of the time interval between 
transition firing and transition occurring (denoted here as 
the time interval of  transition burning). The model (i.e. 
its state-transitions graph) can be easily transformed into a 
set of linear differential equations from which time 
dependent state probabilities p0(t),  p1(t), … can be 
computed using conventional methods.      

Markov models are used in two basic categories. The 
first category contains models with one or more absorbing 
states, i.e. states without an output edge. It is apparent that 
these models have a “limited time of life”. First, time 
dependent probabilities of model states are computed 
directly from the corresponding set of differential 
equations; then, the target parameters can be determined, 
usually as a linear combination of some state probabilities. 
Markov models of the second category have “infinite life” 
(i.e. no absorbing states) and here the asymptotic 
probabilities (i.e. time independent limits p0 = p0 ( ∞) ,  p1 

=  p1 ( ∞), … ) of model states can be computed from a set 
of linear algebraic equations. Subsequently, significant 
parameters can be determined using the known values of 
the model states asymptotic probabilities. The analysed 
case used in this article falls into the second mentioned 

category.  Utilization of Markov models is described e.g. 
in [1], [3], [4], [8]. 

Application of Markov processes is limited by the 
assumption of exponential probability distribution of the 
duration of any transition burning. Exponential 
distribution is quite “irregular”, i.e. its standard deviation 
has the same value as its mean value (both are 1/λ, where 
λ is the single parameter of the distribution). In some 
applications (see e.g. [7]), the Markov model is 
constructed and utilized even when the modelled system 
time behaviour is influenced by more regular events, e.g. 
by built-in tests with a relatively regular period. The aim 
of this article is to use a representative example to 
evaluate numerically the deviation which occurs when the 
Markov model is used and the assumption of exponential 
distribution of events burning time is not quite valid.     

2. SYSTEM TO BE EVALUATED 

For the analysis we have chosen a classical model of 
cooperating parallel processes. The assumed 
computational environment can be e.g. a symmetrical 
multiprocessor system consisting of n processors and a 
shared memory. Let us assume n computational processes, 
each of which has its own processor. The processes 
cooperate using one critical section containing all the 
shared process data. All processes have the same program 
describing their cyclic behaviour: local computation 
without any interaction with another process, followed by 
computation within the critical section, etc. The 
computation inside the critical section needs to be locked, 
i.e. only one process can be in this part of the shared 
program at one time. All processes have the same time 
behaviour with the following parameters: 

 λ … mean frequency of the repeated process 
local computation without the critical section 
access, i.e. the reversed value of the mean time of 
the local computation, 

 μ … mean frequency of the repeated computation 
of the critical section without concurrency, i.e. 
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the reversed value of the mean time of this 
computation. 

 
The described example can serve as a model of 

parallel computation based on the utilization of data 
parallelism: every process works on a separate (local) 
piece of a large set of data, then updates the global result 
of computation. This activity is performed periodically 
until the whole set of data is exhausted. The updating 
operation represents the critical section of the computation 
and, in implementation, it has to be e.g. locked using the 
locking operation provided by the computer operating 
system. 

Time intervals of the process behaviour need then to 
be taken as random variables apparently due to the 
different values of the data processed within different 
cycles of process activity.  When 
 
(n-1) / μ <  1/ λ                                           (1) 

 
then the ideal (linear) speedup of parallel computation smax 
= n can be reached assuming deterministic time 
behaviour.  When condition (1) is valid, but the modelled 
processes have a random time behaviour, their conflicts 
(i.e necessary synchronization at the input of the critical 
section, implemented within the locking operation) 
decrease the reachable value of the speedup.  Keeping the 
above stated condition (1), the maximum frequency (i.e. 
frequency without conflicts) of every process computation 
is as follows:  
 
fmax = 1/ (1/λ + 1/μ)                                          (2) 
 
Due to these conflicts, the real frequency of computation f 
is decreased compared to fmax, so we can define the 
speedup degradation coefficient d as  the ratio: 
 
d = fmax / f                                                         (3) 
 
The orrected value of the speedup can be then expressed 
as 
 
s = smax /d  = n/d                                              (4) 
 

When the time intervals of local computation and the 
time intervals within the critical section have the 
exponential distribution (i.e. they are quite irregular), then 
the analytic solution for the degradation coefficient d can 
be found using the Markov model (see the basic model in 
the next section). In this case the variables λ and μ can be 
taken as the parameters of the corresponding exponential 
probability distri-bution and the reversed values 1/λ and    
1/ μ  then represent the mean values of the corresponding 
distribution. 

But the assumption of exponential distribution (i.e. 
total irregularity) of the processing time intervals can be 
questionable, especially in the case of the computation 
time spent inside the critical section. In the analysed 
example (model of parallel computing with data 
parallelism utilization), this time corresponds to a global 
result update, which can be quite a regular operation. That 
is why in Section 4 the influence of increased regularity of 
the time spent inside the critical section will be taken into 

account, still using the (extended) Markov model. In 
Section 5 the influence of combined regularity of both the 
processing times will be computed by means of a discrete-
time simulation model. 

The basic Markov model (see below, Section 3) is 
general enough and can be used as an abstract model of 
many systems or problems in applied computer science. 
Bellow, we present two more examples that lead to the 
same abstract (Markov) model.  

The first example is a closed queuing network with 
one server (here μ is the serving rate) and n clients which 
are non-stop generating (with the rate λ) their requests to 
be processed by the server. This network can be e.g. a 
model of a large information system containing a database 
server and n workstations. A request generated by a 
workstation means e.g. a query aimed to obtain a piece of 
information from the database. The query is translated into 
a database transaction; single transactions are served using 
the FIFO scheduling discipline. Here the highest possible 
throughput Xmax of the system  (i.e. the  maximum number  
of database transactions processed per a time unit) 
corresponds to  nfmax where fmax is expressed by (2). Then 
the degradation coefficient d reflects the time lost with the 
clients’ unproductive waiting for the server to start dealing 
with their request.  The corrected value of the throughput 
can be computed similarly to formula (3) as X = Xmax /d. 

The second example is from the area of fault-tolerant 
(FT) systems. A highly available information system uses 
n (identical) servers. The fault rate of a server is then λ . 
The rate of repairs is μ;  the repairs are performed in 
sequence (assuming there is one repairman). Here we are 
able to use the Markov model from Fig. 1 in order to  
evaluate MTBF (Mean Time Between the system 
Failures) as pn-1 λ  (see Fig.1). Other system parameters 
like MTTF, MTTR and coefficient of availability a can be 
computed simply as well. 

In both the given examples, the assumption that λ 
represents the parameter of exponential probability 
distribution is acceptable (the corresponding time intervals 
are quite irregular), but a similar assumption for μ is 
questionable (the time of single services and single repairs 
is more regular). In the second example, the realistic value 
of the λ /μ ratio is very low, so it is possible to forecast 
(see results in Table 3 and Table 4 in the next sections) a 
very small influence of the (more regular) time of repair 
on the resultant values of the evaluated system reliability 
parameters.  

3. BASIC MARKOV MODEL 

The Markov model of the example described above 
can be represented by a simple state diagram. 

 
Fig. 1  Basic Markov model 

 
Asymptotic probabilities  p0 ,  p1, ....... pn-1 ,  pn of the model 
states can be computed from a homogeneous set of linear 
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algebraic equations based on the transition rates of  the 
corresponding input and output edges: 

 
p0 . n . λ  -  p1 . μ  = 0                                       (5) 
p1 . (n-1) . λ + p1 . μ  -  p0 . n . λ -  p2 . μ   = 0 
pi . (n-i . λ + pi . μ  -  pi-1 .( n-i+1 .λ -  pi+1 .μ  = 0 
pn . μ  -  pn-1 . λ = 0 
 
This set of equations can be expressed using a single 
matrix equation:  
 
A p = 0                                                               (6) 
 
where  p = (p0 ,  p1, ......., pn-1 ,  p n)

T  is a column vector  
of  asymptotic state  probabilities and  A  is a  
coefficient  matrix  of the system: 
 

 
 
 

 (7) 
 
 
 
 

 
Generally, any system of linear equations representing the 
Markov process in this way is linearly dependent. The 
rank of matrix A is n (number of states minus 1). This 
degradation will be eliminated by replacing any equation 
by equation: 
 
p0 + p1 +   ........... +  pn-1 +  pn  = 1                            (8) 
 
(the system will always be in one of the states with 
probability 1). 

The form of matrix A clears the way for deriving the 
analytical solution of vector p. Suppose the value of  p0  is 
known. Due to the first row of matrix A,  p1  can be 
expressed directly in terms of  p0, due to the second row, 
p2  can be expressed directly  in terms of  p0  and  p1 , etc. 
After a sequence of algebraic transformations, all the 
probabilities pi  can be expressed in terms of p0 (in this 
special case, not in general): 
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The real frequency of computation (i.e. frequency when 
we assume an influence of conflicts) is: 
 

n

p
f

)1.( 0

                                           (11) 

 

Table 1 shows the numerical values of the speedup 
degradation coefficient d based on the analytical model 
presented above. These results were computed for a 
representative set of parameters.  The meaning of the 
parameters is explained in the previous text. For example 
the ratio λ / μ = 0.1 means ten times longer local 
computation (in average) compared to the average time of 
the critical section duration. Value d = 1.0424  for n = 5 
processes means about 4% longer computation due to the 
influence of conflicts when accessing the critical section. 
 

Table 1 Resultant values of d obtained from the basic model 
 

 
n 

2 3 5 10 

0,01 1,0001 1,0002 1,0004 1,0010 

0,1 1,0083 1,0179 1,0424 1,1575 

0,2 1,0278 1,0631 1,1653 1,6979 

0,5 1,1111 1,2667 1,7302 3,3335 

 
Not all the positions in this table keep  the “good 

parallelization“ condition (1), so the corresponding results 
are far from the ideal value d = 1.0 (see e.g. the value in 
the right bottom corner).    

4. EXTENDED MARKOV MODEL 

In this section, the time intervals inside the critical 
section will be regarded as a serial connection of k  stages, 
each of them with exponential distribution. The mean 
conditional frequency of any stage is k. . Therefore, the 
aggregate time within the critical section has Erlang-k 
distribution in this case and the same mean value as 
before. The method of stages is discussed in [5]. In 
general, the state with non-exponential distribution can be 
split into a serial-parallel cluster of two or more 
exponentially distributed stages. 

The following state diagram (see Fig. 2) represents the 
Markov model where computation inside the critical 
section is divided into k stages with identical mean times 
of all computation stages. 

 
Fig. 2  Extended Markov model 
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Asymptotic probabilities of the model states can be 
computed from a system of n.k + 1 linear algebraic 
equations. Let us define 
 
p0,1 = p0                                                           (12) 

p0,2 = p0,3 = ......  p0,k   = 0 
p1,0 = p2,0 = ......  pn,0  = 0 
 
Then the state diagram presented above can be simply 
represented by the following equations 
 
p0 . n . λ  -  p1,k . k. μ  = 0                                        (13) 
pi,j . (n-i . λ + pi,j .k . μ -  pi-1,j .(n-i+1) λ - pi,j-1  .k μ  =0 
( for  i = 1, 2, ... , n and  j = 1,2,3,....,k) 
 
Let us define the following indexing of the set of states: 
 

Table 2  Indexing of the states 
 

index state  index state 

0 0  … … 

1 1, k  i*k - j + 1 i, j 

2 1, k - 1  … … 

… …  … … 

k - 1 1, 2  n*k - 1 n, 2 

k  1, 1  n*k  n, 1 

 
Then, the coefficient matrix A is a banded matrix due 

to this indexing. Generally, the bandwidth of matrix A is k 
+ 2 as can be illustrated by the example for n = 3 and  k = 
2   (14). The rows and columns of A are indexed from 0 to 
n*k, too. 
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After substituting (14) for A in (6), and replacing the 

last equation of the system by (8), the following system of 
linear equations is obtained.  
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This matrix equation is not suitable for deriving the 

analytical solution. In general, probabilities pi cannot be 
simply expressed in terms of p0. Therefore, numerical 
solution of this system seems to be the best way to obtain 
the vector of asymptotic probabilities p.  

A standard spreadsheet tool was used to automatically 
construct the coefficient matrix A, to solve the system of 
linear equations, and to compute the real frequency of 
computation f and the speedup degradation coefficient d. 

Table 3 shows the numerical values of the speedup 
degradation coefficient d based on the numerical model 
presented above. These results were computed for the 
same set of parameters as in Section 3.  The lower row 
presents the relative deviation of the exact analytical 
solution (i.e. for exponential distribution of the time 
intervals spent inside the critical section) from the 
numerical solution for k = 10 stages with exponential 
distribution. 
 
Table 3  Resultant d values obtained using the extended model 

 

 n 2 3 5 10 

0,01 
results 1,0001 1,0001 1,0002 1,0005 

deviation 0,00% 0,01% 0,02% 0,04% 

0,1 
results 1,0048 1,0105 1,0258 1,1134 

deviation 0,34% 0,72% 1,59% 3,81% 

0,2 
results 1,0170 1,0400 1,1172 1,6725 

deviation 1,05% 2,17% 4,13% 1,50% 

0,5 
results 1,0759 1,2045 1,6844 3,3333 

deviation 3,17% 4,91% 2,64% 0,00% 

5. SIMULATION MODEL 

The last part of our analysis is aimed to evaluate the 
combined influence of increased regularity of both 
probability distributions – distribution of the process local 
activity computation time as well as distribution of the 
time spent inside the critical section. The method of stages 
explained in the previous section is applicable here, too. 

The resultant Markov model is complex enough and its 
complexity (i.e. number of states) grows significantly. 
Generally, the complexity of the extended Markov model 
grows exponentially with the number of events with non-
exponentially distributed burning time. Here we would 
need 3D space to create the extended model. When the 
number of the state space dimensions is given (3  for this 
case), the complexity of the extended model grows 
linearly both with the number of processes and the number 
of assumed stages of both activities (i.e. events finishing 
the activity).  

For the analysed case we decided to use a simulation 
model. The model is discrete-time and Monte Carlo based, 
i.e. it uses random numbers to determine the single values 
of duration of the modelled process activities. The C-Sim 
library [6] was used as the implementation tool. The 
simulation model can be easily verified when used for the 
cases described above in Section 3 and Section 4 and 
when we compare the results obtained from both models.  
If we let the simulation program run for 106 cycles of the 
modelled process activity, the relative error of the 
computed  d  is about 10-3. 

Table 4 was computed for the same set of parameters 
as the previous two tables. It shows the results obtained 
when both time intervals were divided into k = 10 stages, 
i.e. the modelled probability distribution was Erlang`s 
distribution of the k-th degree. For this case, the 
coefficient of variance C (a measure of the time interval 
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regularity) for both distributions is C = 1/ sqrt (k) = 0.32. 
It corresponds approximately to the Gaussian distribution 
with the standard deviation of about one third of its mean 
value. 

 
Table 4  Resultant d values obtained using the simulation model  

 
 n 2 3 5 10 

0,01 
results 0,9996 0,9998 1,0000 0,9998 

deviation 0,05% 0,04% 0,04% 0,12% 

0,1 
results 1,0041 1,0095 1,0233 1,0935 

deviation 0,41% 0,82% 1,83% 5,53% 

0,2 
results 1,0146 1,0337 1,0932 1,6655 

deviation 1,28% 2,76% 6,19% 1,91% 

0,5 
results 1,0539 1,1525 1,6675 3,3306 

deviation 5,15% 9,01% 3,62% 0,09% 

 
When comparing the results in Table 4 with the 

previous table(s), we can see the expected influence of the 
increased regularity of the modelled process – the 
computed d  has better  (i.e. decreased) values.  

We used the simulation model for quite regular (i.e. 
deterministic) values for both time intervals of activity 
too. These values were the same as the mean values of 
probability distributions (exponential or Erlang`s) used 
before. In this case the modelled parallel computation 
processes were fully synchronized and no conflicts 
occured. We obtained the expected result  d = 1.0 (i.e. no 
degradation of the parallel computation speed)  with a 
sufficient precision. This experiment served mainly to 
confirm the correctness of the used simulation model.  

6. CONCLUSION AND FUTURE WORK  

This article uses a representative example to evaluate 
the precision of the system parameters computed using the 
Markov model, when the assumed exponential distribution 
of the burning time of events is replaced with another 
probability distribution.  

The chosen example is from the area of parallel 
processing, but the results are applicable to other parts of 
computer science, e.g. queuing networks or fault-tolerant 
systems, as well. 

The results show that for an integral parameter such as 
the evaluated degradation coefficient d, and for the 
realistic values of the modelled system parameters, the 
deviation of the result due to the replacement of the 
exponential distribution of events burning time with 
another distribution, is not too large. In our analysis this 
deviation did not exceed 20%. One positive conclusion 
follows from this analysis: in a realistic case like the 
analysed one the basic (i.e. simple) Markov model can be 
used instead the (much more complex) extended one. 
Relatively  small error of results like d can be expected 
due to the simplification used. 

In fact, the evaluated degradation coefficient d is a 
combination of the probabilities of many states of the used 
Markov model where deviations in the evaluated 
probabilities of single states can eliminate each other.  It is 
possible to expect that the probability values (or time 
functions) of the chosen states of the model can be 

influenced much more, but that is a matter of our future 
work. 
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