Acta Electrotechnica et Informatica, Vol. 11, No. 4, 2011, 25-30, DOI: 10.2478/v10198-011-0038-3

25

COMMON ABSTRACTION OF CONFIGURATION FROM MULTIPLE SOURCES

Jaroslav PORUBAN, Milan NOSAL
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of KoSice,
Letnd 9, 042 00 Kosice, Slovak Republic, tel.: +421 55 602 4179, e-mail: {milan.nosal, jaroslav.poruban} @tuke.sk

ABSTRACT

Configuration is an important part of design of software systems. There are many different configuration formats, such as XML,
YAML, attribute-oriented programming, etc., that allow system provider to design configuration language according to his require-
ments. Target group of system users is often very wide and one configuration language can not meet all user requirements. The paper
introduces and analyzes idea of supporting multiple configuration sources using common abstraction of configuration sources in or-
der to meet more user requirements without severe increase of provider’s costs. The paper presents design of tool providing common
abstraction of configuration sources. Design is based on analysis of existing tools, and it is extended with idea of declarative rep-
resentation of mapping of configuration languages to output format and of process of their combining. At last, the paper presents
proof-of-concept implementation of the tool called Bridge To Equalia and states several conclusions based on experiments realized

with Bridge To Equalia.

Keywords: configuration, abstraction, multiple sources, configuration language, Java annotations, XML documents

1. INTRODUCTION

Idea of configuration in software systems allows config-
urable system to be modeled, customized or personalized to
meet specific requirements of customer or to be adapted to
special circumstances or environment.

From the provider’s point of view, implementing con-
figurable system brings advantages in form of satisfying
more clients, strengthening competitive advantages, provid-
ing better flexibility, robustness, quality and transparency in
system. The system’s ability to evolve is crucial to the user
of system, and so it is to provider (as his income depends
on user’s satisfaction). [3]]

On the other side, user profits from customizing sys-
tem to her goals, preferences, abilities ands skills [S]]. This
way a configurable system satisfies user’s individuality and
raises efficiency of her work [8f]. Also, using a config-
urable system instead of custom one means spending less
money, because customizing configurable system is usually
cheaper than developing a new custom system (also evolu-
tion of system is more manageable) [7].

1.1. Motivation

Although there are many benefits of configurable sys-
tems in comparison with custom, one can run upon many
problems with expressing configuration while adapting a
configurable system (for instance ones presented in [4}[8]]).
Configuration as a concrete instance of configurable sys-
tem is expressed as a sentence in a custom domain-specific
language [9]] (DSL), called configuration language. Each
user prefers configuration language that meets her taste and
needs the best.

While choosing a suitable configuration language, there
are considered aspects as simplicity of language, its ver-
bosity and sententiousness, complexity of configuration
process, domain abstraction, etc. [4}|5]. But user’s pref-
erences are based on subjective motives as well as on ob-
jective. It is easier to learn new XML configuration lan-
guage than an annotations-based one, when you are famil-
iar with XML but not with attribute-oriented programming

ISSN 1335-8243 (print) © 2011 FEI TUKE

www.aei.tuke.sk

VERSITA

(@OP is new and very popular format of configuration lan-
guages [13]]).

To encourage user to utilize configuration, it is best to
give her option of expressing configuration in the language
that she is most familiar with. The most straightforward
way to deal with the problem is to choose one of available
formats (such as XML, YAML, INI, @OP, etc.) and to de-
sign configuration language that suits the needs of potential
users the best. But usually there is not a format, that would
meet all important requirements and its drawback would be
negligible. For instance, source code annotations (@QOP)
are shorter than XML documents, but changing configura-
tion in annotations requires recompilation. On the other
hand, configuration for some programs is so simple and
small, that it is easiest to use command line arguments, .INI
files or .properties. These and more similar arguments lead
to realization of need for support of multiple configuration
languages.

Naturally, implementing processing of more configura-
tion languages costs more resources. Code, that process
configuration, becomes larger, and its maintenance harder
and error-prone (due to mixed processing of more config-
uration languages). There is also negative impact on evo-
lution of used configuration languages (changing language
requires changes in processing code too).

Situation can be summarized in following two state-
ments:

e 1 supported configuration language — risk of dissat-
isfied users.

e Multiple supported configuration languages — in-
creased costs of implementation and maintenance of
system.

This reasoning brings up a question: How to support
multiple configuration languages without significant raise
of costs and decrease of processing code simplicity (read-
ability, maintainability)? This paper is trying to provide
answer to the problem.

ISSN 1338-3957 (online)

EMERGING)SCIENCE PUBLISHERS WWW.versita.com/aei

26

Common Abstraction of Configuration from Multiple Sources

2. ANALYSIS

If some system is supposed to support multiple configu-
ration languages, then it should to be able to process config-
uration in any of supported languages. For example, if the
system supports INI files and XML documents, user must
be able to freely choose between these formats. A stronger
requirement is an option of random mix of configuration
languages. The complete configuration is then composed
of partial configurations expressed in different languages.
So far, three solutions have been recognized: Ad-hoc so-
lutions, source transformations and common abstraction of
configuration sources.

2.1. Ad-hoc solutions

As the title suggests, provider needs to implement pro-
cessing of all desired configuration languages ad-hoc. The
concept of this solution is outlined in Fig. [l Adding a
new supported configuration language is basically imple-
menting a whole operation of processing configuration in
given language (difficulty is comparable to situation, when
the system supports only one configuration language). But
the fact, that the processing code needs to be integrated into
existing configuration interface (code for other languages),
makes the implementation even more difficult. The code
processing one language may interleave with the code for
other languages, and this results in worse maintainable im-
plementation.

Configuration I
in YAML

Processing YAML

Configuration I
in XML

Processing XML

System

Processing INI Processing attributes

Configuration Cor)figuration II
in INI using @OP

—3 Data flow II Configuration source/-s

|

Fig. 1 Example of Ad-hoc solution with four configuration
languages

This approach appears to be the most inefficient, but the
most common too. It is implemented in general-purpose
language and therefore it does not require working with new
tool. Also developers feel freedom in defining a policy of
mixing partial configuration into complete one. This ap-
proach is used in many frameworks (e.g. Java EE [11]], Mi-
crosoft Enterprise Library [10], GCore [12]), applications
(Apache Tomcat [2]]), games (Fallout 2 [6]), and other soft-
ware systems.

ISSN 1335-8243 (print) (© 2011 FEI TUKE

www.aei.tuke.sk

VERSITA

2.2. Source transformations

More elegant way to allow user usage of multiple con-
figuration languages are source transformations. Instead of
implementing processing for each configuration language,
there is implemented processing of only one language. For
the other languages there are provided compilers that trans-
late configuration sources in unsupported languages to sup-
ported one. The concept is introduced in Fig. 2]

Configuration II
in YAML

Mappina
Compiler
YAML -> XML

Processing XML

Configuration
in XML

Mappina

@OP -> XML
Configuration I
using @OP

II Configuration source/-s

Mappina

INI -> XML
Configuration II
in INI

————> Data flow

Fig. 2 Example of source transformations with four
configuration languages

This way, provider needs to take care only of process-
ing one language and of describing translation of other lan-
guages to supported language. Description of translation
is represented as mapping of one configuration language
to another. Generally, translation description of language
is shorter and therefore cheaper than implementing its pro-
cessing. What’s more, usage of compilers makes configu-
ration processing code simpler (it processes only one lan-
guage) and easier to maintain (as processing of each lan-
guage is clearly separated from others).

The drawback of this approach is absence of support
for combining (mixing) of configurations in multiple lan-
guages. Usually compilers just translate sentence from in-
put language to output. And even with compilers capable of
this functionality, the provider needs to deal with the syn-
chronization of the translations to ensure proper priority of
configuration languages.

2.3. Common abstraction of configuration sources

The solution suggested by this paper is common ab-
straction of configuration sources. Abstraction apparatus
is a tool that processes the sources in multiple languages
and by combining them generates complete model of con-
figuration in output language as a virtual source in memory.
This virtual source is handed over to system for processing.
Fig. [3] presents this solution. And if one of the input lan-
guages is same as the output language, thanks to its trivial
mapping is the complexity of mapping description the same
as in case of source transformations.

ISSN 1338-3957 (online)

EMERGING SCIENCE PUBLISHERS WWW.versita.com/aei

Acta Electrotechnica et Informatica, Vol. 11, No. 4, 2011

27

Configuration II Configuration II
in YAML in XML

Mappina Mappina
Processing YAML Processing XML

Abstraction
apparatus

Mappina
Processing @OP

Configuration I
using @OP

Mappina

Processing INI

Configuration
in INI

Processing
output format

System

II Configuration source/-s

—3 Data flow

Fig. 3 Example of common abstraction of configuration sources

As examples of this kind of tools can be mentioned
Zend Config [14]] and Apache Commons Configuration [1]].
These provide abstraction of configuration from different
formats (e.g. INI, XML, .properties). However, both of
these lack effective means to choose freely abstracted lan-
guages of supported formats. While Zend Config requires
strictly default mapping between selected input formats (for
instance, for one XML language there is only one sup-
ported language in INI files), Commons Configuration al-
lows modification of default mapping in procedural way
that appears to be too exhausting for practical purposes.

3. DESIGN OF THE TOOL

This paper introduces a new design of abstraction tool
that reduces drawback of its usage. The need to learn to
use new tool, limitations in mapping of configuration lan-
guages (only one default mapping between different for-
mats in Zend Config) or challenging means of changing
default mapping between languages (Commons Configura-
tion) could be identified as the most significant drawbacks
of usage of given tool. The proposed design targets diffi-
culties in definition of mapping of languages.

3.1. Metamodel

We suggest enabling change of default mapping be-
tween configuration languages that would lead to greater
freedom in used languages and therefore raise the potential
of satisfying individualities of tool’s users. On the other
hand, we find procedural representation of mapping (or
changes in default mapping) and translation too demand-
ing and therefore we suggest utilizing declarative represen-
tation. As this concept represents a model of a model of a
configuration, we call it metamodel. Metamodel describes
how to create models of configuration in internal format
from all input configuration languages and how to combine
them into complete configuration. This way metamodel

ISSN 1335-8243 (print) © 2011 FEI TUKE

www.aei.tuke.sk

VERSITA

also defines abstract syntax of configuration. Metamodel
should be carefully designed to be as general as possible
while remaining simple brief (in order to keep benefits of
short representation of languages’ mappings).

3.2. Conceptual design

Fig. A shows a conceptual design of tool based on anal-
ysis of existing tools and considering utilization of meta-
model. The tool is composed of these modules:

e Metaconfiguration reader’s task is to process meta-
configuration - configuration of the tool. Metaconfig-
uration contains all necessary information for tool’s
operation. This module represents interface for sys-
tem provider to define required metamodel and other
system-specific settings.

e Metamodel generator uses information mediated by
metaconfiguration reader to build up in-memory rep-
resentation of metamodel.

o Configuration sources locator takes care of locating
and preparing sources for further processing. Pur-
pose of designing this module is to separate prepara-
tion of sources from translation.

e When everything is prepared, configurations from
multiple sources are translated into internal format
using metamodel as a guide. This format unifica-
tion is performed by configuration formats unify-
ing unit. Result of this process is set of configuration
models in internal format. Each of the models repre-
sents whole or partial configuration of the system.

e Following combining policy defined in metamodel
(created by metamodel generator using metaconfigu-
ration) the combining unit combines all models into
one representing complete configuration. Result of
this combination process can be one of the models
created by configuration formats unifying unit, if this
model represents complete configuration (it is not
missing any required information) and source format
of the model has highest priority (information pro-
vided by this model is the most important).

o At the end of the process comes to play output mod-
ule. Its purpose is to return unified model in re-
quested format (defined in metaconfiguration) to user
of the tool. If requested format is not the same as in-
ternal, it has to perform additional translation.

This modular approach allows easier debugging and
maintenance.

ISSN 1338-3957 (online)

EMERGING)SCIENCE PUBLISHERS WWW.versita.com/aei

28

Common Abstraction of Configuration from Multiple Sources

Metaconfiguration

Configuration
reader

sources

=

Configuration
sources locator

\/

Configuration formats
unifying unit

N

Combining unit

i

Output module

l:l Program module

Metamodel generator

>

Data flow

Fig. 4 Design of the tool

4. EXPERIMENTS

To provide practical support for arguments stated in this
paper, we implemented experimental tool and carried out
few experiments.

4.1. Bridge To Equalia

Bridge To Equalia (BTE) is a proof-of-concept imple-
mentation of the abstraction tool. BTE abstracts configu-
ration through Java annotations (implementation of @OP)
and XML documents, two most commonly used configu-
ration formats on Java platform. BTE utilizes concept of
metamodel to make it easier to customize the tool for indi-
vidual purposes. Internal format is represented by custom
Java classes, and so is metamodel. Default metamodel is
created for annotation types defining language in annota-
tions. This metamodel can be altered to customize tool’s
behavior.

We performed a few experiments to test tool’s flexibil-
ity and usability. As first, metaconfiguration reader module
was implemented using the tool itself. This allows user to
define metaconfiguration of BTE using both XML docu-
ments and Java annotations and it also shows usability of
the tool. To test flexibility, tool was used to abstract config-
uration of several Java EE technologies that use both XML
and Java annotations. Tests were performed for parts of
Servlet, Java Server Faces and Java Persistence API config-
uration and all were successful.

ISSN 1335-8243 (print) (© 2011 FEI TUKE

www.aei.tuke.sk

VERSITA

At last, we realized an experiment to compare direct
processing of configuration to BTE-mediated. Its purpose
was to show benefits of using the tool and to confirm as-
sumptions about using abstraction tool. Not only the code
was simpler (code processing configuration had to deal only
with XML instead of XML and annotations) but it was
shorter too (Fig. [3). As the analysis showed, the benefit
would be even more notable in less trivial case than used
example.

100

50

0

Processing
of conf.

sources ration Mapping Total

[Direct processing / lines of code 24 58 0 0 82
|wBTE /lines of code 5 39 13 4 61

Fig. 5 Comparison of direct and BTE-mediated configuration
processing

So far, BTE can be considered the most flexible and
general tool abstracting XML documents and Java anno-
tations (to be honest, there are no such commercial tools,
and BTE is successor of two of our older projects).

4.2. Conclusions of experiments

Experiments led to following conclusions:

1. Significance of the benefits of using abstraction tool
rise with increasing number of supported configura-
tion languages. This is pretty natural conclusion, ab-
straction of each language saves some code length
and therefore more languages means more saved
code (in comparison with ad-hoc solution). And
there are other benefits than merely a shorter code
- the code is also simplier and easier to maintain.

2. Let’s suppose that we have given number of input
configuration languages. Larger abstract syntax of
the configuration induces more complicated process-
ing (one has to process more semantically different
information) and therefore more code for each sup-
ported language. This results in saving even more
code, because with the tool system provider needs to
implement only processing of the output format.

3. Supposing we have given number of configuration
languages, greater distance of language mappings
from default induce metaconfiguration growth. This
is due to bigger effort needed in describing changes
in default mapping. Of course, larger metaconfigura-
tion means less efficient usage of the tool. Therefore
it is very important for tool’s author to find most com-
mon mapping between formats supported by tool and
to use it as default (to ensure that in most cases the
tool would not need an excessive language mapping
definition).

ISSN 1338-3957 (online)

EMERGING SCIENCE PUBLISHERS WWW.versita.com/aei

Acta Electrotechnica et Informatica, Vol. 11, No. 4, 2011

29

4. Metamodel allows easier and faster changes to de-
fault tool’s usage (in comparison with procedural ex-
pression used for instance in Apache Common Con-
figuration).

To sum it up for practical purposes, the tool is not the
best choice in every case. Instead, the usage of abstraction
tool is suggested in case of more supported configuration
languages and configuration with larger abstract syntax,
while languages are mapped to output format (or internal,
depending on metaconfiguration policy) using default map-
ping or one close to default. On the other hand, with simple
abstract syntax of configuration but complicated mapping
of languages to output format, the tool’s usage is not rec-
ommended and ad-hoc solution might be better choice (but
one should consider possible benefits of the tool in case of
future extension of system and its configuration).

5. CURRENT STATUS AND FUTURE PERSPEC-
TIVES

Primary purpose of BTE implementation was to test the
concepts of source abstraction and declarative approach to
language mapping. Although the tool was tested on afore-
mentioned experiments, it would be necessary to put it
through complex testing and debugging process before us-
ing it in “real-life” projects.

As next step in this area we see possible movement of
metamodel definition from instance variables of metamodel
classes to custom annotations. This way, metamodel would
not consist of our Java classes, but definition of metamodel
would be totally upon the tool’s user. Instead of defining
configuration language (as it is currently in BTE, user de-
fines annotation-based language and its mapping on XML),
user would write directly abstract syntax of configuration
languages in form of custom classes (tree of their objects
would represent an abstract syntax tree). In other words,
user would define, what is configurable in his system with-
out concerning about concrete syntax of configuration lan-
guages. Concrete syntax with combining policies would be
added later, for example in form of Java annotations.

6. CONCLUSION

This paper concerns about enabling configuration from
multiple sources. Its main purpose is to show and explain
importance of common abstraction of configuration from
multiple sources in comparison with other approaches. Pa-
per presents conceptual design of abstraction tool with em-
phasis put on declarative way of defining mapping of ab-
stracted configuration languages to output language. The
effect of this approach is tested by experiments performed
with proof-of-concept implementation of the tool for ab-
stracting Java annotations and XML documents.

ACKNOWLEDGEMENT

This work is the result of the project implementation:
Development of the Center of Information and Communi-
cation Technologies for Knowledge Systems (ITMS project

ISSN 1335-8243 (print) © 2011 FEI TUKE

www.aei.tuke.sk

V. ERS | T / EMERGING)SCIENCE PUBLISHERS

code: 26220120030) supported by the Research & Devel-
opment Operational Program funded by the ERDF.

REFERENCES

[1] Apache Software Foundation: Apache Commons
Configuration. http://commons.apache.org/
configuration/, available on 7.7.2011.

(2]

Apache Software Foundation: Apache Tomcat. http:
//tomcat . apache.org/) available on 7.7.2011.

BENNETT, K. — LAYZELL, P. - BUDGEN, D. —
BRERETON, P. - MACAULAY, L. - MUNRO, M.:
Service-Based Software: The Future for Flexible Soft-
ware. In: Proceedings of Software Engineering Confer-
ence, 2000, APSEC, pp. 214-221.

GROSS, P. HB — GINZBERG, M. J.: Barriers To The
Adoption Of Application Software Packages. In: Sys-
tems, Objectives, Solutions, Vol. 4, No. 4, 1984, pp.
211-226.

HUI, B. — LIASKOS, S. - MYLOPOULQS, J.: Re-
quirements Analysis for Customizable Software Goals-
Skills-Preferences Framework. In: Proceedings of 11th
IEEE International Requirements Engineering Confer-
ence, 2003, p. 117.

(3]

(4]

(5]

[6] Interplay: Fallout, Fallout 2, Fallout Tactics. http://

www.interplay.com/games/fallout.php, available on
7.7.2011.

LUCAS, H. C. Jr. - WALTON, E. J. - GINZBERG, M.
J.: Implementing packaged software. In: Management
Information Systems Quarterly, Vol. 12, No. 4, Decem-
ber 1988, pp. 537-549.

MACKAY, W. E.: Triggers and barriers to customiz-
ing software. In: Proceedings of the SIGCHI confer-
ence on Human factors in computing systems: Reach-
ing through technology, April 27-May 02, 1991, New
Orleans, Louisiana, United States, pp. 153-160.

MERNIK, M., HEERING, J., SLOANE, A. M.: When
and how to develop domain-specific languages. In
ACM Computing Surveys (CSUR), Vol. 37, No. 4, De-
cember 2005, pp. 316-344.

(7]

(8]

(9]

[10] Microsoft: Microsoft ~ Enterprise Library.
http://msdn.microsoft.com/en-us/library/

££648951 . aspx), available on 7.7.2011.

[11] Oracle Corporation: JSR 316: Java Platform, Enter-
prise Edition 6 (Java EE 6) Specification. http://jcp.

org/en/jsr/detail?id=316, available on 7.7.2011.

PASSOS, E. B. - SOUSA, J. W. S., CLUA, E. W. G.
— MONTENEGRO, A.— MURTA, L.: Smart compo-
sition of game objects using dependency injection. In:
Computers in Entertainment (CIE) - SPECIAL ISSUE:
Games, Vol. 7, No. 4, December 2009.

ROUVOY, R. - MERLE, P.: Leveraging Component-
Oriented Programming with Attribute-Oriented Pro-
gramming. In: Proccedings of WCOP 2006, Nantes,
France, July 2006.

[12]

[13]

ISSN 1338-3957 (online)

www.versita.com/aei

http://commons.apache.org/configuration/
http://commons.apache.org/configuration/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://www.interplay.com/games/fallout.php
http://www.interplay.com/games/fallout.php
http://msdn.microsoft.com/en-us/library/ff648951.aspx
http://msdn.microsoft.com/en-us/library/ff648951.aspx
http://jcp.org/en/jsr/detail?id=316
http://jcp.org/en/jsr/detail?id=316

30

Common Abstraction of Configuration from Multiple Sources

[14] Zend Technologies Ltd.: Progammers Reference
Guide: Zend_Config. http://framework.zend.com/
manual/en/zend.config.html, available on 7.7.2011.

Received October 13, 2011, accepted November 2, 2011

BIOGRAPHIES

Jaroslav Porubén is Associate professor at Department of
Computers and Informatics, Technical university of KoSice,
Slovakia. He received his MSc. in Computer Science in
2000 and his PhD. in Computer Science in 2004. Since
2003 he is the member of the Department of Computers
and Informatics at Technical University of KoSice. He was

ISSN 1335-8243 (print) © 2011 FEI TUKE

www.aei.tuke.sk

VERSHT A A {EMERGING; SCLENCE PUBLISHERS

involved in the research of profiling tools for process func-
tional programming language. Currently the main sub-
ject of his research is the computer language engineering
concentrating on design and implementation of domain-
specific languages and computer language composition and
evolution.

Milan Nosaf is PhD. student at the Department of Comput-
ers and Informatics, Technical University of KoSice, Slo-
vakia. He received his MSc. in Informatics in 2011. Cur-
rently his research focuses on attribute-oriented program-
ming and its roles and usage options in programming and
metaprogramming.

ISSN 1338-3957 (online)

www.versita.com/aei

http://framework.zend.com/manual/en/zend.config.html
http://framework.zend.com/manual/en/zend.config.html

