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ABSTRACT
We propose a new class of hybrid (discrete-continuous) dynamical system models with nondeterministic continuous evolutions and

switching between discrete modes. Formally, this class is rather similar to the class of stochastic hybrid systems, but it is based on
possibility theory. This approach has an advantage over stochastic models when available statistical information is not sufficient for
constructing a reliable stochastic model. For example, it may be useful for modeling human-machine-environment systems, because,
as it has been argued in the literature, possibility theory describes many aspects of human behavior better than probability theory. In
this work we present a motivating example, give a definition and semantics of our systems, consider reachability problems for large
subclasses of them, and propose methods to tackle these problems.
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1. INTRODUCTION

Hybrid systems [1–3] are dynamical systems with
interacting continuous-time and discrete-event dynamics.
Continuous-time dynamics is usually modeled by differen-
tial equations and discrete-event dynamics is usually mod-
eled by automata. These systems have a wide range of
applications including automation, process control, com-
munication, mechatronics, transportation systems, robotics,
real-time software and other fields. In many applications,
a hybrid system represents a continuous plant and a dis-
crete controller that switches between modes of the plant.
As a mathematical model, a hybrid system is often consid-
ered as idealization of a real cyber-physical system. But the
adequacy of such modeling may become questionable, be-
cause switching conditions and differential equations may
describe dynamics imprecisely, values of some parameters
may be unknown, etc. Therefore, extensions of a hybrid
system model which allow uncertainties can be useful. Re-
searchers have proposed several different ways to incorpo-
rate uncertainty into hybrid systems [2–5]: nondetermin-
istic and stochastic hybrid systems, systems with random
structure, etc. Most approaches can be classified according
to the chosen place of uncertainty in a hybrid system (con-
tinuous dynamics, occurrence of discrete events, jumps in
continuous states after discrete events) and the kind of an
underling uncertainty theory. Many of them are based on
probability theory, but this is not the only available choice.

In this paper we propose a new class of hybrid systems
with uncertain switching, which is based on the possibil-
ity theory [6–9] . We argue that this class is well-suited
for modeling human-machine systems, e.g. a driver-vehicle
system. Also, we study basic properties and the reachability
problem for large subclasses of our models.

The paper is organized in the following way: in sec-
tion 2 we consider the problem of modeling driver-vehicle
system and propose a possibilistic model of hybrid system
for this problem (on informal level); in section 3 we recall
necessary notions of possibility theory; in section 4 we for-

mally define a simple subclass of possibilistic systems with
uncertain switching and investigate basic properties and the
reachability problem for systems of this class; in section 5
we define a more general class of hybrid possibilistic sys-
tems with uncertain switching and investigate its properties
and the reachability problem.

2. MOTIVATING EXAMPLE

Consider the problem of modeling human behavior in
a driver-vehicle-environment system [11–13]. Interest in
this problem comes from applications in safety analysis
(driver behavior is known to be the dominant factor in traffic
safety), intelligent driver assistance systems, etc. [13]. The
history of driver’s behavior modeling can be traced back to
theoretical studies of driving by J. Gibson, L. Crooks (1938)
[14]. The problem proved to be difficult, and approaches
originating from different fields (psychology, control the-
ory, etc.) and with different aims were proposed [11]. But it
is generally accepted that driving task can be considered at
strategic, tactical and operational levels [15], and that com-
prehensive driving models should take into account these
levels. Driver’s behavior can be represented by rules which
describe actions which the driver takes in response to a driv-
ing situation (collection of external factors, e.g. road and
weather condition, distances to other vehicles) to achieve
the purpose of the trip. The strategic behavior is responsible
for the trip route, preferred travel lane, etc. The tactical be-
havior determines maneuvering actions, e.g. lane changing
for danger avoidance. The operational behavior consists in
a (mostly continuous) lateral control and longitudinal speed
control (gas/break).

We consider an example of a driver’s behavior model of
tactical/operational level [16]. Suppose that the driver of a
running vehicle behaves rationally and tries to avoid crashes
and keep safe distances to other vehicles. Under these as-
sumptions [16] the driver’s procedural knowledge can be
modeled by a set of IF/THEN rules. Consider a simplified
subset of such rules (where a safe following distance can be
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determined using a so-called ”three seconds rule” [16]):

• IF the distance to the preceding vehicle is less than
the safe following distance THEN decelerate and
maintain the safe following distance.

• IF the distance to the preceding vehicle is equal to the
safe following distance THEN maintain distance.

• IF the preceding vehicle’s braking light flashes AND
distance to the preceding vehicle is equal to safe fol-
lowing distance THEN brake and decelerate rapidly.

• IF the preceding vehicle’s braking light flashes AND
the distance to the preceding vehicle is less than the
safe following distance AND the vehicle behind is
not too close THEN brake.

This set of rules is given for illustration only.
Suppose that we want to apply such rules to construct

a mathematical model of a driver-vehicle-environment sys-
tem. Suppose that a vehicle-environment model is already
available and it outputs a (dynamically changing) value
yobs which represents elements of the vehicle-environment
model which can be observed by the driver (e.g. the dis-
tance to the preceding vehicle). For the purpose of a high-
level modeling, it is reasonable to ignore details of driver’s
perception (like in many control-theoretic and stochastic
driver behavior models). In this case we can model driver’s
behavior as a decision procedure based on driving rules,
and accept that driver’s decisions depend directly on yobs.
However, the vagueness of the driving rules (e.g. meaning
of the conditions like “too close”) implies that decisions de-
pend on yobs non-deterministically. We have to apply some
uncertainty theory to describe them.

In the literature [10] it is argued that the possibility the-
ory is well suited for representing subjective estimations of
satisfaction and acceptability (vague threshold values), per-
ception and quantities based on memory (e.g. travel time,
distance, appearance), descriptive conditions (e.g. traffic
congestion, comfort), imprecise values which are hard to
measure and summarize (e.g. sight distance, reaction time).

In our case, we deal with notions of subjective percep-
tion and acceptability, so we can apply possibility theory
for modeling uncertainty in driver’s decisions. The pro-
posed model of driver’s behavior (Fig. 1) has a form of
an oriented graph of “driving modes”.

ψ1,1(t, yobs)

ψ1,2(t, yobs)

ψ1,3(t, yobs)

...

... ...
Mode 1 Mode 2

Mode 3

Fig. 1 A model of driver’s behavior

The arcs (“transitions between modes”) are labeled with
real-valued functions ψi, j which represent uncertain switch-
ing conditions. These conditions may depend on the time t
and the vehicle’s observable state yobs. For each t and yobs
the meaning of ψi, j(t,yobs)∈ [0,1] is a level of (conditional)
possibility of transition from the mode i to the mode j, if the
current mode is i, the time is t, and the observable state is
yobs. Note that if ψi, j are constant functions, we get a model
similar to possibilistic Markov chains [17–19].

For example, we can interpret the “Mode 1” in Fig. 1 as
“Normal (constant-speed) driving’, “Mode 2” as “Deceler-
ate” and yobs as the distance to the preceding car. Then we
can represent the uncertain switching condition “Preceding
car is too close” as a specific function ψ1,2.

To define semantics of our model of driver’s behavior,
we have to link it with vehicle-environment model. Usu-
ally, a vehicle-environment dynamics corresponding to a
given driving mode can be modeled by a system of differ-
ential equations (possibly with disturbances and uncertain-
ties) [11]. However, in this paper we do not consider distur-
bances and uncertainties in differential equations. The re-
sulting driver-vehicle-environment model has a form shown
in Fig. 2, where yall ∈ Rd denotes the vehicle-environment
state and yobs ∈ Rd′ is the observable state (the relation be-
tween yobs and yall is given by projection-like functions gi).

ẏall = f1(t, yall)

yobs = g1(yall)

ẏall = f2(t, yall)

yobs = g2(yall)

ẏall = f3(t, yall)

yobs = g3(yall)

ψ1,1(t, yobs)

ψ1,2(t, yobs)

ψ1,3(t, yobs)

...

...

...

Fig. 2 A driver-vehicle-environment model

We call the obtained driver-vehicle-environment model
a hybrid system with uncertain switching. In some aspects it
is similar to the notion of a hybrid automaton [1, 2], but the
mode switching is uncertain and is modeled in possibilistic
framework.

Now we explain informally semantics of such a sys-
tem. Denote by G a labeled graph shown in Fig 2. Let I
be a finite set of modes (nodes of G). Firstly, let us ignore
arc labels ψi, j in this graph and define an execution of the
system as a triple (q̄, ȳall , ȳobs) consisting of a piecewise-
constant function q̄ : R→ I (a ”mode trace”), a piecewise-
continuous function ȳall : R→ Rd (a ”state trace”) and a
function ȳobs : R→ Rd′ (an ”observable state trace”) such
that (q̄(0), ȳall(0)) ∈ A0 (where 0 is the initial time mo-
ment and A0 is a chosen set of initial modes/states), and
there exists a finite or infinite sequence of pairs of time
moments and modes (t0,q0),(t1,q1),(t2,q2), ..., of length
N ≥ 1 (N =+∞, if the sequence is infinite) such that
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• 0 = t0 < t1 < t2 < ...

• if N =+∞, then limn→∞ tn =+∞

• (q̄(0),q0) is an arc in G, and (qk−1,qk) is an arc in G
for each k = 1,2, ...,N−1

• for each k < N the functions q̄, ȳall , ȳobs satisfy equa-
tions q̄(t) = qk, ȳall(t) = zk(t), ȳobs(t) = gqk(ȳall(t))
on the set (tk, tk+1], if k+1<N, or (tk,+∞), if k+1=
N, where zk is a solution of the initial value problem
z′k(t) = fqk(t,zk(t)), zk(tk) = ȳall(tk), t ∈ [tk, tk+1] (or
t ∈ [tk,+∞), if k+1 = N).

Note that because of the specifics of application domain
(and unlike semantics of hybrid automata), this definition
excludes multiple mode switchings at one time moment and
Zeno-like behaviors [1].

Let Tr be the set of all executions. Semantics of a hy-
brid system with uncertain switching is a possibility distri-
bution on executions, i.e. a (total) function π : Tr→ [0,1]
which estimates possibility level of each execution. If
we knew this distribution, we would be able to compute
the following quantities: ϕi j(t,y) = sup{π((q̄, ȳall , ȳobs))|
(q̄, ȳall , ȳobs) ∈ Tr and q̄(t) = i, q(t+) = j, ȳobs(t) = y } for
each i, j ∈ I, t ≥ 0 and y ∈ Rd′ (where q(t+) denotes the
right limit). In the possibility theory the value ϕi j(t,y) can
be interpreted as the possibility level of the event ”the sys-
tem switches from i to j at time t, and the observable state
at time t is y”. Now recall that ψi j(t,y) (informally) means
the conditional possibility of the same event, but with addi-
tional condition that the system is in the mode i at time t.
Intuitively, ϕi j(t,y)≤ψi j(t,y), because to make a transition
from i to j at time t, the system should reach i at time t, but
this can be implausible or even impossible.

For this reason, we postulate the inequality ϕi j(t,y) ≤
ψi j(t,y) for all i, j, t,y and propose to use it as a defining
property of π . In general case it has no unique solution (if
we consider π an unknown). However, we can choose the
(pointwise) maximal solution as the semantics of the sys-
tem (principle of minimum specificity [7]). Informally, this
solution gives the best estimate of the possibilities of exe-
cutions under the chosen assumptions.

It is easy to see that the quantities ϕi j(t,y) express im-
portant safety properties of the system, e.g. we can use
them to obtain upper bounds for possibility levels of some
unwanted actions (mode switchings) or states. Therefore,
to be able to solve safety analysis problems, we should ob-
tain a method for computing the values ϕi j(t,y) from the
given functions ψi j. Note that if we (pointwise) increase π ,
then the values ϕi j(t,y) also increase for each fixed i, j, t,y.
Hence ϕi j(t,y) are solutions of the following optimization
problem (where π is a variable distribution):

1. ϕi j(t,y)→max (for each i, j, t,y)

2. ϕi j(t,y)≤ ψi j(t,y) for all i, j, t,y

3. ϕi j(t,y) = sup{π((q̄, ȳall , ȳobs)) | (q̄, ȳall , ȳobs) ∈ Tr
and q̄(t) = i, q(t+) = j, ȳobs(t) = y }

Then we can try to solve it using iterative approximation
methods.

We have outlined the general idea of a hybrid system
with uncertain switching. In the rest of the paper we will
give a rigorous definition and semantics of such systems
and study their properties.

3. POSSIBILITY THEORY AND MARKOV-LIKE
PROCESSES

3.1. Markov-like processes

We use the following framework of (quantitative) pos-
sibility theory [6–9]. Let X be a space of atomic events.

Let Π : 2X → [0,1] be a (total) possibility measure, i.e.

Π(
⋃

k
Ak) = sup

k
Π(Ak) (1)

for any family {Ak}k of subsets of X (events), and let
N : 2X → [0,1] be a necessity measure, i.e.

N(
⋂

k
Ak) = inf

k
N(Ak) (2)

for any family {Ak}k. We assume that N(A) = 1−Π(¬A)
for all A ⊆ X (here ¬A denotes complement of a set),
Π(X) = 1 and N(X) = 1.

Let T be a timeline – either a set of non-negative inte-
gers N∪{0} (discrete time), or a set of non-negative real
numbers [0,+∞) (continuous timeline).

Let Y be a non-empty set (of states). We will use the
following conventions: if pred is some predicate on X , then
Π{x : pred(x)} denotes Π({x ∈ X : pred(x)}); a variable t
denotes time and ranges over T .

Under our assumption of totality of measures we will
use the following terminology:

• a possibilistic variable is a total function X → Y ;

• the distribution of a possibilistic variable ξ : X → Y
is a mapping y 7→Π{x : ξ (x) = y};

• a process is an arbitrary total function T ×X → Y ;

• a trajectory of a process p : T ×X → Y is a function
t 7→ p(t,x) for an arbitrary fixed x;

• the distribution of a process p : T ×X →Y is a func-
tion Fp : 2T→Y → [0,1], where

Fp(q) = Π{x : ∀t p(t,x) = q(t)}

for all q : T → Y , i.e. Fp(q) is a possibility of a func-
tion q to be a trajectory of p;

• The distribution Fp is called binary if Fp(q) ∈ {0,1}
for each q.

• an α-trajectory of p (where α ∈ [0,1)) is a function
q : T → Y such that Fp(q) > α , i.e. q is a trajectory
of p with possibility greater than α .

To define rigorously our possibilistic model we need a
possibilistic counterpart of a (stochastic) Markov process.
In the context of possibility theory Markov processes and
related notions have been investigated in several works,
e.g. [17–21]. However, these notions are not well suited for
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our purposes, so we introduce a new notion of possibilistic
Markov process, which we call a Markov-like process to
avoid confusion.

Let q1, q2 be trajectories of a process p such that
q1(t∗) = q2(t∗).

Definition 3.1. The crossover trajectories of q1 and q2 at
t∗ are functions q̄1, q̄2 : T → Y such that

1. q̄1(t) = q1(t) if t ≤ t∗ and q̄1(t) = q2(t) if t ≥ t∗,

2. q̄2(t) = q2(t) if t ≤ t∗ and q̄2(t) = q1(t) if t ≥ t∗.

Informally, q̄1 and q̄2 are obtained by gluing together
parts of q1 and q2 before and after t∗.

Definition 3.2. A process p has the Markov-like property,
if for each α-trajectories q1, q2 of p and t∗ ∈ T such that
q1(t∗) = q2(t∗), the crossover trajectories of q1 and q2 at t∗

are α-trajectories of p.

The Markov-like property means that the possibility distri-
bution on continuations of a trajectory q after a time mo-
ment t∗ does not depend on the values of q before t∗.

But the definition of a Markov-like process does not
guarantee that the possibility of a trajectory q is uniquely
determined by possibilities of its finite-time prefixes (i.e.
values Π{x : ∀t ≤ t∗ p(t,x) = q(t)} for all t∗ ∈ T ).

Definition 3.3. A Markov-like process p is called finitary,
if for each trajectory q of p:

Π{x : ∀t p(t,x) = q(t)}= lim
t∗→+∞

Π{x : ∀t ≤ t∗ p(t,x) = q(t)}

Definition 3.4. A (finitary) Markov-like distribution is a
distribution of some (finitary) Markov-like process.

Finitary Markov-like processes/distributions are rather
closely related to state transition systems.

Let Q be a non-empty set and CQ be the class of all la-
beled transition systems (Q,N∪{0},→), where the set of
states is Q, transition labels are non-negative integers, and
the transition relation is →⊆ Q× (N∪ {0})×Q. Let us
denote the inclusion (a,k,b) ∈→ by a→k b.

An infinite execution of T S∈CQ is a sequence (ω-word)
q1q2q3... such that q1 →0 q1 →1 q2 →2 .... Basically, the
systems in CQ work like time-labeled transition systems: a
label can be interpreted as a time moment at which the sys-
tem can make a transition between the given states.

An ω-language of T S ∈CQ is the set of all infinite exe-
cutions of T S.

Lemma 3.1. Let LQ be the class of all ω-languages of
transition systems T S ∈CQ.

(1) If F : 2N∪{0}→Q→{0,1} is a binary finitary Markov-
like distribution, then

{q̄(0)q̄(1)q̄(2)... |F(q̄) = 1} ∈ LQ

(2) If L ∈ LQ, then a function F : 2N∪{0}→Q → {0,1}
such that F(q̄) = 1 iff q̄(0)q̄(1)q̄(2)... ∈ L is a binary
finitary Markov-like distribution.

The proof can be easily obtained from definitions.
This lemma shows that the binary finitary Markov-

like distributions are in one-to-one correspondence with ω-
languages of transition systems T S ∈ CQ. Hence, finitary
Markov-like properties generalize such ω-languages in two
ways: non-binary possibility and non-discrete timeline.

3.2. Markov-like jump processes

In the rest of the article we will assume that we have
a continuous timeline T = [0,+∞). We will denote the
left/right limit of a function f :R→Rd at a point t as f (t−)
and f (t+) correspondingly (if these limits exist).

Definition 3.5. A Markov-like jump process is a finitary
Markov-like process p such that each trajectory of p is
piecewise constant and left-continuous.

Definition 3.6. An unconditional transition distribution of
a Markov-like jump process p : T × X → I (where I is a
non-empty state space) is an indexed family (ϕi, j)i, j∈I of
functions defined as follows:

ϕi, j(t) = Π{x : p(t,x) = i, lim
τ→t+

p(τ,x) = j}, t ∈ T

This means that ϕi, j(t) is the possibility of transition from i
to j at time t.

The following lemma shows that a distribution of a
Markov-like jump process is uniquely determined by its un-
conditional transition distribution:

Lemma 3.2. If p is a Markov-like jump process, then

Fp(q) = Π{x : ∀t p(t,x) = q(t)}= inf
t∈T

ϕq(t),q(t+)(t),

for each piecewise constant left-continuous q : T → Y .

Proof. Assume that inf
t∈T

ϕq(t),q(t+)(t) > δ for some δ ∈
[0,1]. Then for each t0 ∈ T there exists a trajectory rt0 of
p such that Π{x : ∀t p(t,x) = rt0(t)} > δ , rt0(t0) = q(t0),
and rt0(t0+) = q(t0+). Because rt0 ,q are piecewise con-
stant, there exists a non-empty inverval (at0 ,bt0) such that
t0 ∈ (at0 ,bt0) and rt0(t) = q(t) for each t ∈ (at0 ,bt0)∩T .

Let Kn = [0,n], n ∈ N. The family {(at0 ,bt0)|t0 ∈ K}
is an open cover of Kn. There exists a finite subcover
{(atk ,btk)|k ∈ {1,2, ..,s}} such that at0 ≤ 0, bts ≥ n, and
btk < atk+1 for k < s. Let us choose arbitrary τk ∈ (btk−1 ,atk)
for 1 < k < s. Let τ1 = 0, τs = n. Then

Π{x : ∀t ∈ [τk,τk+1] p(t,x) = q(t)} ≥
≥Π{x : ∀t ∈ (atk ,btk)∩Kn p(t,x) = rtk(t)}> δ .

Because p is Markov-like, we have

Π{x : ∀t ∈ Kn p(t,x) = q(t)}=
= min

1≤k<n
Π{x : ∀t ∈ [τk,τk+1] p(t,x) = q(t)}> δ .

Then Π{x : ∀t p(t,x) = q(t)} ≥ δ , because p is finitary.
Then Π{x : ∀t p(t,x) = q(t)} ≥ inf

t∈T
ϕq(t),q(t+)(t), because δ

is arbitrary. On the other hand, Π{x : ∀t p(t,x) = q(t)} ≤
Π{x : p(t0,x)= q(t0), p(t0+,x)= q(t0+)}=ϕq(t0),q(t0+)(t0)
for each t0 ∈ T . Thus Fq(p) = inf

t∈T
ϕq(t),q(t+)(t).

Note that not every family of functions is an uncondi-
tional transition distribution.
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Lemma 3.3. A family (ϕi, j)i, j∈I is an unconditional transi-
tion distribution of some Markov-like jump process if and
only if the following conditions are satisfied:

(1) sup
i, j∈I

ϕi, j(t) = 1 for all t ∈ T ;

(2) ϕi, j(t0) = sup{ inf
t∈T

ϕq(t),q(t+)(t) | a function q : T → I

is piecewise constant, left-continuous and q(t0) = i,
q(t0+) = j} for each i, j ∈ I and t0 ∈ T .

Proof. The ”only if” part can be easily proven using Lemma
3.2. To show the ”if” part, let us define a mapping F : (T →
I)→ [0,1] as follows:

F(q) =


inf
t∈T

ψq(t),q(t+)(t), if q is piecewise-constant

and left-continuous
0, in other case

From (1) we have sup{F(q) |q : T → I}= 1. Let X = T → I
be a set of elementary events. Let us define Π : 2X →
[0,1] as follows: Π(A) = sup{F(q) |q ∈ A}. Let N(A) =
1−Π(¬A). It is easy to see that Π is a possibility mea-
sure, N is a necessity measure, Π(X) = 1, N(X) = 1. Let
p : T ×X → I be a process such that p(t,q) = q(t). Then it
is not difficult to show that p is a Markov-like jump process
and (ϕi, j)i, j∈I is its unconditional transition distribution.

Usually (as in our motivating example), we do not have
an unconditional transition distribution as a part of process
specification. Instead, we have conditional possibilities

ψi, j(t) = Π{x : p(t,x) = i, lim
τ→t+

p(τ,x) = j|p(t,x) = i}, (3)

i.e. a possibility of a transition from i to j at time t, if the
process is in the mode i.

However, we have the following problem: there is no
universally accepted formal definition of conditional possi-
bility. Several authors have proposed different approaches
to conditional possibility [8]. We overcome this problem
using the following observation: we are dealing with con-
ditional possibilities of the form Π(A|B), where A⊆B. In
this case most definitions of conditional possibility imply
the natural inequality Π(A|B) ≥ Π(A). We take the impli-
cation A⊆B⇒Π(A |B)≥Π(A) as an axiomatic definition
of conditional possibility. Note that Π(A|B) and Π(A) do
not determine each other uniquely.

We propose the following specification mechanism for
Markov-like jump processes. Suppose that we know (infor-
mal) conditional possibilities of transitions (ψi, j)i, j∈I . Our
aim is to construct a Markov-like jump process distribution
using this knowledge.

To do this, we try to find an unconditional transition dis-
tribution (ϕi, j)i, j∈I from the following conditions:

1. ϕi, j(t) ≤ ψi, j(t), i.e. conditional possibilities are up-
per bounds for unconditional possibilities;

2. (ϕi, j)i, j∈I is the greatest (least specific) among all un-
conditional transition distributions (ϕ ′i, j)i, j∈I satisfy-
ing ϕ ′i, j(t)≤ ψi, j(t).

Then (ϕi, j)i, j∈I determines the distribution of a Markov-like
jump process.

Definition 3.7. An upper transition distribution is an in-
dexed family (ψi, j)i, j∈I (where ψi, j : T → [0,1]) such
that there exists an unconditional transition distribution
(ϕi, j)i, j∈I such that ϕi, j(t)≤ ψi, j(t) for all i, j ∈ I, t ∈ T .

I.e. an upper transition distribution is an upper bound
for some unconditional transition distribution. In particu-
lar, a family of conditional transition possibilities (in our
axiomatic definition) forms an upper transition distribution.

Lemma 3.4. A family (ψi, j)i, j∈I is an upper transition dis-
tribution if and only if

sup{ inf
t∈T

ψq(t),q(t+)(t) | a function q : T → I is piecewise

constant and left-continuous}= 1.

Proof. The ”only if” part can be easily proven using Lemma
3.2. To show the ”if” part, let us define a family of func-
tions (ϕi, j)i, j∈I such that ϕi, j(t0) = sup{ inf

t∈T
ψq(t),q(t+)(t) |

a function q : T → I is piecewise constant, left-continuous
and q(t0) = i, q(t0+) = j} for each i, j ∈ I and t0 ∈ T . It is
not difficult to check that they satisfy conditions of Lemma
3.3 and ϕi, j(t)≤ψi, j(t) for all i, j∈ I, t ∈ T . Thus (ψi, j)i, j∈I
is an upper transition distribution.

Corollary 3.1. (A sufficient condition for an upper transi-
tion distribution). If max

j∈I
ψi, j(t) = 1 for all i ∈ I and t ∈ T ,

then (ψi, j)i, j∈I is an upper transition distribution.

Definition 3.8. An unconditional transition distribution
(ϕi, j)i, j∈I is generated by an upper transition distribution
(ψi, j)i, j∈I , if the following conditions are satisfied:

1. ϕi, j(t)≤ ψi, j(t), i, j ∈ I, t ∈ T ;

2. ϕ ′i, j(t)≤ ϕi, j(t), i, j ∈ I, t ∈ T for each unconditional
transition distribution (ϕ ′i, j)i, j∈I such that ϕ ′i, j(t) ≤
ψi, j(t), i, j ∈ I, t ∈ T .

Theorem 3.1. Each upper transition distribution (ψi, j)i, j∈I
generates a unique unconditional transition distribution
(ϕi, j)i, j∈I such that ϕi, j(t0) = sup{ inf

t∈T
ψq(t),q(t+)(t) | a func-

tion q : T → I is piecewise constant, left-continuous and
q(t0) = i, q(t0+) = j} for each i, j ∈ I and t0 ∈ T .

Proof. Let us prove that (ϕi, j)i, j∈I satisfies condition 2 of
Lemma 3.3. It is easy to check that for each piecewise-
constant left-continuous q and t0 ∈ T , ϕq(t0),q(t0+)(t0) ≥
inf
t∈T

ψq(t),q(t+)(t). Then sup{ inf
t∈T

ϕq(t),q(t+)(t) | a function

q : T → I is piecewise constant, left-continuous, q(t0) =
i, q(t0+) = j} ≥ ϕi, j(t0) for each i, j. On the other
hand, ϕi, j(t0) ≤ ψi, j(t0) follows from the definition of
ϕi, j(t0). Because i, j, t0 are arbitrary, inf

t∈T
ϕq(t),q(t+)(t) ≤

inf
t∈T

ψq(t),q(t+)(t) for each q. Then using the definition ϕi, j,

we conclude that condition 2 of Lemma 3.3 is satisfied. It
is easy to see that Lemma 3.4 implies that condition 1 of
Lemma 3.3 is also satisfied. Hence (ϕi, j)i, j∈I is an uncon-
ditional transition distribution. Moreover, ϕi, j(t) ≤ ψi, j(t)
for all i, j ∈ I, t ∈ T . Then (ϕi, j)i, j∈I satisfied condition 1
of Definition 3.8. The condition 2 of this definition can be
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easily shown using Lemma 3.3. Thus (ϕi, j)i, j∈I is an un-
conditional transition distribution generated by (ψi, j)i, j∈I .

This theorem implies that one can specify any Markov-
like jump process (up to distribution) in the following way:
specify an upper transition distribution and find a generated
unconditional transition distribution from it.

The main property of this specification mechanism is
that if we fix some definition of conditional possibility
(such that Π(A|B) ≥ Π(A) whenever A⊆B) and define an
upper transition distribution as a family of conditional pos-
sibilities of transitions of some Markov-like jump process
p, then the generated unconditional transition distribution
gives an upper estimate for the unconditional transition dis-
tribution of the process p.

3.3. Computation of the generated upper transition
distribution

Consider the problem of computing the generated distri-
bution from a given upper transition distribution. We pro-
pose a solution in the case when the upper transition dis-
tribution belongs to a special class described below. This
class is definitely sufficient for most practical purposes.

We call a function f : T → [0,1] piecewise-monotone, if
for each t0 ∈ T there exists a relatively open (in T ) neigh-
borhood O of t0 such that f is monotone on the set O∩ [0, t0)
(if it is non-empty) and O∩ (t0,+∞).

Definition 3.9. An upper transition distribution (ψi, j)i, j∈I
is piecewise-monotone, if the set I is finite and each func-
tion ψi, j is piecewise-monotone.

The following theorem gives a monotone iterative
method for computing generated unconditional transition
distributions.

Theorem 3.2. Let (ψ0
i, j)i, j∈I be a piecewise-monotone up-

per transition distribution and (ϕi, j)i, j∈I be the correspond-
ing generated unconditional transition distribution. Let
(ψn

i, j)i, j∈I , n = 1,2,3, ... be a sequence of families of func-
tions defined by the following equations:

1. ψ
n+1
i,i (t) = ψn

i,i(t)

∧ inf
t ′<t

(
ψ

n
i,i(t
′)∨ sup

j∈I\{i},τ∈[t ′,t)
(ψn

j,i(τ)∧ψ
n
j, j(t

′))

)

∧ inf
t ′>t

(
ψ

n
i,i(t
′)∨ sup

j∈I\{i},τ∈(t,t ′]
(ψn

i, j(τ)∧ψ
n
j, j(t

′))

)

2. ψ
n+1
i, j (t) = ψn

i,i(t−)∧ψn
i, j(t)∧ψn

j, j(t+), n ≥ 0, i 6= j
(here we assume that ψi,i(0−) = 1; 0 is the initial
time moment)

where ∨ and ∧ denote binary maximum and minimum op-
erations on the segment [0,1].

Then (ϕi, j)i, j∈I is piecewise-monotone, and for each i, j,
the sequence ψn

i, j,n≥ 0 converges to ϕi, j uniformly on each
bounded set A⊆ T .

The proof of this theorem consists of three main steps: rep-
resent the sequence Ψn = (ψn

i, j)i, j∈I as iterations of a mono-
tone operator on a lattice of indexed families of piecewise-
monotone functions (let us denote it by R f ), show that Ψn
converges to a fixed point of R f , and show that this fixed
point is the required distribution.

Let us fix a finite set I (finiteness follows from assump-
tions of Theorem 3.2, because (ψ0

i, j)i, j∈I is a piecewise-
monotone). Let D be the set of all indexed families
(ψi, j)i, j∈I of functions ψi, j : T → [0,1], and Dm be the set of
all (ψi, j)i, j∈I ∈ D, where each ψi. j is piecewise-monotone.

Let≤ be a ”per-index pointwise” partial order on D, i.e.
(ψi, j)i, j∈I ≤ (ψ ′i, j)i, j∈I iff ψi, j(t)≤ ψ ′i, j(t) for all i, j, t.

It is easy to see that the poset (D,≤) is a complete lat-
tice. We will denote by infD and supD the least upper bound
and the greatest lower bound of a set or a sequence of ele-
ments of D. We assume that supD /0 and infD /0 are indexed
families of functions which are constantly equal to 0 and 1.

Let us define a function R f : Dm → D as follows:
R f ((ψi, j)i, j∈I) = (ψ ′i, j)i, j∈I , where

1. ψ ′i,i(t) = ψi,i(t)

∧ inf
t ′<t

(
ψi,i(t ′)∨ sup

j∈I\{i},τ∈[t ′,t)
(ψ j,i(τ)∧ψ j, j(t ′))

)

∧ inf
t ′>t

(
ψi,i(t ′)∨ sup

j∈I\{i},τ∈(t,t ′]
(ψi, j(τ)∧ψ j, j(t ′))

)

2. ψ ′i, j(t) = ψi,i(t−)∧ψi, j(t)∧ψ j, j(t+), i 6= j.

The left and right limits exist, because ψi, j, i, j ∈ I are
piecewise-monotone (by the assumption (ψi, j)i, j∈I ∈ Dm).

Lemma 3.5. R f maps Dm it itself.

Proof. Let (ψ ′i, j)i, j∈I = R f ((ψi, j)i, j∈I). It is not difficult
to prove that if each ψi, j, i, j ∈ I is monotone on a non-
empty interval (a,b) ⊂ T , then there exist a′ ∈ (a,b) and
b′ ∈ (a,b) such that each ψ ′i, j, i, j ∈ I is monotone on (a′,b)
and (a,b′). Then it is straightforward to show that each ψ ′i, j
is piecewise monotone.

Lemma 3.6. (1) R f (Ψ)≤Ψ for all Ψ ∈ Dm

(2) R f (Ψ1)≤ R f (Ψ2) if Ψ1 ≤Ψ2 (monotonicity)

The proof follows immediately from the definition of R f .

Denote by PwM(O) the set of all piecewise monotone
functions on a relatively open set O ⊆ T , i.e. functions f :
O→ [0,1] such that for each t0 ∈ O there exists a relatively
open (in O) neighborhood O′ of t0 such that f is monotone
on O′∩ [0, t0) (if it is non-empty) and O′∩ (t0,+∞).

We will denote as f |A the restriction of a function on
a set. It is easy to see that if f : T → [0,1] is piecewise-
monotone, then f |O ∈ PwM(O).

For any functions f ,g : A → [0,1] we will denote by
f ≤ g, f ∨ g, and f ∧ g the pointwise comparison, maxi-
mum, and minimum respectively.

For each f ∈ PwM(O) denote by LC( f ) a function g
such that g(t) = f (t−), if t 6= 0, and g(t) = 1, if t = 0 ∈ O.
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Denote by RC( f ) a function g such that g(t) = f (t+). The
left and right limits exist, because f ∈ PwM(O).

For each F ⊆ PwM(O) let

LR(F) = F ∪{LC( f ) | f ∈ F}∪{RC( f ) | f ∈ F} (4)

Lemma 3.7. (1) The set PwM(O) together with point-
wise operations ∨, ∧ forms a lattice

(2) LC and RC are endomorphisms of this lattice

(3) LR is a closure operator on the power set of PwM(O)

The proof can be easily obtained from the definitions.

Let F be a set of functions f : A→ [0,1], where A is a
set. Let Lm(F) be the (carrier of) lattice of functions (with
pointwise operations ∨, ∧) generated by F ∪Cst(A), where
Cst(A) is the set of all constant functions c : A→ [0,1].

Note that if F ⊆ PwM(O), then Lm(F)⊆ PwM(O), be-
cause constant functions are piecewise-monotone.

Lemma 3.8. ( [22]) If F is finite and g1,g2, ...,gs are all
elements of the set { ∧

f∈A
f |A ∈ 2F\{ /0}}, then Lm(F) =

{c0∨ (c1∧g1)∨ ...∨ (cs∧gs)|c0,c1, ...,cs ∈Cst(A)}.

The proof follows from distributivity of the lattice of func-
tions (A→ [0,1],∨,∧). For details see [22, p. 126].

Lemma 3.9. Let F ⊆ PwM(O) be a finite set which in-
cludes a zero constant function. If LR(F) = F, then
LR(Lm(F)) = Lm(F).

The proof can be obtained using lemmas 3.8 and 3.7.

We will say that a set of functions S ⊆ T → [0,1] is
locally finitely generated, if for each t ∈ T there exists a
relatively open neighborhood O ⊆ T of t and a finite set
F ⊆ PwM(O) such that f |O ∈ Lm(F) for each f ∈ S.

Lemma 3.10. Assume that (ψ0
i, j)i, j∈I ∈ Dm and

(ψn+1
i, j )i, j∈I = R f ((ψn

i, j)i, j∈I) for all n ≥ 0. Then the set
{ψn

i, j |n≥ 1, i, j ∈ I} is locally finitely generated.

Proof. By Lemma 3.5 the sequence (ψn
i, j)i, j∈I , n ≥ 0

is well defined. Let us fix a time moment t ∈ T . Let
FT = LR({0} ∪ {ψ0

i, j|i, j ∈ I}), where 0 is constant zero
function on T , and ST = { ∧

f∈A
f | A ∈ 2FT \{ /0}}. Then FT

and ST are finite, because I is finite. Lemma 3.7(3) im-
plies that FT ⊆ PwM(T ), because (ψ0

i, j)i, j∈I ∈ Dm. Then
ST ⊆ PwM(T ). For each g ∈ ST there exists a relatively
open neighborhood Og ⊆ T of t such that g is monotone
on Og∩ [0, t0) (if it is non-empty) and Og∩ (t0,+∞). Then
O =

⋂
Og ⊆ T is a relatively open neighborhood of t. Let

O′ = O∩ [0, t0) and O′′ = O∩ (t0,+∞). Using lemmas 3.7,
3.8, 3.9 it is not difficult to prove by induction on n that
ψn

i, j|O′ ∈ Lm(F ′T ) and ψn
i, j|O′′ ∈ Lm(F ′′T ) for all i, j and n≥ 0,

where F ′T = { f |O′ | f ∈FT} and F ′′T = { f |O′′ | f ∈FT}. Then
it is easy to check that ψn

i, j|O ∈ Lm(F) for all i, j and n≥ 0,
where F = { f |O | f ∈ FT}∪{χt |O}, where χt is the charac-
teristic function of the set {t}. This concludes the proof.

Lemma 3.11. Let F be a finite set of functions A→ [0,1],
and fn ∈ Lm(F), n≥ 1 be a pointwise monotone sequence.
Then fn, n≥ 1 converges uniformly on A.

Proof. The Lemma 3.8 implies that there exist g1,g2, ...,gs :
A→ [0,1] and sequences cn

i ∈ [0,1], i = 0,1, ...,s, n ≥ 1
such that fn(a) = cn

0 ∨ (cn
1 ∧ g1(a))∨ ...∨ (cn

s ∧ gs(a)) for
all a ∈ A, n ≥ 1. Let us choose a convergent subse-
quence (cnk

0 ,cnk
1 , ...,cnk

s ), k ≥ 1 from the sequence of vec-
tors (cn

0,c
n
1, ...,c

n
s ), n ≥ 1. From the inequalities |(x∨ y)−

(x′ ∨ y′)| ≤ |x− x′| ∨ |y− y′| and |(x∧ y)− (x′ ∧ y′)| ≤ |x−
x′| ∨ |y− y′|, which hold all real x,y,x′,y′, it follows that if
hn, h′n, n≥ 1 are uniformly convergent (on A) sequences of
real-valued functions, then hn ∨ h′n and h′n ∧ hn, n ≥ 1 also
converge uniformly on A. Then it is easy to see that fnk ,
k ≥ 1 converges uniformly on A. Then fn, n≥ 1 converges
uniformly on A, because it is pointwise monotone.

Lemma 3.12. A pointwise-monotone sequence fn : T →
[0,1], n≥ 1 such that { fn|n≥ 1} is locally finitely generated
converges uniformly on each bounded set A⊆ T .

Proof. By definition of a locally generated set, there exists
a collection of open sets O = {Ot | t ∈ T}, t ∈ Ot and finite
sets Ft ∈ PwM(Ot) such that fn|Ot ∈ Lm(Ft) for n ≥ 1. By
Lemma 3.11, fn|Ot , n≥ 1 converges uniformly on Ot . Be-
cause A can be included some compact segment [a,b], there
exists a finite collection O ′ ⊆ O which covers A. Then it is
straightforward to show that fn converges uniformly on A.

Lemma 3.13. Let Ψn = (ψn
i, j)i, j∈I ∈ Dm, n ≥ 1 be a non-

increasing sequence such that {ψn
i, j |n ≥ 1, i, j ∈ I} is lo-

cally finitely generated. Then infD
n≥1

R f (Ψn) = R f (infD
n≥1

Ψn).

Proof. For each i, j ∈ I the sequence ψn
i, j, n ≥ 1 is point-

wise monotone. Let ψi, j be its pointwise limit. Then
(ψi, j)i, j∈I = infD

n≥1
Ψn. Moreover, it is easy to see that

{ψn
i, j|n ≥ 1} (for fixed i, j) is locally finitely generated.

By Lemma 3.12, ψn
i, j, n ≥ 1 converges uniformly on each

bounded set A ⊆ T . Then it is not difficult to prove that
R f ((ψi, j)i, j∈I) = infD

n≥1
R f (Ψn) using definition of R f .

Lemma 3.14. Let Ψ0 ∈Dm, Ψn+1 = R f (Ψn) for all n≥ 0,
and Ψ = infD

n≥1
Ψn. Then Ψ is the largest element of the set

of all fixed points Ψ′ of R f such that Ψ′ ≤Ψ0.

Proof. By Lemma 3.5, Ψn ∈ Dm for n ≥ 1. Also, Ψn,
n ≥ 1 is non-increasing by Lemma 3.6(1). By lemmas
3.10 and 3.13, infD

n≥1
R f (Ψn) = R f (infD

n≥1
Ψn) = R f (Ψ). Then

R f (Ψ) = infD
n≥1

R f (Ψn) = infD
n≥1

Ψn+1 = Ψ. Thus Ψ is a fixed

point of R f , and also Ψ≤Ψ0. Let Ψ′ be a fixed point of R f
such that Ψ′ ≤Ψ0. From Lemma 3.6(2), Ψ′ = R f (n)(Ψ′)≤
R f (n)(Ψ0) = Ψn for all n ≥ 1, where R f (n) is a n-time ap-
plication of R f . Hence Ψ′ ≤ infD

n≥1
Ψn = Ψ.

Lemma 3.15. Each unconditional transition distribution
(ϕi, j)i, j∈I ∈ Dm is a fixed point of R f .

The proof by contradiction can be easily obtained using the
definition of R f and Lemma 3.3(2).
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Lemma 3.16. If (ϕi, j)i, j∈I is an upper transition distribu-
tion and a fixed point of R f , then (ϕi, j)i, j∈I is an uncondi-
tional transition distribution.

Proof. For each i ∈ I, α ∈ [0,1], t0 ∈ T let Aα
i+(t0) be

the connected component of the set {t ∈ T | t ≥ t0,ϕi,i(t)>
α} which contains t0, if ϕi,i(t0) > α , or Aα

i+(t0) = /0, if
ϕi,i(t0) ≤ α . Similarly, let Aα

i−(t0) be the connected com-
ponent of the set {t ∈ T | t ≤ t0,ϕi,i(t)> α} which contains
t0, if ϕi,i(t0)> α , or Aα

i−(t0) = /0, if ϕi,i(t0)≤ α . Using the
definition of R f it is not difficult to show that:
1) If Aα

i+(t0) is non-empty and bounded, then supAα
i+(t0)>

t0 and there exists t1 ≥ supAα
i+(t0), j 6= i, and a piece-

wise constant left-continuous q : [t0, t1]→ [0,1] such that
q(t0) = i, q(t1) = j, inf

t∈[t0,t1)
ϕq(t),q(t+)(t)≥ α , Aα

j+(t1) 6= /0.

2) If Aα
i−(t0) is non-empty and t0 > 0, then infAα

i−(t0) < t0
and there exists t1 ≤ infAα

i−(t0), j 6= i, and a piecewise con-
stant left-continuous q : [t1, t0]→ [0,1] such that q(t1) = j,
q(t0) = i, inf

t∈[t1,t0)
ϕq(t),q(t+)(t)≥ α , and Aα

j−(t1) 6= /0.

Using these properties it is easy to show that the condi-
tion 2 of Lemma 3.3 is satisfied. Moreover, sup

i, j∈I
ϕi, j(t) = 1

for all t ∈ T , because otherwise we have a contradiction
with Lemma 3.4. Thus (ϕi, j)i, j∈I is an unconditional tran-
sition distribution by Lemma 3.3.

Lemma 3.17. If (ϕi, j)i, j∈I is generated by an upper transi-
tion distribution (ψi, j)i, j∈I ∈ Dm, then (ϕi, j)i, j∈I ∈ Dm.

Proof. Using Theorem 3.1 it is not difficult to prove that
for each non-empty interval (a,b)⊆ T , if all functions ψi, j,
i, j ∈ I are monotone on (a,b), then all functions ϕi, j, i, j ∈ I
are monotone on (a,b). Then it is straightforward to show
that (ϕi, j)i, j∈I ∈ Dm using finiteness of I.

Now we are able to prove Theorem 3.2. Let Ψn =
(ψn

i, j)i, j∈I for each n ≥ 1. By Lemmas 3.5 and 3.6, the se-
quence Ψn, n ≥ 1 is well-defined and monotone. Then for
each i, j the sequence ψn

i, j, n≥ 1 has a pointwise limit ψi, j.
Lemma 3.14 implies that Ψ = (ψi, j)i, j∈I is a fixed point of
R f , Ψ ≤ Ψ0, and Ψ′ ≤ Ψ for each fixed point Ψ′ of R f
such that Ψ′ ≤ Ψ0. Let Ψ = (ϕi, j)i, j∈I . By Lemma 3.17,
Φ ∈ Dm. Then by Lemma 3.15, Φ is a fixed point of R f .
Moreover, Φ ≤ Ψ0. Hence Φ ≤ Ψ. Then Ψ is an upper
transition distribution. By Lemma 3.16, Ψ is an uncondi-
tional transition distribution. Because Φ is generated by Ψ0
and Φ≤Ψ≤Ψ0, we conclude that Φ = Ψ. Then Lemmas
55 and 3.12 imply that for each i, j, the sequence ψn

i, j,n≥ 0
converges to ϕi, j uniformly on each bounded A⊆ T .

4. SIMPLE SYSTEMS WITH UNCERTAIN
SWITCHING

4.1. Definition, sematic models, solutions

Before we consider general hybrid systems with uncer-
tain switching, let us study a simpler notion.

Let I be a non-empty finite set of states, T = [0,+∞).
Let fi : T×Rd→Rd for i∈ I and ψi, j : T→ [0,1] for i, j∈ I.

Definition 4.1. A simple system with uncertain switching
(SSUS) is a pair (F,Ψ) of indexed families of functions
F = ( fi)i∈I and Ψ = (ψi, j)i, j∈I .

Let Σ = (F,Ψ) be a SSUS, F = ( fi)i∈I , Ψ = (ψi, j)i, j∈I .

Definition 4.2. A SSUS Σ is well-formed, if Ψ is an upper
transition distribution.

Definition 4.3. A semantic model of Σ is an equation

ẏ(t,x) = fp(t,x)(t,y(t,x)) (5)

where p : T ×X → I is a Markov-like jump process such
that Ψ is an upper transition distribution which generates
the unconditional transition distribution of p.

Hence, SSUS is well-formed iff it has a semantic model.
Let us denote X+ = {x ∈ X |Π{x} > 0}, i.e. the set of

atomic events which have a positive possibility level.

Definition 4.4. A solution of the equation (5) is a process
y : T ×X→Rd such that for any fixed x ∈ X+ the trajectory
t 7→ y(t,x) satisfies equation (5) in sense of Caratheodory,
i.e. is absolutely continuous on each compact segment
in T and satisfies (5) almost everywhere (with respect to
Lebesgue’s measure).

Definition 4.5. An α-trajectory (where α ∈ [0,1)) of SSUS
Σ is an α-trajectory of some solution of some semantic
model of Σ.

Definition 4.6. An α-execution (where α ∈ [0,1)) of SSUS
Σ is a pair (q, ȳ) such that there exists a semantic model
ẏ(t,x) = fp(t,x)(t,y(t,x)) of Σ, a solution y∗ : T ×X → Rd

of this model and x∗ ∈ X such that Π{x∗} > α and q(t) =
p(t,x∗) and ȳ(t) = y∗(t,x∗) for all t ∈ T .

Note that sets of α-trajectories of solutions of any two
semantic models of the same SSUS coincide.

Lemma 4.1. ȳ is an α-trajectory of Σ iff there exists q such
that (q, ȳ) is an α-execution of Σ.

The proof follows immediately from the definitions.
An α-execution represents a dynamic behavior of SSUS

(larger α corresponds to a higher possibility level). An α-
trajectory represents a continuous part of this behavior.

A SSUS can be considered as a formalization of the
model shown in Fig. 2 in the case when the state does not
influence driver’s decisions (gi are constant functions, ψi, j
depend only on time).

Consider the initial condition

y(0,x) = y0, x ∈ X+ (6)

We say that the problem (5)–(6) has a unique solution (up
to trajectories of possibility zero) if every two solutions of
(5) which satisfy (6) coincide on the set T ×X+.

Theorem 4.1. Suppose that the following conditions are
satisfied (where ‖.‖ denotes the Euclidean norm):

(1) for each i ∈ I and t ∈ T , the function y 7→ fi(t,y) is
defined and continuous on Rd , and for each y ∈ Rd ,
the function t 7→ fi(t,y) is measurable;
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(2) for each i ∈ I there exists a function hi : T → R+,
which is bounded on every compact segment in R,
such that

‖ fi(t,y)‖ ≤ hi(t)(1+‖y‖)

for all t ∈ T , y ∈ Rd , where R+ = [0,+∞)

(3) for each i∈ I there exists a function Li : T →R+ (Lip-
schitz constant), which is bounded on every compact
segment in R, such that

‖ fi(t,y1)− fi(t,y2)‖ ≤ Li(t)‖y1− y2‖

for all y1,y2 ∈ Rd .

Then for each y0 ∈ Rd the problem (5)–(6) has a unique
solution.

The proof reduces to Caratheodory’s existence theorem
[23] by taking into account that trajectories of the process
p are piecewise-constant.

Let (ϕi, j)i, j∈I be an unconditional transition distribution
of a Markov-like jump process p : T ×X → I.

Theorem 4.2. Suppose that conditions of Theorem 4.1 are
satisfied. Then a function ȳ : T → Rd is an α-trajectory
of some solution of (5) if and only if there exists a piece-
wise constant and left-continuous function q : T → I such
that inf

t∈T
ϕq(t),q(t+)(t) > α and ȳ satisfies equation ẏ(t) =

fq(t)(t,y(t)) on T in sense of Caratheodory.

The proof follows from Theorem 4.1 and Lemma 3.2.

4.2. Reachability analysis

One of the basic analysis problems for SSUS is the
reachability problem: find states which can be reached with
(at least) a given level of possibility.

Let Σ = (( fi)i∈I ,(ψi, j)i, j∈I) be a well-formed SSUS
such that ( fi)i∈I satisfy conditions of Theorem 4.1 and
(ψi, j)i, j∈I is piecewise-monotone. For any set Y0 ⊆ Rd and
t̄ ∈ T let us define a closure of an α-reachable set:

cReachα(Y0, t̄) = cl({ȳ(t̄)| ȳ : T → Rd is an α-
trajectory of Σ and y(0) ∈Y0}), where cl(·) denotes closure
of a subset of Rd , i.e. cReachα(Y0, t̄) is a closure of the set
of points which can be reached by α-trajectories of Σ at the
moment of time t̄ from the set Y0.

We will use the following lemma to find cReachα(Y0, t̄):

Lemma 4.2. Let (ϕi, j)i, j∈I be a piecewise-monotone un-
conditional transition distribution, α ∈ [0,1), and t̄ > 0.
Then there exists a increasing finite sequence τ0,τ1, ...,τn ∈
T such that τ0 = 0, τn = t̄ and for each k = 0,1, ...,n−1 and
i, j ∈ I, ϕi, j is monotone on (τk,τk+1), and either ϕi, j(t)>α

for all t ∈ (τk,τk+1), or ϕi, j(t)≤ α for all t ∈ (τk,τk+1).

Proof. Because I is finite and (ϕi, j)i, j∈I is piecewise-
monotone, for each t ∈ [0, t̄] there exists εt > 0 such that
each ϕi, j is monotone on (t− εt , t)∩T and (t, t + εt). The
sets (t − εt , t + εt)∩ [0, t̄], t ∈ [0, t̄] are relatively open (in
[0, t̄]) and form a cover of the compact segment [0, t̄]. Let

us choose a finite subcover {(t ′k − εtk , t
′
k + εtk)∩ [0, t̄] |k =

1,2, ...,m′}. Let t0 < t1 < ... < tm be all elements of the
set {t ′1, t ′2, ..., t ′m′}∪ {t

′
l − εtl | l = 1,2, ...,m′}∪ {t ′l + εtl | l =

1,2, ...,m′} ∪ {0, t̄}. Then t0 = 0 and tm = t̄. Let k ∈
{0,1, ...,m− 1}. Then for some index l, (tk, tk+1) ⊆ (t ′l −
εtl , t

′
l + εtl )∩ [0, t̄], and because the sequence t0, t1, ..., tm in-

cludes all elements of {t ′l | l = 1,2, ...,m′}, (tk, tk+1) is ei-
ther a subset of (t ′l − εtl , t

′
l)∩ [0, t̄], or of (t ′l , t

′
l + εtl )∩ [0, t̄].

Hence each ϕi, j is monotone on (tk, tk+1). Then the set
Ak

i, j = {t ∈ (tk, tk+1)|ϕi, j(t) > α} is either empty, or is an
interval, or a semi-interval such that one of its ends belongs
to {tk, tk+1}. Let us denote

A = {tk|k = 1,2, ...,m}∪{infAk
i, j|i, j ∈ I,k = 1,2, ...,m} ∪

∪{supAk
i, j|i, j ∈ I,k = 1,2, ...,m}.

Let τ0 < τ1 < ... < τn be all elements of A. Then τ0 = 0,
τn = t̄ and for each k = 0,1, ...,n− 1 and i, j ∈ I, ϕi, j
is monotone on (τk,τk+1), and either ϕi, j(t) > α for all
t ∈ (τk,τk+1), or ϕi, j(t)≤ α for all t ∈ (τk,τk+1).

Note that although in general case the proof of Lemma
4.2 is not constructive, for some concrete representations
of piecewise-monotone transition distributions (e.g. finite
collections of lattice terms) τi can be computed effectively.

Let (ϕi, j)i, j∈I be a piecewise-monotone unconditional
transition distribution generated by (ψi, j)i, j∈I (it is de-
scribed in Theorem 3.2).

Let us fix α ∈ [0,1) and denote by I+ the set of non-
empty words (finite strings) in alphabet I. For each i, j ∈ I
and t0, t1 ∈ T such that t0 < t1 denote:

LSα
i, j(t0, t1) = {ii1i2...in ∈ I+ | n ≥ 1, ϕi,i1(t0) >

α, ϕ j, j(t1−) > α, in = j, (il , il+1) ∈ Hα(t0, t1) for
each l = 1,2, ...,n−1}, where

Hα(t0, t1) = {(i, j) ∈ I× I |∀t ∈ (t0, t1) ϕi, j(t)> α}.

Then LSα
i, j(t0, t1) is a regular language in the alphabet I.

For any formal language L⊆ I+, time moments t0 < t1,
and a set Y0 ⊆ Rd let us define:

reach(L, t0,Y0, t1) = {ȳ(t1) | ȳ : [t0, t1]→Rd is a function
such that ȳ(t0) ∈ Y0 and there exists a piecewise-constant
function q : [t0, t1] → I and time moments t̄0, t̄1..., t̄n ∈ T
such that t0 = t̄0 < t̄1 < ... < t̄n = t1, q(t) = ik+1 for all
t ∈ (t̄k, t̄k+1), k = 0,1, ...,n− 1, and ȳ satisfies the equation
ẏ(t) = fq(t)(t,y(t)) in the sense of Caratheodory}, i.e. the
set of points which can be reached from Y0 by means of
switching sequences described by words from L.

Also, let us define an indexed family of sets:

1. Y 0
i, j = Y0, if i = j and Y 0

i, j = /0, if i 6= j;

2. for each i, j ∈ I and k ≥ 1:

Y k
i, j =

⋃
l∈I

reach(LSα
l, j(τk−1,τk),τk−1,Y k−1

i,l ,τk)

Assume that t̄ > 0 and 0 = τ0 < τ1 < ... < τn = t̄ be
a sequence of moments given in Lemma 4.2 for (ϕi, j)i, j∈I ,
α and t̄. The theorem given below allows one to find α-
reachable points of the phase space for SSUS. More specif-
ically, it reduces the problem of computation of reachable
sets for SSUS to the similar problem for ordinary (non-
possibilistic) switched systems [1] (the set reach).
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Theorem 4.3. cReachα(Y0, t̄) =
⋃

i∈I, j∈J0(t̄) cl(Y n
i, j), where

J0(t̄) = { j ∈ I |max
j′∈I

ϕ j, j′(t̄)> α}.

Proof. Let Rcα
i, j(t0,Y0, t1) = {ȳ(t1) | ȳ : [t0, t1] → Rd

is a function such that ȳ(t0) ∈ Y0 and there exists a
piecewise-constant left-continuous q : [t0, t1]→ I such that

inf
t∈[t0,t1)

ϕq(t),q(t+)(t)> α , q(t0) = i, q(t1) = j, and ȳ satisfies

ẏ(t)= fq(t)(t,y(t)) in the sense of Caratheodory} for i, j∈ I.
It is not difficult to prove by induction on k that Y k

i, j =
Rcα

i, j(0,Y0,τk) for each i, j ∈ I and k = 0,1, ...,n. Then
Y n

i, j = Rcα
i, j(0,Y0, t̄) for all i, j ∈ I. Using Theorem 4.2

it is not difficult to show that
⋃

i∈I, j∈J0(t̄) Rcα
i, j(0,Y0, t̄) =

{ȳ(t̄)| ȳ : T → Rd is an α-trajectory of Σ and y(0) ∈ Y0}.
Hence cReachα(Y0, t̄) =

⋃
i∈I, j∈J0(t̄) cl(Y n

i, j).

5. HYBRID SYSTEMS WITH UNCERTAIN
SWITCHING

Now we will define and study a more general class of
hybrid systems with uncertain switching.

Let I be a non-empty finite set of states, T = [0,+∞).
Let fi : T ×Rd → Rd , gi : Rd → Rd′ for i ∈ I and ψi, j :
T ×Rd′ → [0,1] for i, j ∈ I.

Definition 5.1. A hybrid system with uncertain switching
(HSUS) is a triple (F,G,Ψ) of indexed families of functions
F = ( fi)i∈I , G = (gi)i∈I , Ψ = (ψi, j)i, j∈I .

HSUS is a formalization of the model shown in Fig. 2.
Let us fix a HSUS Σ = (F,G,Ψ), where F = ( fi)i∈I ,

G = (gi)i∈I , Ψ = (ψi, j)i, j∈I and define an indexed family of
functions Ψ̂ = (ψ̂i, j)i, j∈I , where

ψ̂i, j(t) = sup{ψi, j(t,gi(y))|y ∈ Rd}, t ∈ T. (7)

Let Σ̂ = (F,Ψ̂) be a SSUS.

Definition 5.2. A HSUS Σ is well-formed, if Ψ̂ is an upper
transition distribution (or equivalently, if Σ̂ is well-formed).

Definition 5.3. An α-execution (where α ∈ [0,1)) of Σ is a
pair (q, ȳ) of functions q : T → I and ȳ : T → Rd such that

1. (q, ȳ) is an α-execution of Σ̂

2. ψq(t),q(t+)(t,gq(t)(ȳ(t)))>α for all t ∈ T (i.e. it satis-
fies transition conditions with possibility level > α).

Definition 5.4. An α-trajectory of Σ is a function ȳ such
that there exists q such that (q, ȳ) is an α-execution of Σ.

Let us consider the reachability problem for HSUS.
Assume that Σ is a well-formed HSUS. To study reach-

ability we will impose some conditions on fi, i ∈ I and ψi, j.
Assume that fi, i ∈ I are continuous in both arguments

and satisfy conditions 2, 3 of Theorem 4.1. Then the initial
value problem ẏ = fi(t,y), y(t0) = y0 (i ∈ I) has a unique
solution for all t0, y0 [22]. Let us denote by yi(t ′; t0,y0) the
value of this solution at time t.

Assume that for each i, j, t0,y0, the mapping t 7→
ψi, j(t,g j(y j(t; t0,y0))) is monotone in some right open

neighborhood of t0 and t 7→ ψi, j(t,gi(yi(t; t0,y0))) is mono-
tone in some left open neighborhood of t0. This is a gener-
alization of a piecewise-monotonicity condition for SSUS.

Let us define the closure of an α-reachable set:
cReachα(t̄) = cl({ȳ(t̄) | ȳ : T →Rd is an α-trajectory of

Σ }), where cl(·) denotes the closure of a subset of Rd , i.e.
cReachα(Y0, t̄) is the closure of the set of points which can
be reached by α-trajectories of Σ at time t̄.

Let ε > 0 be an arbitrarily small positive number and
(ψn

i, j)i, j∈I , n = 0,1,2, ... be a sequence of families of func-
tions ψn

i, j : T×Rd→ [0,1] such that ψ0
i, j =ψi, j for all i, j∈ I

and for each n≥ 0,

1. ψ
n+1
i,i (t,y) = ψn

i,i(t,y)

∧ inf
t ′∈(t−ε∨0,t)

(
φ n

i,i(t
′, t,y)

∨ sup
j∈I\{i},τ∈[t ′,t)

(φ n
j,i(τ, t,y)∧φ n

j, j(t
′, t,y))

)
∧ inf

t ′∈(t,t+ε)

(
φ n

i,i(t
′, t,y)

∨ sup
j∈I\{i},τ∈(t,t ′]

(φ n
i, j(τ, t,y)∧φ n

j, j(t
′, t,y))

)
2. ψ

n+1
i, j (t,y) = sup

δ∈(0,ε)
inf

t ′∈(t−δ∨0,t)
φ n

i,i(t
′, t,y)∧ψn

i, j(t,y)

∧ sup
δ∈(0,ε)

inf
t ′∈(t,t+δ )

φ n
j, j(t

′, t,y) , if i 6= j.

where φ n
i, j(t

′, t,y) = ψn
i, j(t

′,gi(yi(t ′; t,y))) and ∨ and ∧ de-
note the maximum and minimum operations on the segment
[0,1]. Note that for each i, j ∈ I the sequence of functions
ψn

i, j, n≥ 0 is pointwise monotone (non-increasing).
The following theorem describes reachable states.

Theorem 5.1. Let ϕi, j(t,y) = lim
n→∞

ψn
i, j(t,y) for all i, j, t,y.

Then y ∈ cReachα(t̄) iff y ∈ cl{(y |max
i, j∈I

ϕi, j(t̄,y)> α}.

Proof. Using the method that we used to prove The-
orem 3.2 and the assumption that the mapping t 7→
ψi, j(t,g j(y j(t; t0,y0))) is monotone in a right open neigh-
borhood of t0 and t 7→ ψi, j(t,gi(yi(t; t0,y0))) is mono-
tone in a left open neighborhood of t0, it is not diffi-
cult to show that for each y the sequence t 7→ ψn

i, j(t,y)
converges uniformly on each bounded set A ⊆ T , and
that infn≥1 ψn

i, j(t0,y) = sup{inf
t∈T

ψq(t),q(t+)(t,gq(t)(ȳ(t))) |

(q, ȳ) is a 0-execution of Σ̂, q(t0) = i,q(t0+)= j, ȳ(t0) = y}
i.e. the limit is a generalization of an unconditional transi-
tion distribution. Then it is straightforward to show that
y ∈ cReachα(t̄) iff y ∈ cl{(y |max

i, j∈I
ϕi, j(t̄,y)> α}.

For the purpose of safety verification, it is sufficient to
show that the set of unsafe states is not α-reachable set for
large α . Because of monotonicity of the sequence ψn

i, j, if an
unsafe state y is not in cl{(y |max

i, j∈I
ψn

i, j(t̄,y) > α} for some

n, then y is not α-reachable. This observation can be used
for practical safety analysis.

6. CONCLUSIONS

We have considered a possibilistic approach to model-
ing uncertainty in discrete-continuous dynamical systems
and outlined applications of this approach in driver behav-
ior modeling. We proposed a new class of hybrid systems
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with uncertain switching. For a large subclass of this class
(well-formed systems with specific assumptions on flows
and transition distributions) we formulated and studied the
reachability problem. The results may be useful for model-
ing and analysis of safety of human-machine systems.

We plan to investigate new classes of hybrid possibilis-
tic systems and new problems in forthcoming papers.
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