
Acta Electrotechnica et Informatica, Vol. 11, No. 2, 2011, 33–36, DOI: 10.2478/v10198-011-0016-9 33

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

CONTROL OF LARGE GRAPHICS DATA SET VISUALIZATION
USING SCRIPT LANGUAGE

Branislav SOBOTA
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic, tel.: +421 55 602 2563, e-mail: branislav.sobota@tuke.sk

ABSTRACT
This paper describes certain area of scripting languages application in visualization process. The focus is on 3D geometric

transformations. Algorithm of 3D object rotation is present in more detail and resulting real time implementation in Ruby is
demonstrated. Integration into existing VR system for immersive visualization of complex datasets is explained. The object
movement from start to destination position is implemented as sequence of sub-movements with particular increments of path.
Visualization engine combines script and object to final result and the output is a scene with rotating object in real-time.

Keywords: computer graphics, geometric transformations, script language, visualization

1. INTRODUCTION

During recent years scripting languages gained
importance in areas of computer graphics and other IT
systems. [1][2][3][4]. Scripting languages usually belong
into group of interpreted languages. Main difference to
compiled type of languages such as C++, C# or others is
that script is mostly executed from source code.
Sometimes scripting languages are executed from pre-
compiled code. This compiled code is called byte-code.
Script is compiled to byte-code by interpreter. From
history point of view script language was developed in
1960s. Since that year script continued to improve and
expand into many programs and forms of scripting
languages. The most widespread script languages found
application within computer graphics. As of today there
are many kinds of scripting languages as for example
RUBY [5], PYTHON [6] or LUA [7]. It is possible to
program or control computer graphics or virtual-reality
applications on higher level using scripting language.
Following chapters of this paper focus on RUBY scripting
language and implementation of real-time geometric
transformations using this language.

2. GEOMETRIC TRANSFORMATIONS

The standard set of linear geometric transformations
consists of translation, scaling and rotation [8]. General
geometric transformation of object O to destination object
O’ in a space (virtual world) is depicted in Fig. 1.

T O O’

Fig. 1 General geometric transformation

Scaling (by application of matrix S (2)) and translation
(via matrix T (1)) represent simple transformations. A
rotation is more complex transformation. A rotation is a
movement of object in a circular motion. In 2D space

object rotates around a center of rotation. Situation in 3D
space is a bit more complex (see Fig. 2). 3D object rotates
around a line (e.g. p). Simpler case is when line is one of
coordinate system’s axis. Then it is possible to use one of
transformation matrices directly (RX, RY or RZ depend on
which one is aligned with rotation axis, (1)). However
general 3D rotation requires multiple steps to be
performed. First is to move (translate) the virtual world
(scene, space) to align line p through the origin. Next step
aligns line p with one of coordinate system axis (using
Euler’s angles). Then rotation around appropriate axis is
applied. Last step represents all inverse alignment
transformations applied to get rotated object back into its
original position.

Fig. 2 Object rotation in 3D space

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

1
0100
0010
0001

1000
0100
00cossin
00sincos

1000
0cos0sin
0010
0sin0cos

1000
0cossin0
0sincos0
0001

ZYX ppp

TR

RR

Z

YX

γγ
γγ

ββ

ββ

αα
αα

 (1)

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:17 AM

34 Control of Large Graphics Data Set Visualization Using Script Language

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Generic geometric transformation is then performed as
follows. First multiplication between base translation
matrix T and rotation matrix R is performed (X-axes
matrix RX is multiplied by Y-axes RY and by Z–axes RZ).

Once we have all four matrices multiplied we get
transformation matrix as result. If we now multiply vector
that defines point in space by such transformation matrix
we get new transformed point coordinates as result. In
principle we get new position. When performing matrix
multiplications it is important to keep order from left to
right. Also it is important to first perform translation and
only after that rotation of point. Scaling is needed to have
complete set of geometric transformations. Scaling is the
process to enlarge or reduce object. Transformation matrix
that we got in previous steps (that allows us to perform
translation and rotation) needs to be then multiplied by
scaling matrix

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
000
000
000

Z

Y

X

S
S

S

S (2)

where SX, SY, SZ are factors of scaling.

These matrixes can be also transformed to some
formulas. Full transformation is called sometimes
transformation of world (W transformation matrix). In
simple formula it is defined as:

SRTW ××=)(world (3)

After substitutions

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅−⋅⋅
⋅⋅−⋅⋅⋅−⋅⋅⋅⋅+⋅⋅⋅

⋅⋅⋅−⋅⋅

=

1
0coscoscossinsinsincoscossincossinsin
0cossinsinsinsincoscossincoscossinsin
0sinsincoscoscos

ZYX

ZYYXX

ZYYXX

ZYX

ppp
sssss
sssss

sss

βαγαγβαγβαγα
βαγβαγαγαγβα

βγβγβ

W

This matrix is used for one-step basic transformation

of each object in virtual world.

3. VISUALIZATION ENGINE AND RUBY

As we had already mentioned RUBY belongs into
family of script languages [5]. Its name is derived from
ruby crystal. RUBY is programming language with focus
on simplicity and productivity. It has an elegant syntax
that is natural to read and easy to write. History of RUBY
is dated to year 1993. In that year Yukihiro Matsumoto
present this simple scripting language. Interpreter of
RUBY is written in C language.

RUBY script described in this paper is implemented as
part of visualization engine (transformation module)
developed at author’s department [9][10][14]. This
visualization engine represents execution environment
used especially for visualization scripts programmed in
RUBY language. Visualization engine uses objects
exported from modelling programs e.g. Sketchup [11]
(Sketchup supported RUBY scripting language too).
Objects exported from Sketchup are exported in .obj file
extension and must be converted into .bin file extensions

by convertor (Visualization engine doesn’t support .obj
file extension, only .bin file extension yet). Visualization
engine then renders these objects and RUBY script is used
to perform task. Script provides transformations of objects
in scene including camera. Visualization engine consists
of two parts. First part of engine consists of libraries,
batch files and control center. Second part contains
renderer window where scene is rendered. The objects are
here and they move as in movie such as people walk and
cars are move on the road. Here are two ways to move
objects in scene. First simple one moves camera around
objects and second more difficult one uses script to script
objects and their transformations.

Visualization kernel is implemented to perform real-
time visualisation in visualization engine. This kernel is
based on sequential approach to process information. On
the input side is virtual world (space, objects) and on
output side there is rendered image on the screen.
Between these two stages there are multiple stages that
process and transform input information to final image.
The main design idea of graphical system implementation
is to minimize the time used by each stage for real time
system. In multiprocessor systems it is possible to execute
certain stages in parallel, which is real speedup [10]. The
rendering pipeline of visualization kernel is divided into
three stages:

1. virtual world model traversal,
2. polygon processing and
3. pixel processing (rendering).

World model traversal is typically done on a host CPU
and there is a problem if the traversal is unable to keep
graphics pipeline full. Polygon processing including
vertex transformations and lighting is sometimes done on
host CPU, but sometimes by more specialized
transformation engines. Polygon performance is often
measured to a simple number of triangles per second.
Pixel processing including depth buffer testing,
antialiasing, transparency blending and texturing typically
involves intensive memory access. Pixel performance is
often measured in millions of pixels per second. The
rendering optimization tasks can be divided into two
categories, those which can be done as a preprocessing
stage and those which must be done at run-time because
of dynamic changes in world model. Real-time
visualisation approach values time aspect above rendering
quality. The block diagram of implemented visualization
kernel is depicted in Fig. 3.

 W orld

M odel

Visibility
in 3D

Transfor-
mations

Shading
module

Visibility
in 2D

Rasterization

Output
device

Lighting
module

polygon processing

rendering

Fig. 3 Block diagram of visualization kernel

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:17 AM

Acta Electrotechnica et Informatica, Vol. 11, No. 2, 2011 35

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

4. TRANSFORMATION IMPLEMENTATION

Geometric transformations described in chapter 2 are
used commonly in computer graphics systems. Their
implementation is easy and lot of graphics
engines/libraries provides these transformations as internal
functions. When these functions are applied to virtual
objects in graphics systems then the result is displayed in
real time (using hardware acceleration). But only final
result is displayed and not whole process of
transformation. In first step user can to see initial state of
virtual world and in next step (next visualization frame) he
can to see destination state without dynamics (e.g. only
frame 1 and 6 in Fig. 5).

Fig. 4 Splitting of rotation to sub-rotation

The implementation of dynamics is nontrivial process.
The minimal implementation supports uniform linear or
rotating movement. The movement from start to
destination position is implemented as sequence of sub-
movements with particular increments (steps) of path (see
Fig. 4). The increment size depends on desired movement
speed and rendering performance (possible frame per
second, respectively FRAMETIME in following code).
The basic implementation of rotation transformation as a
uniform rotating movement is depicted in following code.

Rotation(object,x,y,z,speed=1)
 pdx = (object.ox - x).abs;
 pdy = (object.oy - y).abs;
 pdz = (object.oz - z).abs;
 if(pdx<=0.001 && pdy<=0.001 && pdz<=0.001) then return true end

 dirx = 1.0; diry = 1.0; dirz = 1.0;
 dx = x - object.ox; dy = y - object.oy; dz = z - object.oz;

 if(dx<0.0) then dirx = -1.0 end
 if(dy<0.0) then diry = -1.0 end
 if(dz<0.0) then dirz = -1.0 end

 deltax = speed * dirx * $FRAMETIME;
 deltay = speed * diry * $FRAMETIME;
 deltaz = speed * dirz * $FRAMETIME;

 max = dx.abs;
 if(dy.abs > max) then max = dy.abs end
 if(dz.abs > max) then max = dz.abs end

 if(max == dx.abs) then
 deltay = deltay * (dy.abs/dx.abs);
 deltaz = deltaz * (dz.abs/dx.abs);
 elsif(max == dy.abs) then
 deltax = deltax * (dx.abs/dy.abs);
 deltaz = deltaz * (dz.abs/dy.abs);
 elsif(max == dz.abs) then
 deltax = deltax * (dx.abs/dz.abs);
 deltay = deltay * (dy.abs/dz.abs);
 end

 object.ox = object.ox + deltax;
 object.oy = object.oy + deltay;
 object.oz = object.oz + deltaz;

 if(dirx<0.0) then
 if(object.ox <= x) then object.ox = x end
 else
 if(object.ox >= x) then object.ox = x end
 end

 if(diry<0.0) then
 if(object.oy <= y) then object.oy = y end
 else
 if(object.oy >= y) then object.oy = y end
 end

 if(dirz<0.0) then
 if(object.oz <= z) then object.oz = z end
 else
 if(object.oz >= z) then object.oz = z end
 end

 pdx = (object.ox - x).abs;
 pdy = (object.oy - y).abs;
 pdz = (object.oz - z).abs;

 if(pdx<=0.001 && pdy<=0.001 && pdz<=0.001) then return true
 else return false end
end

Fig. 5 Example: the phases of object rotation

In first step are computed angle increments in all axes.
The methods .ox, .oy, .oz of object object are internal
geometric rotation transformations. Next step represents
the test of minimal increment size. In the next part is
computed rotation direction and step size for every axis.
Then whole sub-rotation is implemented and last part

START

DESTINATION

ROTATION
ANGLE

SUB-ROTATION

1 2

3 4

5 6

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:17 AM

36 Control of Large Graphics Data Set Visualization Using Script Language

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

contains test of destination position. Visualization engine
executes this script in loop. Examples of some frames of
rotation are depicted in Fig. 5.

5. CONCLUSIONS

VR system for immersive visualization of complex
datasets was developed at DCI FEI TU Košice [10][14].
This system is still under development (4.-th generation)
and has these main features: hierarchical graph scene
representation, support main 3D models formats, support
script controlling (Ruby, Python), visualization engine
with multi-screen and cluster support. Our VR system can
be used like information or training immersive interactive
system. This system presupposes use of GPGPU
technology mainly for visualization.

In future we plan to use and develop more
transformations in our VR system. Use of automatic
generates input described in [12] can increase flexibility
and range of usability of this system for next experimental
work. We also intend to utilize formal methods suitable
for design of time-critical systems, such as Time-basic
Nets [13] during the development of algorithms and
optimization of process distribution [15][16]. GPGPU
technology will be used mainly for real-time visualization
and for augmented reality applications.

ACKNOWLEDGMENTS

This work is the result of the project implementation:
Center of Information and Communication Technologies
for Knowledge Systems (ITMS project code:
26220120020) supported by the Research & Development
Operational Program funded by the ERDF.

REFERENCES

[1] ĎURATNÝ, M. – PEŤKA, R.: Photorealistic
Visualisation in Cluster Environment. In: AEI '2008:
International Conference on Applied Electrical
Engineering and Informatics 2008: September 8–11,
2008, Košice: TU FEI, 2008, pp. 116–120, ISBN
978-80-553-0066-5.

[2] PEŤKA, R. – HAŠKO, M.: Visualization of
Technological, Industrial and Architectural
Buildings. In: AT&P Journal, Vol. 16, No. 6, 2009,
pp. 63–65, ISSN 1336-233X (in Slovak).

[3] YANG, X. – PETRIU, D. C. – WHALEN, T. E. –
PETRIU, E. M.: Script Language for Avatar
Animation in 3D Virtual Environments.
VECIMS 2003 - International Symposium on Virtual
Environments, Human-Computer Interfaces, and
Measurement Systems, Lugano, Switzerland, July
27–29, 2003, pp. 101-106.

[4] DIETRICH, A. – GOBBETTI, E. – YOON, S.-E.:
Massive-Model Rendering Techniques: A Tutorial.
IEEE Computer Graphics and Applications, Vol. 27,
No. 6, pp. 20–34, 2007.

[5] Ruby official website, url: http://www.ruby-
lang.org/en/

[6] Python Programming Language – official website,
url: http://www.python.org/

[7] LUA – the programming language – official website,
url: http://www.lua.org/

[8] SHIRLEY, P. – MARSCHNER, S.: Fundamentals of
Computer Graphics. Publisher: A K Peters; 3rd
revised edition, 2009, p. 804, ISBN 978-156-881-
469-8.

[9] SOBOTA, B. – STRAKA, M. – PERHÁČ, J.: Some
Problems of Virtual Object Modelling for Virtual
Reality Applications. Journal of Information, Control
and Management Systems, Vol. 6, No. 1, 2008, pp.
105–112, ISSN 1336-1716.

[10] SOBOTA, B. – PERHÁČ, J. – SZABÓ, Cs. – PETZ,
I. – HROZEK, F.: Tasks Solution for Large
Graphical Data Processing in the Environment of
Parallel, Distributed and Network Computer
Systems, Computer Science and Technology
Research Survey, Košice, KPI FEI TU Košice, 2009,
4, pp. 45–53, ISBN 978-80-8086-131-5.

[11] SkethUp home page. url: www.sketchup.com

[12] PORUBÄN, J. – VÁCLAVÍK, P.: Separating User
Interface and Domain Logic, Analele Universitatii
din Oradea, Proc. 8th International Conference on
Engineering of Modern Electric Systems, Oradea,
May 24–26, University of Oradea, Romania, 2007,
pp. 90–95, ISSN 1223-2106.

[13] HUDÁK, Š. – KOREČKO, Š. – ŠIMOŇÁK, S.:
Reachability Analysis of Time-Critical Systems.
Petri Nets: Applications, Vukovar, Croatia, In-Teh,
2010, pp. 253–280, ISBN 978-953-307-047-6.

[14] SOBOTA, B.: Some Problems Virtual Reality
Systems Visualisation Frame Solution in Parallel
Computing Environment; Habilitation thesis, FEEI
TU Košice, 2008, p. 103.

[15] TOMÁŠEK, M.: Behavioral Scheme of Mobile
Processes. Journal of Information Control and
Management Systems, Vol. 5, No. 2, ISSN 1336-
1716, pp. 371–382, Žilina, 2007.

[16] TOMÁŠEK, M.: Computational Environment of
Software Agents. Acta Polytechnica Hungarica, Vol.
5, No. 2, ISSN 1785-8860, pp. 31–41, Budapest,
2008.

Received December 4, 2010, accepted April 8, 2011

BIOGRAPHY

Branislav Sobota was born on 22.05.1967. In 1990 he
graduated (MSc.) with honours at the Department of
Computers and Informatics of the FEEI at Technical
University in Košice. He defended his PhD. in 1999 and
habilitation thesis in 2008 in the field of virtual reality and
computer graphics. He is working as an associate
professor at the Department of Computers and
Informatics. His scientific research is focusing on
computer graphics, virtual reality, modelling and
simulation and parallel computing.

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:17 AM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

